

A.H.Majeed ${ }^{1 *}$, Rajaa C.Shaheen ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, Baghdad university.
${ }^{2}$ Department of Mathematics, College of Education, Al-Qadisiyah University.

Abstract

In this paper, we prove that if T is a 2-torsion free triangular ring and $\varphi=$ $\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping $\varphi_{\mathrm{i}}: \mathrm{T} \rightarrow \mathrm{T}$ then φ satisfying $\mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+$ $\varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}=0 \forall \mathrm{i} \in \mathrm{N}$ whenever $\mathrm{X}, \mathrm{Y} \in \mathrm{T}, \mathrm{XY}=\mathrm{YX}=0$ ifand only if φ is a higher centralizer which is means that φ is Jordan higher centralizer on 2-torsion free triangular ring if and only if φ is a higher centralizer and also we prove that if $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping $\varphi_{\mathrm{i}}: \mathrm{T} \rightarrow \mathrm{T}$ satisfying the relation $\varphi_{\mathrm{n}}(\mathrm{XYX})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{T}$, Then φ is a higher centralizer.

Keywords: higher centralizer, Jordan higher centralizer

الخلاصة

$$
\begin{aligned}
& \text { برهنا في هذا البحث ، اذا كانت T حلقة مصفوفات مثلثية عليا طليقة الالنواء من النمط الثناني و } \\
& \text { X } \varphi_{i}(Y)+\varphi_{i}(Y) X=0 \text { عائلة من التطبيقات الجمعية } \varphi \text { اذن } \varphi \text { تحقق }=\left(\varphi_{i}\right)_{i \in N} \\
& \text { لرا } \quad X Y=Y X=0 \quad \text { اذا وفقط اذا كان } \varphi \text { تطبيق مركزي من الرتب العليا } \\
& \text { اي انب يكون تطبيق جوردان المركزي من الرنب العليا على حلقة المصفوفات المثلثية العليا طليقة الالتواء } \\
& \varphi=\left(\varphi_{i}\right)_{\mathrm{i} \in \mathrm{~N}} \text { من النمط الثاني اذا وفقط اذا كان } \varphi \text { تطبيق مركزي من الرتب العليا وكذلك برهنا اذا كاني } \\
& \varphi_{\mathrm{n}}(\mathrm{XYX})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~T} \text { عائلة من التطبيقات الجمعية } \varphi_{\mathrm{i}}: T \rightarrow T \text { التي تحقر } \\
& \text { تكون تطبيق مركزي من الرتب العليا. }
\end{aligned}
$$

1. Introduction

Let R be a ring with center $\mathrm{Z}(\mathrm{R})$.Recall that an additive map $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ is said to be a right (resp., left) $)$ centralizer if $\varphi(\mathrm{XY})=\mathrm{X} \varphi(\mathrm{Y})($ resp.,$\varphi(\mathrm{XY})=\varphi(\mathrm{X}) \mathrm{Y}) \forall \mathrm{X}, \mathrm{Y} \in \mathrm{R}$ and is called a centralizer if it is both left and right centralizer .In case R has a unity $1, \varphi$ is a centralizer iff $\varphi(X)=\varphi(1) X \forall X \in$ Rwhere $\varphi(1) \in \mathrm{Z}(\mathrm{R})$. We say that φ is a Jordan centralizer if $\varphi(\mathrm{XY}+\mathrm{YX})=\mathrm{X} \varphi(\mathrm{Y})+\varphi(\mathrm{Y}) \mathrm{X} \forall \mathrm{X}, \mathrm{Y} \in$ R.Clearly each centralizer is a Jordan centralizer but the converse in general , not true see [1, Example 2.6] , the question under what conditions that a map becomes a centralizer attracted much attention of

[^0]mathematicians. Vukman [2] has showed that an additive map $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ where R is a 2-torsion free semi-prime ring with the property that $2 \varphi\left(\mathrm{X}^{2}\right)=\mathrm{X} \varphi(\mathrm{X})+\varphi(\mathrm{X}) \mathrm{X} \quad \forall \mathrm{X} \in \mathrm{R}$ is a centralizer . Hence any Jordan centralizer on a 2-torsion free semi-prime ring is a centralizer .Vukman [3] has showed the following result if $\varphi: \mathrm{R} \rightarrow \mathrm{R}$ is an additive mapping, where R is a 2-torsion free semi-prime ring satisfying the relation $\varphi(\mathrm{XYX})=\mathrm{X} \varphi(\mathrm{Y}) \mathrm{X}, \forall \mathrm{X} \in \mathrm{R}$ Then φ is a centralizer . In [4] authors present and study the concept of higher (σ, τ)-centralizer ,Jordan higher (σ, τ)-centralizer and Jordan Triple higher (σ, τ)-centralizer and their generalization on the ring. In [5] characterized Jordan derivations of matrix rings through zero product. In this paper, we characterized Jordan higher centralizer on triangular ring through zero product by proving that if T is a 2-torsion free triangular ring and if $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping $\varphi_{\mathrm{i}}: \mathrm{T} \rightarrow \mathrm{T}$ then φ satisfying $\mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+\varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}=0 \forall \mathrm{i} \in$ N whenever $X, Y \in T, X Y=Y X=0 \operatorname{iff} \varphi$ is a higher centralizer which is means that φ is a Jordan higher centralizer on 2-torsion free triangular ring iff φ is a higher centralizer and also we prove that if $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping $\varphi_{\mathrm{i}}: \mathrm{T} \rightarrow$ Tsatisfying the relation $\varphi_{\mathrm{n}}(\mathrm{XYX})=$ $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{T} \quad$ Then φ is a higher centralizer.

2. Preliminaries

Recall that triangular ring $\operatorname{Tri}(\mathrm{R}, \mathrm{M}, \mathrm{S})$ is a ring of the form
$\operatorname{Tri}(R, M, S):=\left\{\left[\begin{array}{cc}r & m \\ 0 & s\end{array}\right]: r \in R, s \in S, m \in M\right\}$
Under the usual matrix operations, where R and S are unital rings and M is a unital (R, S)-bimodule which is faithful as a left R -modules as well as a right S -module, the most important example of triangular rings are upper triangular matrices over a ring R Recently, there has been a growing interest in the study of linear maps that preserve zero products. Throughout this paper , R and S are unital 2torsion free rings , M is a unital 2-torsion free (R, S)-bimodule which is faithful as a left R -module and also as a right S-module .Also T denotes the triangular ring $\operatorname{Tri}(\mathrm{R}, \mathrm{M}, \mathrm{S})$ which is 2-torsion free ring .Let 1_{R} and 1_{S} be identities of the rings R and S,Respectively. We denote the identity of the triangular ring T,i.e the identity matrix $\left[\begin{array}{cc}1_{R} & 0 \\ 0 & 1_{S}\end{array}\right]$ by1, also ,throughout this paper we shall use the notation $\mathrm{P}=\left[\begin{array}{cc}1_{\mathrm{R}} & 0 \\ 0 & 0\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{cc}0 & 0 \\ 0 & 1_{\mathrm{S}}\end{array}\right]$
We immediately notice that P and Q are the standard idempotents (i.e $P^{2}=P$ and $Q^{2}=Q$) in T such that $\mathrm{P}+\mathrm{Q}=1$ and $\mathrm{PQ}=\mathrm{QP}=0$. We should mentioned the reader that the following definitions equivalent to the definitions found in [4, Definition 2.1, 2.3]here we suppose that $\sigma=\tau=I$ and the ring is a triangular ring
Definition 2.1:- Let T be a triangular ring and $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping φ_{i} : $\mathrm{T} \rightarrow$ T. then φ is called a Higher Centralizer on T if the following condition satisfies

$$
\varphi_{\mathrm{n}}(\mathrm{XY})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(\mathrm{X}) \mathrm{Y} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~T}
$$

Definition 2.2:-Let T be a triangular ring and $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping φ_{i} : $\mathrm{T} \rightarrow$ T then φ is called a Jordan Higher Centralizer on T if the following condition satisfies

$$
\varphi_{\mathrm{n}}(\mathrm{XY}+\mathrm{YX})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~T}
$$

Also $2 \varphi_{\mathrm{n}}\left(\mathrm{X}^{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{X})+\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(\mathrm{X}) \mathrm{X} \quad \forall \mathrm{X} \in \mathrm{T}$.
It is easy to see that every higher centralizer be a Jordan higher centralizer but the converse is not true in general, so we give the following example
Example 2.3:- let $A=B=R$ be a ring such that $x_{1} x_{2} \neq x_{2} x_{1}$ but $x_{1} x_{3}=x_{3} x_{1}$ for some $x_{1}, x_{2}, x_{3} \in R, M=\{0\}$ and let $t=\left(t_{i}\right)_{i \in N}$ is a higher centralizer on R. let $U=\left\{\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\right.$ $: x \in R\}$ and let $T=\left(T_{i}\right)_{i \in N}$ is a family of additive mapping satisfying
$T_{n}\left(\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\right)=\left[\begin{array}{cc}t_{n}(x) & 0 \\ 0 & t_{n}(x)\end{array}\right]$
It is easy to see that
$2 T_{n}\left(\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\right)=2 T_{n}\left(\left[\begin{array}{cc}x^{2} & 0 \\ 0 & x^{2}\end{array}\right]\right)=\left[\begin{array}{cc}2 t_{n}\left(x^{2}\right) & 0 \\ 0 & 2 t_{n}\left(x^{2}\right)\end{array}\right]$

Since t is a higher centralizer on R then it is Jordan higher centralizer on R .
So $2 T_{n}\left(\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\right)=\left[\begin{array}{cc}\sum_{i=1}^{n}\left(x t_{i}(x)+t_{i}(x) x\right) & 0 \\ 0 & \sum_{i=1}^{n}\left(x t_{i}(x)+t_{i}(x) x\right)\end{array}\right]$
Also
$\sum_{i=1}^{n}\left(\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right] T_{i}\left(\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\right)+T_{i}\left(\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]\right)\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\right)=$ $=\sum_{i=1}^{n}\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\left[\begin{array}{cc}t_{i}(x) & 0 \\ 0 & t_{i}(x)\end{array}\right]+\left[\begin{array}{cc}t_{i}(x) & 0 \\ 0 & t_{i}(x)\end{array}\right]\left[\begin{array}{cc}x & 0 \\ 0 & x\end{array}\right]$
$=\left[\begin{array}{cc}\sum_{i=1}^{n}\left(x t_{i}(x)+t_{i}(x) x\right) & 0 \\ 0 & \sum_{i=1}^{n}\left(x t_{i}(x)+t_{i}(x) x\right)\end{array}\right]$
Then T_{n} is a Jordan higher centralizer on U . But
$T_{n}\left(\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]\right)=T_{n}\left(\left[\begin{array}{cc}x y & 0 \\ 0 & x y\end{array}\right]\right)$
$=\left[\begin{array}{cc}t_{n}(x y) & 0 \\ 0 & t_{n}(x y)\end{array}\right]=\left[\begin{array}{cc}\sum_{i=1}^{n} x t_{i}(y) & 0 \\ 0 & \sum_{i=1}^{n} x t_{i}(y)\end{array}\right]=\left[\begin{array}{cc}\sum_{i=1}^{n} t_{i}(x) y & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(x) y\end{array}\right]$
Since $x_{1} x_{2} \neq x_{2} x_{1}$ but $x_{1} x_{3}=x_{3} x_{1}$ for some $x_{1}, x_{2}, x_{3} \in$ R.It is easy to see that
$\sum_{i=1}^{n}\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right] T_{i}\left(\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]\right)=\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right] \sum_{i=1}^{n} T_{i}\left(\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]\right)=\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\left[\begin{array}{cc}\sum_{i=1}^{n} t_{i}(y) & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(y)\end{array}\right]$
$=\left[\begin{array}{cc}\sum_{i=1}^{n} x t_{i}(y) & 0 \\ 0 & \sum_{i=1}^{n} x t_{i}(y)\end{array}\right] \neq\left[\begin{array}{cc}\sum_{i=1}^{n} x t_{i}(y) & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(x) y\end{array}\right]$
And
$\sum_{i=1}^{n} T_{i}\left(\left[\begin{array}{ll}x & 0 \\ 0 & x\end{array}\right]\right)\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]=\left[\begin{array}{cc}\sum_{i=1}^{n} t_{i}(x) & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(x)\end{array}\right]\left[\begin{array}{ll}y & 0 \\ 0 & y\end{array}\right]$
$=\left[\begin{array}{cc}\sum_{i=1}^{n} t_{i}(x) y & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(x) y\end{array}\right] \neq\left[\begin{array}{cc}\sum_{i=1}^{n} x t_{i}(y) & 0 \\ 0 & \sum_{i=1}^{n} t_{i}(x) y\end{array}\right]$
Then T_{n} is not higher centralizer on U.

3-Result

Theorem 3.1:-Let T be a triangular ring and $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping φ_{i} : $\mathrm{T} \rightarrow \mathrm{T}$ then φ satisfying $\forall X, Y \in T, X \varphi_{i}(Y)+\varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}=0 \quad \forall \mathrm{i} \in \mathrm{N}$ whenever $\mathrm{XY}=\mathrm{YX}=0$ if and only if φ is a higher centralizer.
Proof:-Let X and Y be arbitrary elements in T.
Since $\mathrm{P}(\mathrm{QXQ})=(\mathrm{QXQ}) \mathrm{P}=0$. Then

$$
\begin{equation*}
\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{QXQ})+\varphi_{\mathrm{i}}(\mathrm{QXQ}) \mathrm{P}=0 \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.1}
\end{equation*}
$$

And so

$$
\sum_{i=1}^{n}\left(P \varphi_{i}(Q X Q)+\varphi_{i}(Q X Q) P\right)=0
$$

Then multiplying this identity by P both on the left and on the right, we find

$$
\begin{align*}
& 2 \mathrm{P} \varphi_{\mathrm{i}}(\mathrm{QXQ}) \mathrm{P}=0 \forall \mathrm{i}=1, \ldots, \mathrm{n}, \text { and so } \\
& \mathrm{P} \varphi_{\mathrm{i}}(\mathrm{QXQ}) \mathrm{P}=0 \forall \mathrm{i} \in \mathrm{~N} \tag{3.2}
\end{align*}
$$

Now, multiplying (3.1) from the left by P and from the right by Q

$$
\begin{equation*}
\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{QXQ}) \mathrm{Q}=0 \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.3}
\end{equation*}
$$

From $\mathrm{Q}(\mathrm{PXP})=(\mathrm{PXP}) \mathrm{Q}=0$, we have

$$
\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{PXP})+\varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{Q}=0 \quad \begin{aligned}
& \mathrm{i} \in \mathrm{~N} \\
& \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{PXP})+\varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{Q}\right)=0
\end{aligned}
$$

By this identity and using similar methods as above, we obtain

$$
\begin{equation*}
\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{Q}=0 \text { and } \mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{Q}=0 \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.4}
\end{equation*}
$$

Since $(\mathrm{P}-\mathrm{PXQ})(\mathrm{Q}+\mathrm{PXQ})=(\mathrm{Q}+\mathrm{PXQ})(\mathrm{P}-\mathrm{PXQ})=0$, it follows that
$(\mathrm{P}-\mathrm{PXQ}) \varphi_{\mathrm{i}}(\mathrm{Q}+\mathrm{PXQ})+\varphi_{\mathrm{i}}(\mathrm{Q}+\mathrm{PXQ})(\mathrm{P}-\mathrm{PXQ})=0 \forall \mathrm{i} \in \mathrm{N}$.
Multiplying this identity by P both on the left and on the right and by the fact that
P $\varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{P}=0 \forall \mathrm{i} \in \mathrm{N}$, we see that

$$
\begin{align*}
& P \varphi_{i}(P X Q) P=0 \forall i \in N \tag{3.5}\\
& \qquad \sum_{i=1}^{n} P \varphi_{i}(P X Q) P=0
\end{align*}
$$

From $(\mathrm{PXP}-\mathrm{PXPYQ})(\mathrm{Q}+\mathrm{PYQ})=(\mathrm{Q}+\mathrm{PYQ})(\mathrm{PXP}-\mathrm{PXPYQ})=0$
$(\mathrm{Q}+\mathrm{PYQ}) \varphi_{\mathrm{i}}(\mathrm{PXP}-\mathrm{PXPYQ})+\varphi_{\mathrm{i}}(\mathrm{PXP}-\mathrm{PXPYQ})(\mathrm{Q}+\mathrm{PYQ})=0 \forall \mathrm{i} \in \mathrm{N}$
And so

$$
\begin{equation*}
\sum_{i=1}^{n}(Q+P Y Q) \varphi_{i}(P X P-P X P Y Q)+\varphi_{i}(P X P-P X P Y Q)(Q+P Y Q)=0 \tag{3.6}
\end{equation*}
$$

Let $\mathrm{X}=\mathrm{P}$ and multiplying above identity by Q both on the left and on the right and the fact that $\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{Q}=0 \quad \forall \mathrm{i} \in \mathrm{N}$
And so

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{Q}=0 \tag{3.7}
\end{equation*}
$$

We obtain

$$
\sum_{i=1}^{n} Q \varphi_{i}(P Y Q) Q=0
$$

Multiplying (3.6) by P on the left and by Q on the right,from (3.4),(3.5) and (3.7)
We arrive $\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXPYQ}) \mathrm{Q}=\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{PYQ} \quad \forall \mathrm{i} \in \mathrm{N}$
And so

$$
\begin{equation*}
\sum_{i=1}^{n} P \varphi_{i}(P X P Y Q) Q=\sum_{i=1}^{n} P \varphi_{i}(P X P) P Y Q \tag{3.8}
\end{equation*}
$$

Replacing X by P in above equation, we get

$$
\begin{align*}
& P \varphi_{i}(P Y Q) Q=P \varphi_{i}(P) P Y Q \forall i \in N \tag{3.9}\\
& \quad \sum_{i=1}^{n} P \varphi_{i}(P Y Q) Q=\sum_{i=1}^{n} P \varphi_{i}(P) P Y Q
\end{align*}
$$

So from (3.8) and (3.9), it follows that
P $\varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{PY} \mathrm{Q}=\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXPYQ}) \mathrm{Q}=\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXPY} \mathrm{Q} \forall \mathrm{i} \in \mathrm{N}$
And so

$$
\sum_{i=1}^{n} P \varphi_{i}(P X P) P Y Q=\sum_{i=1}^{n} P \varphi_{i}(P X P Y Q) Q=\sum_{i=1}^{n} P \varphi_{i}(P) P X P Y Q
$$

And hence $\left(\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{P}-\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXP}\right) \mathrm{PYQ}=0 \quad \forall \mathrm{i} \in \mathrm{N}$

$$
\begin{equation*}
\sum_{i=1}^{n}\left(P \varphi_{i}(P X P) P-P \varphi_{i}(P) P X P\right) P Y Q=0 \tag{3.10}
\end{equation*}
$$

Since $Y \in T$ is arbitrary and M is faithful left R-module, we find from (3.10)

$$
\begin{gather*}
P \varphi_{i}(P X P) P=P \varphi_{i}(P) P X P \quad \forall i \in N \tag{3.11}\\
\sum_{i=1}^{n} P \varphi_{i}(P X P) P=\sum_{i=1}^{n} P \varphi_{i}(P) P X P
\end{gather*}
$$

From $(\mathrm{P}-\mathrm{PXQ})(\mathrm{PXQYQ}+\mathrm{QYQ})=(\mathrm{PXQYQ}+\mathrm{QYQ})(\mathrm{P}-\mathrm{PXQ})=0$
We have
$(P-P X Q) \varphi_{i}(P X Q Y Q+Q Y Q)+\varphi_{i}(P X Q Y Q+Q Y Q)(P-P X Q)=0 \quad \forall i \in N$.
And so

$$
\sum_{i=1}^{n}(P-P X Q) \varphi_{i}(P X Q Y Q+Q Y Q)+\varphi_{i}(P X Q Y Q+Q Y Q)(P-P X Q)=0
$$

Multiplying this identity by P on the left and by Q on the right ,from (3.2),(3.3),(3.5)and (3.7), we see that $\quad P \varphi_{i}(P X Q Y Q) Q=P X Q \varphi_{i}(Q Y Q) Q \quad \forall i \in N$
And so

$$
\begin{equation*}
\sum_{i=1}^{n} \mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXQYQ}) \mathrm{Q}=\sum_{i=1}^{n} \mathrm{PXQ} \varphi_{\mathrm{i}}(\mathrm{QYQ}) \mathrm{Q} \tag{3.12}
\end{equation*}
$$

Replacing Y by Q in above equation, we get

$$
\begin{equation*}
\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXQ}) \mathrm{Q}=\mathrm{PXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.13}
\end{equation*}
$$

$$
\sum_{i=1}^{n} P \varphi_{i}(P X Q) Q=\sum_{i=1}^{n} \operatorname{PXQ} \varphi_{i}(Q) Q
$$

By (3.12) and (3.13), using similar methods as above and the fact M is a faithful right S -module, we obtain

$$
\begin{equation*}
\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{QYQ}) \mathrm{Q}=\mathrm{QYQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.14}
\end{equation*}
$$

And so

$$
\sum_{i=1}^{n} Q \varphi_{i}(Q Y Q) Q=\sum_{i=1}^{n} Q Y Q \varphi_{i}(Q) Q
$$

By (3.9) and (3.13), we have

$$
\begin{equation*}
\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXQ}=\mathrm{PXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.15}
\end{equation*}
$$

So that

$$
\sum_{i=1}^{n} \mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXQ}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{PXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q}
$$

$\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXPYQ}=\mathrm{PXPYQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q}=\mathrm{PXP} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PYQ} \quad \forall \mathrm{i} \in \mathrm{N}$

$$
\sum_{i=1}^{n} P \varphi_{i}(P) P X P Y Q=\sum_{i=1}^{n} \operatorname{PXPYQ} \varphi_{i}(Q) Q=\sum_{i=1}^{n} \operatorname{PXP} \varphi_{i}(P) P Y Q
$$

And hence

$$
\begin{equation*}
\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXP}=\mathrm{PXP} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{P} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.16}
\end{equation*}
$$

$$
\sum_{i=1}^{n} P \varphi_{i}(P) P X P=\sum_{i=1}^{n} P X P \varphi_{i}(P) P
$$

Since M is faithful left R -Module , similarly , from (3.15), we get

$$
\begin{equation*}
\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{QXQ}=\mathrm{QXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q} \quad \forall \mathrm{i} \in \mathrm{~N} \tag{3.17}
\end{equation*}
$$

Now by (3.2),(3.3),(3.4),(3.15),(3.16) and (3.17)
We have

$$
\begin{align*}
& \mathrm{X} \varphi_{\mathrm{i}}(1)=\mathrm{PXP} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{P}+\mathrm{PXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q}+\mathrm{QXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q} \\
& =\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXP}+\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXQ}+\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{QXQ} \\
& =\varphi_{\mathrm{i}}(1) \mathrm{X} \tag{3.18}
\end{align*}
$$

Then $\mathrm{X} \varphi_{\mathrm{i}}(1)=\varphi_{\mathrm{i}}(1) \mathrm{X} \quad \forall \mathrm{i} \in \mathrm{N}$
And from (3.2),(3.3),(3.4),(3.5),(3.7),(3.9),(3.11),(3.14) and (3.18), we arrive that

$$
\varphi_{\mathrm{i}}(\mathrm{X})=\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXP}) \mathrm{P}+\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{PXQ}) \mathrm{Q}+\mathrm{Q} \varphi_{\mathrm{i}}(\mathrm{QXQ}) \mathrm{Q}
$$

$=\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXP}+\mathrm{P} \varphi_{\mathrm{i}}(\mathrm{P}) \mathrm{PXQ}+\mathrm{QXQ} \varphi_{\mathrm{i}}(\mathrm{Q}) \mathrm{Q}$

$$
=\varphi_{\mathrm{i}}(1) \mathrm{X}
$$

Then

$$
\varphi_{\mathrm{n}}(\mathrm{X})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(1) \mathrm{X}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(1)
$$

These results show that φ is a higher centralizer.
Since every higher centralizer is a Jordan higher centralizer and every Jordan higher centralizer satisfies the requirements in theorem because
$\varphi_{\mathrm{n}}(\mathrm{XY}+\mathrm{YX})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}$
If $\mathrm{n}=1$ and $\mathrm{XY}=\mathrm{YX}=0$ then $X \varphi_{1}(Y)+\varphi_{1}(Y) X=0$ and if $\mathrm{n}=2$ and $\mathrm{XY}=\mathrm{YX}=0$ then $X \varphi_{2}(Y)+$ $\varphi_{2}(Y) X=0$ And so for every n , then the proof is complete.
also the following corollary is clear .
Corollary 3.2:- Let T be a triangular ring and suppose that $\varphi=\left(\varphi_{i}\right)_{i \in N}$ be a family of additive mapping $\quad \varphi_{\mathrm{i}}: \mathrm{T} \rightarrow \mathrm{T}$ then φ is a Jordan higher centralizer if and only if φ is a higher centralizer. Also ,from this result we can obtain the following corollary
Corollary 3.3:-Let T be a triangular ring and $\varphi=\left(\varphi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mapping φ_{i} : $\mathrm{T} \rightarrow$ T satisfying the relation

$$
\varphi_{\mathrm{n}}(\mathrm{XYX})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X} \quad \forall \mathrm{X}, \mathrm{Y} \in \mathrm{~T}
$$

Then φ is a higher centralizer.
Proof:-Let X and Y be arbitrary elements in T , replacing X by $\mathrm{X}+1$ in the above relation, we obtain

$$
\begin{gathered}
\varphi_{\mathrm{n}}((\mathrm{X}+1) \mathrm{Y}(\mathrm{X}+1))=\sum_{i=1}^{\mathrm{n}}(X+1) \varphi_{\mathrm{i}}(\mathrm{Y})(\mathrm{X}+1) \\
\varphi_{\mathrm{n}}(\mathrm{XY}+\mathrm{XYX}+\mathrm{YX}+\mathrm{Y})=\sum_{i=1}^{\mathrm{n}} \mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}+\mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+\varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}+\varphi_{\mathrm{i}}(\mathrm{Y})
\end{gathered}
$$

Then

$$
\varphi_{\mathrm{n}}(\mathrm{XY}+\mathrm{YX})=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{X} \varphi_{\mathrm{i}}(\mathrm{Y})+\varphi_{\mathrm{i}}(\mathrm{Y}) \mathrm{X}\right)
$$

So φ is a Jordan higher centralizer and by [Corollary 3.2], it is a higher centralizer.

References

1. H.Ghahramani. 2013. Zero Product determined triangular algebra, Linear and Multilinear Algebra ,61, pp: 741-757.
2. J.Vukman . 1999. An identity related to centralizer in semi-prime rings, comment .Math .univ. Caroline 40, pp: 447-456.
3. J.Vukman.2001.Centralizers on semi-prime rings, comment .Math.univ.caroline .42, pp: 237-245.
4. M.Salah and M. Marwa. 2013. Jordan Higher (σ, τ)-Centralizer on prime ring, IOSR Journal of Mathematics ,6,pp:5-11.
5. H.Ghahramani. 2013. Charactererizing Jordan derivation of Matrix rings through zero products, Math.Slovaca , in press.

[^0]: *Email: Ahmajeed6@yahoo.com

