On Symmetric Left Bi-(σ, τ)-Derivation on Gamma Rings

Rajaa C.Shaheen

Department of Mathematics, College of Education, University of Al-Qadisiya, Rajaa_chaffat2010@yahoo.com.

Abstract

In this paper ,we introduce the concept of symmetric left bi- (σ, τ)- derivation on gamma rings and study this concept on completely prime Gamma ring also we study it if acts as homomorphism and we show that if D nonzero Jordan left bi- σ, σ)derivation on 2-torsion free completely prime gamma ring M then M is commutative or D be left bi- σ, σ) derivation .

Key words: Gamma ring, Prime ring, Derivation ,Left derivation .

الخلاصة

 الحلقات الاولية الكاملة من نوع كاما وكذلك درسناه اذا كان يعمل كثشاكل واثبتا اذا كان DDاشتقاق جوردان اليساري الثائيـي (يكون Dاششتقاق يساري ثئئي- (σ (σ (σ). σ.
الكلمات المفتاحية: حلقة كاما، الحلقة الاولية، الاشتقاق، اشتقاق يساري.

1-Introduction

Throughout this paper , M will represent an associative Γ - ring and Z will be its center. Let R be a ring and let $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ the commutator $\mathrm{xy}-\mathrm{yx}$ will be denoted by $[\mathrm{x}, \mathrm{y}]$, we will also use the identities $[\mathrm{xy}, \mathrm{z}]=\mathrm{x}[\mathrm{y}, \mathrm{z}]+[\mathrm{x}, \mathrm{z}] \mathrm{y}$ and $[\mathrm{x}, \mathrm{yz}]=\mathrm{y}[\mathrm{x}, \mathrm{z}]+[\mathrm{x}, \mathrm{y}] \mathrm{z}$. Let A be anon empty subset of R then a map $f: R \rightarrow R$ is said to be commuting (resp.,Centralizing) on A if $[f(x), x]=0(r e s p ~ .,[f(x), x] \in Z)$ for all $x \in A$. We recall that R is semi-prime if a $R a=0$ implies that $a=0$ and R is prime if a $R b=0$ implies that $a=0$ or $b=0$.it is easy to see that every prime ring be semi-prime but the converse is not true.

An additive map $\mathrm{d}: \mathrm{R} \rightarrow \mathrm{R}$ is called a derivation(resp.left derivation) if $d(x y)=d(x) y+x d(y)($ resp $d(x y)=x d(y)+y d(x))$ for all $x, y \in R$. A bi-derivation mean that a bi-additive map $\mathrm{D}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}(\mathrm{D}$ is additive in both arguments) which satisfy the relations
$\mathrm{D}(\mathrm{xy}, \mathrm{z})=\mathrm{D}(\mathrm{x}, \mathrm{z}) \mathrm{y}+\mathrm{xD}(\mathrm{y}, \mathrm{z})$
$\mathrm{D}(\mathrm{x}, \mathrm{yz})=\mathrm{D}(\mathrm{x}, \mathrm{y}) \mathrm{z}+\mathrm{yD}(\mathrm{x}, \mathrm{z}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$.
Let D be symmetric that is $\mathrm{D}(\mathrm{x}, \mathrm{y})=\mathrm{D}(\mathrm{y}, \mathrm{x}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{R}$. the map $\mathrm{T}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $T(x)=D(x, x) \quad \forall x \in R$ is called the trace of D. Many paper study the concept of symmetric bi-derivation such as the paper of [Mohammed Ashraf 1999],[Vukman. J 1989],[Vukman. J 1990].In [Breaser 2004,Theorem3.5] prove that ,if R is a noncommutative 2-torsion free prime ring and $\mathrm{D}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ is a symmetric bi-derivation then $\mathrm{D}=0$.
Let R be a ring then the bi-additive map $\mathrm{D}: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R}$ is called a left bi-derivation if $\mathrm{D}(\mathrm{xy}, \mathrm{z})=\mathrm{x} D(\mathrm{y}, \mathrm{z})+\mathrm{y} \mathrm{D}(\mathrm{x}, \mathrm{z})$ and $\mathrm{D}(\mathrm{x}, \mathrm{yz})=\mathrm{y} \mathrm{D}(\mathrm{x}, \mathrm{z})+\mathrm{z} \mathrm{D}(\mathrm{x}, \mathrm{y}) \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}$.
We should mentioned the reader that the notion of left bi-derivation was introduced by authors in [Nagy and others 2010,Definition 3.1]and see that a prime ring of characteristic $\neq 2,3$ that admit anon-zero Jordan left bi-derivation is commutative also
if R is semi prime ring every bi-left derivation be an ordinary bi-derivationthat maps from R into its center.

Let M and Γ be additive abelian groups, M is called $\mathrm{a} \Gamma$-ring if for any $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\in \mathrm{M}$ and $\alpha, \beta \in \Gamma$,the following conditions are satisfied
(1) $\mathrm{x} \alpha \mathrm{y} \in \mathrm{M}$
(2)(x+y) $\alpha \mathrm{z}=\mathrm{x} \alpha \mathrm{z}+\mathrm{y} \alpha \mathrm{z}$
$\mathrm{x}(\alpha+\beta) \mathrm{z}=\mathrm{x} \alpha \mathrm{z}+\mathrm{x} \beta \mathrm{z}$
$\mathrm{x} \alpha(\mathrm{y}+\mathrm{z})=\mathrm{x} \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{z}$
(3)(x $\alpha \mathrm{y}) \beta \mathrm{z}=\mathrm{x} \alpha$ (y $\beta \mathrm{z}$)

The notion of Γ-ring was introduced by [Nabusawa, 1964] and generalized by [Barnes, 1966], many properties of Γ-ring were obtained by many research such as Ceven, 2002. Let A, B be subsets of a Γ-ring M and Λ be a subset of Γ we denote $\mathrm{A} \Lambda \mathrm{B}$ the subset of M consisting of all finite sum of the form $\sum a_{i} \lambda_{i} b_{i}$ where $a_{i} \in A, b_{i} \in B$ and $\lambda_{i} \in \Gamma$.A right ideal(resp.,left ideal) of a Γ-ring M is an additive subgroup Iof M such that $\mathrm{I} \Gamma \mathrm{M} \subset \mathrm{I}($ resp., $\mathrm{M} \Gamma \mathrm{I} \subset \mathrm{I})$. If I is a right and left ideal inM, then we say that I is an ideal . M is called a 2 -torsion free if $2 x=0$ implies $x=0$, for all $x \in M$.A Γ-ringM is called prime if a $\Gamma M \Gamma b=0$ implies $a=0$ or $b=0$ and M is called completely prime if a $\Gamma \mathrm{b}=0$ implies $\mathrm{a}=0$ or $\mathrm{b}=0(\mathrm{a}, \mathrm{b} \in \mathrm{M})$, Since $\mathrm{a} \Gamma \mathrm{b} \Gamma \mathrm{a} \Gamma \mathrm{b}$ $\subset \mathrm{a} \Gamma \mathrm{M} \Gamma \mathrm{b}$, then every completely prime Γ-ring is prime. $\mathrm{A} \Gamma$-ring M is called semi-prime if $a \Gamma M \Gamma \mathrm{a}=0$ implies $\mathrm{a}=0$ and M is called completely semi-prime if a $\Gamma \mathrm{a}=0$ implies $\mathrm{a}=0(\mathrm{a} \in \mathrm{M})$

In this paper, we give a new definition which is the definition of Symmetric bi-left (σ, τ) derivation on Γ-ring and study this concept on completely prime Γ-ring in section Two and in section three we study this concept if it is acts as left or right homomorphism also we introduce the concept of Jordan left bi- (σ, σ) derivation on Γ-ring and study it on completely prime Γ-ring .

2-Symmetric left bi-($\sigma, \tau)$ derivation on completely prime Γ-rings.

In this section, we introduce the definition of symmetric left bi - $\sigma, \tau)$ derivation on gamma rings as follows

Definition 2.1:-

An additive mapping D: $M \times M \rightarrow M$ is called a symmetric left bi (σ, τ) -derivation if there exist $\sigma, \tau: M \rightarrow M$ such that $\mathrm{D}(\mathrm{x} \alpha \mathrm{y}, \mathrm{z})=\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{y}, \mathrm{z})+\sigma(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{z})$
And
$\mathrm{D}(\mathrm{x}, \mathrm{y} \alpha \mathrm{z})=\tau(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{z})+\sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y}) \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$
Lemma 2.2:-
Let M be a2-torsion free completely prime Γ - ring and I a non-zero left (or right ideal of M$)$.Let $\mathrm{D}: M \times M \rightarrow M$ be symmetric left bi $-(\sigma, \tau)$-derivation $\sigma, \tau: M \rightarrow M, \sigma(\mathrm{I})=\mathrm{I}$, and d the trace of D . Suppose that $\mathrm{d}(\mathrm{x})=0 \forall \mathrm{x} \in \mathrm{I}$. Then $\mathrm{d}=0$ and so $\mathrm{D}=0$.
Proof:-Since we have $d(x)=0 \forall x \in I$
By replacing x by $x+y$ and use (1)
We get $2 \mathrm{D}(\mathrm{x}, \mathrm{y})=0 \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$
Since M is 2-torsion free,
We get $\mathrm{D}(\mathrm{x}, \mathrm{y})=0 \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$
Replace y by $r y, r \in M$
$\mathrm{D}(\mathrm{x}, \mathrm{r} \alpha \mathrm{y})=0$
$\tau(\mathrm{r}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{r})=0$
By (2.2),we get
$\sigma(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{r})=0$
σ (I) $\alpha \mathrm{D}(\mathrm{x}, \mathrm{r})=0 \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}, \forall \mathrm{r} \in \mathrm{M}$
Since $\mathrm{I} \neq 0$ and σ is automorphism then $\sigma(\mathrm{I}) \neq 0$ and since M is completely prime Γ ring then
$\mathrm{D}(\mathrm{x}, \mathrm{r})=0$
Replace x by $\mathrm{x} \alpha \mathrm{r}$
$\mathrm{D}(\mathrm{x} \alpha \mathrm{r}, \mathrm{r})=0$
$\mathrm{D}(\mathrm{x} \alpha \mathrm{r}, \mathrm{r})=\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{r}, \mathrm{r})+\sigma(\mathrm{r}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{r})=0$
By (2.3),we get
$\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{r}, \mathrm{r})=0$
Since M is completely prime Γ-ring
Then either $\tau(\mathrm{x})=0$ or $\mathrm{d}(\mathrm{r})=0$
Since $\mathrm{I} \neq 0$ and τ is automorphism then $\tau(\mathrm{I}) \neq 0$ is an ideal of M
Then $\mathrm{d}(\mathrm{r})=0$
$\mathrm{d}(\mathrm{r})=0 \quad \forall \mathrm{r} \in \mathrm{M}$
Now replace r by $r+s, s \in M$
$\mathrm{d}(\mathrm{r}+\mathrm{s})=\mathrm{d}(\mathrm{r})+\mathrm{d}(\mathrm{s})+2 \mathrm{D}(\mathrm{r}, \mathrm{s})$
And since $\mathrm{d}(\mathrm{r})=0 \quad \forall \mathrm{r} \in \mathrm{M}$
Then2D(r,s)=0
Since M is 2-torsion free, we get $\mathrm{D}(\mathrm{r}, \mathrm{s})=0 \quad \forall \mathrm{r}, \mathrm{s} \in \mathrm{M}$. which is $\mathrm{D}=0$.
Theorem 2.3 :-Let M be a 2 -torsion free completely prime Γ - ring and I a non-zero (non-commutitive)ideal of M and Let $\mathrm{D}: M \times M \rightarrow M$ be symmetric left bi $-(\sigma, \tau)$ derivation , $\sigma, \tau: M \rightarrow M, \sigma(\mathrm{I})=\tau(\mathrm{I})=\mathrm{I}$, and d the trace of D .
If $[\mathrm{x}, \mathrm{d}(\mathrm{x})]_{\alpha}=0 \forall \mathrm{x} \in \mathrm{I}$ Then $\mathrm{D}=0$.
Proof:-
Since $[\mathrm{x}, \mathrm{d}(\mathrm{x})]_{\alpha}=0 \forall \mathrm{x} \in \mathrm{I}$.
Linearizing x by $\mathrm{x}+\mathrm{y}$, to get
$\mathrm{x} \alpha \mathrm{d}(\mathrm{x})+\mathrm{x} \alpha \mathrm{d}(\mathrm{y})+2 \mathrm{x} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\mathrm{y} \alpha \mathrm{d}(\mathrm{x})+\mathrm{y} \alpha \mathrm{d}(\mathrm{y})+2 \mathrm{y} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})-\mathrm{d}(\mathrm{x}) \alpha \mathrm{x}-\mathrm{d}(\mathrm{x}) \alpha \mathrm{y}-\mathrm{d}(\mathrm{y})$
$\alpha \mathrm{x}-\mathrm{d}(\mathrm{y}) \alpha \mathrm{y}-2 \mathrm{D}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{x}-2 \mathrm{D}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{y}=0$
Then
$[\mathrm{x}, \mathrm{d}(\mathrm{y})]_{\alpha}+[\mathrm{y}, \mathrm{d}(\mathrm{x})]_{\alpha}+2[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}+2[\mathrm{y}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$.
Replace x by -x in (2.5) to get
$-[\mathrm{x}, \mathrm{d}(\mathrm{y})]_{\alpha}-[\mathrm{y}, \mathrm{d}(\mathrm{x})]_{\alpha}+2[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}-2[\mathrm{y}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$
By comparing (2.5) and (2.6), to get
$4[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$
Since M is 2-torsion free
$[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$.
Replace y by y $\beta \mathrm{z}$,
$[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y} \beta \mathrm{z})]_{\alpha}=0$
$[\mathrm{x}, \tau(\mathrm{y}) \beta \mathrm{D}(\mathrm{x}, \mathrm{z})+\sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$
$[\mathrm{x}, \tau(\mathrm{y}) \beta \mathrm{D}(\mathrm{x}, \mathrm{z})]_{\alpha}+[\mathrm{x}, \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$
$[\mathrm{x}, \quad \tau(\mathrm{y})]{ }_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{z})+\tau(\mathrm{y}) \quad \beta \quad[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{z})]{ }_{\alpha}+[\mathrm{x}, \sigma(\mathrm{z})]{ }_{\alpha} \quad \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{z}) \quad \beta$ $[\mathrm{x}, \mathrm{D}(\mathrm{x}, \mathrm{y})]_{\alpha}=0$
Then by (2.7),we get
$[\mathrm{x}, \tau(\mathrm{y})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{z})+[\mathrm{x}, \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})=0$
By replacing z by y and use the fact $\sigma(\mathrm{I})=\mathrm{T}(\mathrm{I})=\mathrm{I}$, we get
$2[\mathrm{x}, \sigma(\mathrm{y})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})=0$
Since R is 2-torsion free ,
$[\mathrm{x}, \sigma(\mathrm{y})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})=0$
Since M is completely prime Γ-ring, then we get
Either $[\mathrm{x}, \sigma(\mathrm{y})]_{\alpha}=0$ or $\mathrm{D}(\mathrm{x}, \mathrm{y})=0$
If $[\mathrm{x}, \sigma(\mathrm{y})]{ }_{\alpha}=0$ then $[\mathrm{x}, \mathrm{y}]_{\alpha}=0 \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$ then I is commutative which is contradiction with I is non-commutative then $\mathrm{D}(\mathrm{x}, \mathrm{y})=0 \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$ and so $\mathrm{D}=0$ on M . by proof of [lemma 2.2]
Theorem2.4 :- Let M be a 2-torsion free and 3-torsion free prime Γ - ring and Let D: $M \times M \rightarrow M$ be symmetric left bi $-(\sigma, \tau)$-derivation
$\sigma, \tau: M \rightarrow M, \sigma(\mathrm{x})=\tau(\mathrm{x})$ and d the trace of D .if $[\mathrm{x}, \mathrm{d}(\mathrm{x})]_{\alpha} \in \mathrm{Z}(\mathrm{R}) \forall \mathrm{x}$ $\in \mathrm{M}$.Then $\mathrm{D}=0$.

Proof:-

Since we have $[\mathrm{x}, \mathrm{d}(\mathrm{x})]_{\alpha} \in \mathrm{Z}(\mathrm{M}) \forall \mathrm{x} \in \mathrm{M}$
Replace x by $\mathrm{x}+\mathrm{y}$
$[\mathrm{d}(\mathrm{x}), \mathrm{y}]_{\alpha}+[\mathrm{d}(\mathrm{y}), \mathrm{x}]_{\alpha}+2[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{x}]_{\alpha}+2[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{y}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$.
Replace x by -x ,to get
$[\mathrm{d}(\mathrm{x}), \mathrm{y}]_{\alpha}-[\mathrm{d}(\mathrm{y}), \mathrm{x}]_{\alpha}+2[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{x}]_{\alpha}-2[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{y}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$.
By comparing (2.9) and (2.10)
$2[\mathrm{~d}(\mathrm{x}), \mathrm{y}]+4[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{x}] \in \mathrm{Z}(\mathrm{M})$
Since R is 2-torsion free,
$[\mathrm{d}(\mathrm{x}), \mathrm{y}]{ }_{\alpha}+2[\mathrm{D}(\mathrm{x}, \mathrm{y}), \mathrm{x}]{ }_{\alpha} \in \mathrm{Z}(\mathrm{M})$
Replace y by $\mathrm{x} \beta \mathrm{x}$,to get
$[\mathrm{d}(\mathrm{x}), \mathrm{x} \beta \mathrm{x}]_{\alpha}+2[\mathrm{D}(\mathrm{x}, \mathrm{x} \beta \mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
Since D is a symmetric left bi-($\sigma, \tau)$ - derivation Then
$[\mathrm{d}(\mathrm{x}), \mathrm{x} \beta \mathrm{x}]_{\alpha}+2[\sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{x}, \mathrm{x})+\tau(\mathrm{x}) \beta \mathrm{D}(\mathrm{x}, \mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
$[\mathrm{d}(\mathrm{x}), \mathrm{x} \beta \mathrm{x}]_{\alpha}+2[\sigma(\mathrm{x}) \beta \mathrm{d}(\mathrm{x})+\tau(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
$[\mathrm{d}(\mathrm{x}), \mathrm{x} \beta \mathrm{x}]_{\alpha}+2[\sigma(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+2[\tau(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
$[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \beta \mathrm{x}+\mathrm{x} \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+2[\sigma(\mathrm{x}), \mathrm{x}]_{\alpha} \beta \mathrm{d}(\mathrm{x})+2 \sigma(\mathrm{x}) \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+2[\tau(\mathrm{x}), \mathrm{x}]$
${ }_{\alpha} \beta \mathrm{d}(\mathrm{x})+2 \tau(\mathrm{x}) \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
Since $[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$ and $\sigma(\mathrm{x})=\tau(\mathrm{x})=\mathrm{x}$
$2 \mathrm{x} \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+4[\sigma(\mathrm{x}), \mathrm{x}]_{\alpha} \beta \mathrm{d}(\mathrm{x})+4 \sigma(\mathrm{x}) \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
Then $2 \mathrm{x} \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}+4[\sigma(\mathrm{x}) \beta \mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$
If $\sigma(\mathrm{x})=\mathrm{x}$ then
$6 \mathrm{x} \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha} \in \mathrm{Z}(\mathrm{M})$.
Since M is 2-torsion and 3-torsion free ,then by (2.11) and (2.8), we get
$[\mathrm{x}, \mathrm{y}]_{\lambda} \beta[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}=0$
If $\mathrm{x} \notin \mathrm{Z}(\mathrm{M})$ then $[\mathrm{x}, \mathrm{y}]_{\lambda} \neq 0$
Since M is completely prime Γ-ring, then
$[\mathrm{d}(\mathrm{x}), \mathrm{x}]_{\alpha}=0$ and so by [Theorem 2.3]
We get $\mathrm{d}=0$ which leads to $\mathrm{D}=0$.

3-Symmetric Left BI- (σ, τ)-Derivation acts as homomorphism.

Definition3.1 :-Let M be a Γ - ring and I a non-zero left (resp.right)ideal of M. we shall say that a mapping $\mathrm{D}: M \times M \rightarrow M$ acts as a left (resp.right) a (σ, τ) homomorphism on I if $(\mathrm{D}(\mathrm{r} \alpha \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \quad \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$ and $\mathrm{D}(\mathrm{x}, \mathrm{r} \alpha \mathrm{y})=\sigma(\mathrm{r})$ $\alpha \mathrm{D}(\mathrm{x}, \mathrm{y}))(\operatorname{resp} . \mathrm{D}(\mathrm{x} \alpha \mathrm{r}, \mathrm{y})=\mathrm{D}(\mathrm{x}, \mathrm{y}) \alpha \alpha \tau(\mathrm{r})$ and $\mathrm{D}(\mathrm{x}, \mathrm{y} \alpha \mathrm{r})=\mathrm{D}(\mathrm{x}, \mathrm{y}) \alpha \tau(\mathrm{r}) \forall \mathrm{x}, \mathrm{y} \quad \in \mathrm{I}$ and $r \in M$.

Let S be a set ,L (S) (resp.r (S)) will denote the left (resp.right) annihilator of S.
Theorem3.2 :-Let M be a ring and I a non-zero left (resp.right)ideal of R. such that $\mathrm{r}(\mathrm{I})=0($ resp. $\mathrm{L}(\mathrm{I})=0)$. Let $\mathrm{D}: M \times M \rightarrow M$ be a symmetric left bi $-(\sigma, \tau)$ derivation if D acts as a left (resp. right)-homomorphism on I then $\mathrm{D}=0$.
Proof:- Suppose that I is a left ideal such that $\mathrm{L}(\mathrm{I})=\mathrm{o}$ and D acts as a left homomorphism on I then

$$
\begin{aligned}
\sigma(\mathrm{r}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y}) & =\mathrm{D}(\mathrm{r} \alpha \mathrm{x}, \mathrm{y}) \\
& =\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{r}, \mathrm{y})+\sigma(\mathrm{r}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Then $\mathrm{T}(\mathrm{x}) \alpha \mathrm{D}(\mathrm{r}, \mathrm{y})=0 \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$ and $\mathrm{r} \in \mathrm{M}, \alpha \in \Gamma$.
Then $\mathrm{D}(\mathrm{r}, \mathrm{y}) \in \mathrm{r}(\mathrm{I})=0$
Then $\mathrm{D}(\mathrm{r}, \mathrm{y})=0 \quad \forall \mathrm{y} \in \mathrm{I}$ and $\mathrm{r} \in \mathrm{M}$.
$0=\mathrm{D}(\mathrm{s} \alpha \mathrm{x}, \mathrm{r})=\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{s}, \mathrm{r})+\sigma(\mathrm{s}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{r})=0$
Then $\tau(\mathrm{x}) \mathrm{D}(\mathrm{s}, \mathrm{r})=0 \forall \mathrm{x} \in \mathrm{I}$ and $\mathrm{r}, \mathrm{s} \in \mathrm{M}$.
And since τ is automorphism then $\tau(\mathrm{x})$ is an ideal
Then $\mathrm{D}(\mathrm{s}, \mathrm{r}) \in \mathrm{r}(\mathrm{I})=0$
Then $\mathrm{D}(\mathrm{s}, \mathrm{r})=0 \quad \forall \mathrm{~s}, \mathrm{r} \in \mathrm{M}$, and so $\mathrm{D}=0$.
And by the same way for the right ideal and right homomorphism.
We should mentioned the reader that the above theorem be true for any Γ - ring M then it is easy to see that it is true for prime Γ - ring and semi-prime Γ - ring .

4- Jordan Left Bi-(σ, σ)Derivation on Gamma Ring

Definition4.1_-- Let M be a Γ-ring then the bi-additive mapping D: $M \times M \rightarrow M$ is called a Jordan left bi-(σ, τ) derivation if there exist $\sigma, \tau: \mathrm{M} \rightarrow \mathrm{M}$
$\mathrm{D}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y})=\tau(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
$\mathrm{D}(\mathrm{x}, \mathrm{y} \alpha \mathrm{y})=\tau(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{y}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{M}$.
It is easy to see that every left $\operatorname{bi}-(\sigma, \tau)$ derivation be Jordan left bi- (σ, τ) derivation but the converse is not true. In this section we study this problem.
Lemma 4.2:- Let M be a Γ-ring, $\mathrm{D}: ~ M \times M \rightarrow M$ be a Jordan left bi-(σ, σ) derivation then the following statements hold:
(i) $\mathrm{D}(\mathrm{x} \alpha \mathrm{z}+\mathrm{z} \alpha \mathrm{x}, \mathrm{y})=2 \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+2 \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$

Especially if M is 2-torsion free and $\mathrm{x} \alpha \mathrm{y} \beta \mathrm{z}=\mathrm{x} \beta \mathrm{y} \alpha \mathrm{z}$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, then
(ii) $\mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha \sigma$ (z) $\beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma$ (z$) \beta$ $\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
(iii) $\mathrm{D}(\mathrm{x} \alpha \mathrm{z} \beta \mathrm{w}+\mathrm{w} \alpha \mathrm{z} \beta \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{w}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{w}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+$ $3 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{w}, \mathrm{y})+3 \sigma(\mathrm{w}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma(\mathrm{z}) \beta \sigma(\mathrm{w}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})-$ $\sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{w}, \mathrm{y})$
(iv) $[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{z}) \beta$
$[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
(v) $[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})$

Proof :-(i)Since D is a Jordan left bi-(σ, σ) derivation then
$\mathrm{D}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y})=2 \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma$,
by linearizing (4.1), we get
$\mathrm{D}(\mathrm{x} \alpha \mathrm{z}+\mathrm{z} \alpha \mathrm{x}, \mathrm{y})=2 \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+2 \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y}) \ldots .(4.2)$
(ii)In (4.2) replace z by $\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}, \beta \in \Gamma$.
$\mathrm{W}=\mathrm{D}(\mathrm{x} \alpha(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x})+(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}) \alpha \mathrm{x}, \mathrm{y})$
$=2 \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}, \mathrm{y})+2 \sigma(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
$=2 \sigma(\mathrm{x}) \alpha(2 \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+2 \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y}))+2 \sigma(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
$=4 \sigma(\mathrm{x}) \alpha \quad \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+6 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y}))+$
$+2 \sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
On the other hand,
$\mathrm{W}=\mathrm{D}(\mathrm{x} \alpha(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x})+(\mathrm{x} \beta \mathrm{z}+\mathrm{z} \beta \mathrm{x}) \alpha \mathrm{x}, \mathrm{y})$
$=\mathrm{D}(\mathrm{x} \alpha \mathrm{x} \beta \mathrm{z}+2 \mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}+\mathrm{z} \beta \mathrm{x} \alpha \mathrm{x}, \mathrm{y})$
$=\mathrm{D}((\mathrm{x} \alpha \mathrm{x}) \beta \mathrm{z}+\mathrm{z} \beta(\mathrm{x} \alpha \mathrm{x}), \mathrm{y})+2 \mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})$
$=2 \sigma(\mathrm{x} \alpha \mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+2 \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y})+2 \mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})$
$=2 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+4 \sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+2 \mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})$
By comparing these two expression of W ,we get
$2 \mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})=2 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+6 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})-$
$2 \sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})$
And since M is 2-torsion free ,then

```
\(\mathrm{D}(\mathrm{x} \beta \mathrm{z} \alpha \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha \sigma\) (z) \(\beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma\) ( z\() \beta\)
\(\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)
(iii) by linearizing (4.3) on x , we get
\(\mathrm{Y}=\mathrm{D}((\mathrm{x}+\mathrm{w}) \alpha \mathrm{z} \beta(\mathrm{x}+\mathrm{w})), \mathrm{y})\)
\(=\sigma(\mathrm{x}+\mathrm{w}) \alpha \sigma(\mathrm{x}+\mathrm{w}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}+\mathrm{w}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}+\mathrm{w}, \mathrm{y})\)
- \(\sigma(\mathrm{z}) \beta \sigma(\mathrm{x}+\mathrm{w}) \alpha \mathrm{D}(\mathrm{x}+\mathrm{w}, \mathrm{y})\)
\(=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{w}) \alpha \sigma(\mathrm{w}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\)
\(\sigma(\mathrm{x}) \alpha \sigma(\mathrm{w}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{w}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\)
\(3 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha \sigma\) (z) \(\beta \mathrm{D}(\mathrm{w}, \mathrm{y})+3 \sigma\) (w) \(\alpha \sigma\) ( z\() \beta \mathrm{D}(\mathrm{x}\)
,y) \(+3 \sigma\) (w) \(\alpha \sigma\) (z) \(\beta \mathrm{D}(\mathrm{w}, \mathrm{y})-\sigma\) (z) \(\beta \sigma\) (x) \(\alpha \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma\) (z) \(\beta \sigma\) (w) \(\alpha \mathrm{D}(\mathrm{x}\) ,y)- \(\sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{w}, \mathrm{y})-\sigma(\mathrm{z}) \beta \sigma(\mathrm{w}) \alpha \mathrm{D}(\mathrm{w}, \mathrm{y})\)

On the other hand
\(\mathrm{Y}=\mathrm{D}((\mathrm{x}+\mathrm{w}) \alpha \mathrm{z} \beta(\mathrm{x}+\mathrm{w})), \mathrm{y})\)
\(=\mathrm{D}(\mathrm{x} \alpha \mathrm{z} \beta \mathrm{x}, \mathrm{y})+\mathrm{D}(\mathrm{x} \alpha \mathrm{z} \beta \mathrm{w}+\mathrm{w} \alpha \mathrm{z} \beta \mathrm{x}, \mathrm{y})+\mathrm{D}(\mathrm{w} \alpha \mathrm{z} \beta \mathrm{w}, \mathrm{y})\)
By comparing these two expression of Y , we get
\(\mathrm{D}(\mathrm{x} \alpha \mathrm{z} \beta \mathrm{w}+\mathrm{w} \alpha \mathrm{z} \beta \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{w}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{w}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\) \(3 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{w}, \mathrm{y})+3 \sigma(\mathrm{w}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma(\mathrm{z}) \beta \sigma(\mathrm{w}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})-\) \(\sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{w}, \mathrm{y})\)
(iv)Now replace w by \(\mathrm{x} \alpha \mathrm{z}\) in (4.4)
\(\mathrm{Y}=\mathrm{D}(\mathrm{x} \alpha \mathrm{z} \beta(\mathrm{x} \alpha \mathrm{z})+(\mathrm{x} \alpha \mathrm{z}) \alpha \mathrm{z} \beta \mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x} \alpha \mathrm{z}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{x} \alpha \mathrm{z})\) \(\alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x} \alpha \mathrm{z}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma\) (z) \(\beta \sigma(\mathrm{x} \alpha \mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma(\mathrm{z}) \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})\)

On the other hand
\(\mathrm{Y}=\mathrm{D}((\mathrm{x} \alpha \mathrm{z}) \beta(\mathrm{x} \alpha \mathrm{z})+\mathrm{x} \alpha(\mathrm{z} \alpha \mathrm{z}) \beta \mathrm{x}, \mathrm{y})\)
\(=2 \sigma(\mathrm{x} \alpha \mathrm{z}) \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})+\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z} \alpha \mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z} \alpha \mathrm{z})\) \(\beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma(\mathrm{z} \beta \mathrm{z}) \alpha \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)
\(=2 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})+2 \sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+3 \sigma(\mathrm{x}) \alpha\) \(\sigma(\mathrm{z}) \alpha \sigma(\mathrm{z}) \beta \mathrm{D}(\mathrm{x}, \mathrm{y})-\sigma(\mathrm{z}) \beta \sigma(\mathrm{z}) \alpha \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)

By comparing these two expression of Y ,we get
\([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})-\sigma(\mathrm{z}) \alpha \sigma(\mathrm{x}) \alpha \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha \sigma(\mathrm{z})\) \(\alpha \sigma(\mathrm{x}) \beta \mathrm{D}(\mathrm{z}, \mathrm{y})-\sigma(\mathrm{x}) \alpha \sigma(\mathrm{x}) \beta \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{z}) \beta \sigma(\mathrm{z}) \alpha \sigma(\mathrm{x})\) \(\alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=0\)

Then
\([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{z}) \beta[\sigma\) (x), \(\sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)
(v)Now replace z by \(\mathrm{x}+\mathrm{z}\) in (4.5)
\([\sigma(\mathrm{x}), \sigma(\mathrm{x}+\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha(\mathrm{x}+\mathrm{z}), \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{x}+\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}+\mathrm{z}, \mathrm{y})+\sigma\) \((\mathrm{x}+\mathrm{z}) \beta[\sigma(\mathrm{x}), \sigma(\mathrm{x}+\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)
\(=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma\) (x) \(\beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{z}) \beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)

On the other hand
\(\mathrm{Y}=[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y})+[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})\)
\(=2[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})\)
\(=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma\)
(x) \(\beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{z}) \beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\)

By (4.5 )and by comparing these two expression of Y, we get
\(2[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{z})\) \(\beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha[\sigma\) \((\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{x}) \beta[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{z}) \beta[\sigma(\mathrm{x}), \sigma\) \((\mathrm{z})]_{\alpha} \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})\).
\(2[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=2 \sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})\)
Since M is 2-torsion free
\([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})\)
Theorem4.3:-Let M be a 2-torsin free completely prime \(\Gamma\)-ring and let D : \(M \times M \rightarrow M\) be a Jordan left bi- \((\sigma, \sigma)\) derivation then either M is commutative or D is a left bi- \((\sigma, \sigma)\) derivation

Proof:-from (4.6),we have
\[
[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})
\]

By replacing \(x\) by \(x+z\),we get
\([\sigma(\mathrm{x}+\mathrm{z}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}+\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}+\mathrm{z}, \mathrm{y})=\sigma(\mathrm{x}+\mathrm{z}) \alpha[\sigma(\mathrm{x}+\mathrm{z}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}+\mathrm{z}\) ,y)

Then
\(\mathrm{W}=[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+[\sigma\)
\((\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})+[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})\)
On the other hand
\(\mathrm{W}=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma\)
(z) \(\alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})+\sigma(\mathrm{z}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})\)

By comparing these two expression of W , we get
\([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})+[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})\)
\(=\sigma(\mathrm{x}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{z}, \mathrm{y})+\sigma(\mathrm{z}) \alpha[\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta \mathrm{D}(\mathrm{x}, \mathrm{y})\)
from ( 4.6 ),we get
\([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha} \beta(\mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})-\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})-\sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y}))=0\)
Since \(M\) is completely prime gamma ring, then
Either \([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha}=0\) or \(\mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})-\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})-\sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=0\)
If \([\sigma(\mathrm{x}), \sigma(\mathrm{z})]_{\alpha}=0\) then M is commutative(since \(\sigma\) is automorphism) and if
\(\mathrm{D}(\mathrm{x} \alpha \mathrm{z}, \mathrm{y})-\sigma(\mathrm{x}) \alpha \mathrm{D}(\mathrm{z}, \mathrm{y})-\sigma(\mathrm{z}) \alpha \mathrm{D}(\mathrm{x}, \mathrm{y})=0\) then D is a left bi-( \(\sigma, \sigma\) ) derivation.

\section*{References}

Barnes, W.E 1966"On The \(\Gamma\)-Ring of Nabusawa", Pacific J.Math .,18,411-422.
Bresar,M.2004"Commuting Maps:asurvery",Taiwanese J.Math.8,no.3,361-397.
Ceven,Y. 2002"Jordan Left Derivations on Completely Prime Gamma Rings", Fenbilimleri Dergisi cilt 23say12.
Mohammed Ashraf 1999 "on Symmetric Bi-Derivations in Rings"Rend .Istit .Mat.Univ.Trieste.Vol.XXXI,25-3.
Vukman. J 1989 "Symmetric Bi-derivations on Prime and Semi-Prime Rings",Aequationes Mathematicae 38,245-254.
Vukman.J, 1990"Two Results Concerning Symmetric Bi-Derivations on Prime Rings",Aequationes math.40,no.2-3,181-189.
Nabusawa, ,N 1964 "On a Generalization of The Ring Theory",OsakaJ.Math., (1).
Nagy. D ,Tammam Al-Said and Claus Haetinger2010" Reverse ,Jordan and Left Bi Derivation" Oriental Journal of Mathematics 2,2 .```

