GENERALIZED JORDAN LEFT DERIVATION ON SOME GAMMA RING
 Rajaa C.Shaheen Department of Mathematics, College of Education, University of Al-Qadisiya, Al-Qadisiya, Iraq.

ABSTRACT

In this paper we define a Generalized Jordan left derivation on Γ-ring and show that the existence of a non-zero generalized Jordan left derivation D on a completely prime Γ-ring implies \boldsymbol{D} is a generalized left derivation .Furthermore we show that every generalized Jordan left derivation on Γ-ring has a commutator left non-zero divisor is a generalized left derivation on Γ-ring.

Key wards : Γ-ring, prime Γ-ring, prime Γ-ring, left derivation, ,Jordan left derivation, generalized Jordan left derivation .

1-INTRODUCTION

An additive mapping $d: R \rightarrow R$ is called a left derivation (resp.,Jordan left derivation)if $d(x y)=x d(y)+y d(x)\left(\right.$ resp., $\left.d\left(x^{2}\right)=2 x d(x)\right)$ holds for all $x, y \in$ R.Clearly, every left derivation is a Jordan left derivation, Thus, it is natural to ask that :whether every Jordan left derivation on a ring is a left derivation? In [1] authors answered the above question in case the underlying ring \mathbf{R} is $\mathbf{2}$-torsion free and prime and in [5] Rajaa c.Shaheen,answered the above question in case the underlying ring R is a 2-torsion free and has a commutator left non-zero divisor and define the concept of generalized Jordan left derivation and Generalized left derivation as follows:

Let \mathbf{R} be a ring, and let $\delta: R \rightarrow \mathbf{R}$ be an additive map, if there is a left derivation (resp.,Jordan left derivation)d: $\mathbf{R} \rightarrow \mathbf{R}$ such that $\delta(x y)=x \delta(y)+y d(x)$ (resp., $\delta\left(x^{2}\right)=x \delta(x)+x d(x)$ for all $x, y \in R$,then δ is called a generalized left derivation and d is called the relating left derivation(resp., then δ is called a generalized Jordan left derivation and d is called the relating Jordan left derivation).and study the same problem .In this paper we define a generalized Jordan left derivation and we show that the existence of a non-zero generalized Jordan left derivation $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ on a completely prime Γ-ring M which satisfy the condition
$\mathbf{x} \alpha \mathbf{y} \beta \mathbf{z}=\mathbf{x} \beta \mathbf{y} \alpha \mathbf{z}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{M}$ and $\alpha, \beta \in \Gamma$ implies \mathbf{D} is a generalized left derivation and we show that every generalized Jordan left derivation on Γ-ring has a commutator left non-zero divisor is a generalized left derivation.

Let M and Γ be additive abelian groups, M is called $a \Gamma$-ring iffor any x, y, z $\in M$ and $\alpha, \beta \in \Gamma$,the following conditions are satisfied
(1) $x \alpha y \in M$
(2)(x+y) $\alpha z=x \alpha z+y \alpha z$
$x(\alpha+\beta) z=x \quad \alpha z+x \quad \beta z$
$x \alpha(y+z)=x \quad \alpha y+x \alpha z$
(3) $(x \alpha y) \beta z=x \alpha(y \beta z)$

The notion of Γ-ring was introduced by Nobusawa[4] and generalized by Barnes[2],many properties of Γ-ring were obtained by many researcheres. M is called a 2-torsion free if $\mathbf{2 x}=0$ implies $x=0$ for all $x \in M$.A Γ-ring M is called prime if $a \Gamma M \Gamma b=0$ implies $a=0$ or $b=0$ and M is called completely prime if a $\Gamma \mathbf{b}=\mathbf{0}$ implies $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}(\mathbf{a}, \mathbf{b} \in \mathbf{M})$,Since a $\Gamma \mathbf{b} \Gamma \mathbf{a} \Gamma \mathbf{b} \subset \mathbf{a} \Gamma \mathbf{M} \boldsymbol{\Gamma}$,then every completely prime Γ-ring is prime. In [3] Y.Ceven defined a Jordan left derivation as follows

Definition 1.1 :-Let M be a Γ-ring and let $d: M \rightarrow M$ be an additive map.d is called a Left derivation if for any $a, b \in M$ and $\alpha \in \Gamma$,
$d(a \alpha b)=a \alpha d(b)+b \alpha d(a)$,
dis called a Jordan left derivation if for any $a \in M$ and $\alpha \in \Gamma$,
$\mathbf{d}(\mathbf{a} \alpha \mathbf{a})=\mathbf{2 a} \alpha \mathbf{d}(\mathbf{a})$.
In this paper ,we generalized the above definition by giving the following definition

Definition 1.2:- Let M be a Γ-ring and let $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ be an additive map.Then D is called a Generalized left derivation if there exist a left derivation $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ such that $\boldsymbol{D}(\boldsymbol{a} \alpha b)=a \alpha \boldsymbol{D}(b)+b \alpha d(a)$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$,

Definition 1.3:- Let M be a Γ-ring and let $\boldsymbol{D}: \boldsymbol{M} \rightarrow \boldsymbol{M}$ be an additive map.Then D is called a Generalized Jordan left derivation if there exist a Jordan left derivation
$\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ such that
$D(a \alpha a)=a \alpha D(a)+a \alpha d(a)$, for all $\mathrm{a} \in \mathrm{M}$ and $\alpha \in \Gamma$,

2. RESULT

Lemma 2.1:- Let M be a Γ-ring, $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ be a Generalized Jordan left derivation

 and $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ be the relating Jordan left derivation then the following statements hold:(i) $\quad D(a \alpha b+b \alpha a)=a \alpha D(b)+b \alpha D(a)+a \alpha d(b)+b \alpha d(a)$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$,

Especially if M is 2-torsion free and $\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{c}$, for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, then
(ii) $\quad D(a \alpha b \beta a)=\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+2 \boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{a} \beta \boldsymbol{d}(b)-b \alpha a \beta d(a)$
(iii) $\quad \boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{c})+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+2 \boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{c})+$ $2 \boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{c} \beta \boldsymbol{d}(\boldsymbol{b})+\boldsymbol{c} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{b})-\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{c})-\boldsymbol{b} \alpha \boldsymbol{c} \beta \boldsymbol{d}(\boldsymbol{a})$.

Proof:-(i)Since D is a Generalized Jordan left derivation then
$D(a \alpha a)=a \alpha D(a)+a \alpha d(a)$, for all $\mathrm{a} \in \mathrm{M}$ and $\alpha \in \Gamma$
By linearizing (1), we get for all $\mathrm{a}, \mathrm{b} \in \mathrm{M}$ and $\alpha \in \Gamma$,
$\boldsymbol{D}(\boldsymbol{a} \alpha b+b \alpha a)=\boldsymbol{a} \alpha \boldsymbol{D}(b)+b \alpha D(a)+a \alpha d(b)+b \alpha d(a)$
(ii)In (2) replace bby $\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a} \quad, \beta \in \Gamma$
$\boldsymbol{W}=\boldsymbol{D}(\boldsymbol{a} \alpha(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{a})$
$=\boldsymbol{a} \alpha \boldsymbol{D}(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a} \quad)+(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a} \quad) \alpha \boldsymbol{D}(\boldsymbol{a})+$
$\boldsymbol{a} \alpha \boldsymbol{d}(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a})+(\boldsymbol{a} \beta \boldsymbol{b}+\boldsymbol{b} \beta \boldsymbol{a}) \alpha \boldsymbol{d}(\boldsymbol{a})$
$=\boldsymbol{a} \alpha \boldsymbol{a} \beta \boldsymbol{D}(\boldsymbol{b})+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{b})+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{D}(\boldsymbol{a})+\boldsymbol{b} \beta \boldsymbol{a}$ $\alpha \boldsymbol{D}(\boldsymbol{a})+2 a \alpha a \beta \boldsymbol{d}(\boldsymbol{b})+2 \boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{b} \beta \boldsymbol{a} \alpha \boldsymbol{d}(\boldsymbol{a})$ on the other hand,

```
W=D(a\alpha(a\betab+b \betaa)+(a \betab+b \betaa) \alphaa)
    =D(a}\alphaa|\betab+2a<< \betaa+b \betaa \alphaa
    =D(a<a \betab+b \betaa \alphaa)+2D(a\alphab \betaa)
```



```
=a \alphaa\betaD(b)+b \betaa|D(a)+b \betaa\alphad(a)+a \alphaa \betad(b)+2b \betaa<d(a)+2D(a\alphab \betaa)
```

then by comparing these two expression of W and by using the fact of 2-torsion free
ring, we get
$\boldsymbol{D}(\boldsymbol{a} \alpha b \beta a)=a \alpha b \beta D(a)+2 a \alpha b \beta d(a)+a \alpha a \beta d(b)-b \alpha a \beta d(a)$
(iii)by linearizing (3) we find that
$\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{a})=\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{c})+\boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+2 \boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{c})+$
$2 \boldsymbol{c} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{c} \beta \boldsymbol{d}(\boldsymbol{b})+\boldsymbol{c} \alpha a \beta d(b)-b \alpha a \beta d(c)-b \alpha c \beta d(a)$
Now we shall give the following lemma which is necessary to prove [lemma 2.3]
Lemma 2.2:-let M be a 2-torsion free Γ-ring and $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ is a Jordan left derivation on M and $\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{c}$ for all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in M$ and $\alpha, \beta \in \Gamma$ then (a $\alpha \boldsymbol{a} \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0$.

Proof:- From [3 ,Lemma 2.2,i],we have
(a $\alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(a)=0$
by replacing a by $a+b$ in (5), we find that
$((\boldsymbol{a}+\boldsymbol{b}) \alpha(\boldsymbol{a}+\boldsymbol{b}) \alpha \boldsymbol{b}-\mathbf{2 (a + b)} \alpha \boldsymbol{b} \alpha(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{b} \alpha(\boldsymbol{a}+\boldsymbol{b}) \alpha(\boldsymbol{a}+\boldsymbol{b})) \beta \boldsymbol{d}(\boldsymbol{a}+\boldsymbol{b})=\mathbf{0}$

$\alpha \boldsymbol{b}+\boldsymbol{b} \alpha \boldsymbol{a} \alpha \boldsymbol{a}+\boldsymbol{b} \alpha \boldsymbol{b} \alpha \boldsymbol{b}+\boldsymbol{b} \alpha \boldsymbol{a} \alpha \boldsymbol{b}+\boldsymbol{b} \alpha \boldsymbol{b} \alpha \boldsymbol{a}) \beta(\boldsymbol{d}(\boldsymbol{a})+\boldsymbol{d}(\boldsymbol{b}))=\mathbf{0}$
($a<a<b+2 b \alpha a \alpha b-2 a \alpha b \alpha a-a \alpha b \alpha b-b \alpha b a+b \alpha a \alpha a) \beta(d(a)+d(b)=0$

((a<a $\alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a)-(b \alpha b \alpha a-2 b \alpha a \alpha b+a \alpha b \alpha b)) \quad \beta d(b)=0$
and since (a $\alpha a<b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(a)=0$, we get
-(b $\alpha b \alpha a-2 b \alpha a \alpha b+a \alpha b \alpha b) \beta d(a)+(a \alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0$.
since
$0=d([a, b] \beta[a, b])$
$=d(\boldsymbol{a} \beta(\boldsymbol{b} \alpha \boldsymbol{a} \alpha \boldsymbol{b})+(\boldsymbol{b} \alpha \boldsymbol{a} \alpha \boldsymbol{b}) \beta \boldsymbol{a})-\boldsymbol{d}(\boldsymbol{a} \alpha(\boldsymbol{b} \alpha \boldsymbol{b}) \alpha \boldsymbol{a})-d(\boldsymbol{b} \alpha(\boldsymbol{a} \alpha \boldsymbol{a}) \alpha \boldsymbol{b})$
$=2(a \beta d(b \alpha a \alpha b)+(b \alpha a \alpha b) \beta d(a))-a \alpha a \beta d(b \alpha b)-3 a \alpha b \alpha b \beta d(a)+b$ $\alpha b \alpha a \beta d(a)-b \alpha b \beta d(a \alpha a)-3 b \alpha a \alpha a l(b)+a \alpha a \alpha b \beta d(b)$
$=-3(a \alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)-(a \alpha b \alpha b-2 b \alpha a \alpha b+b \alpha b \alpha a) \beta d(a)$ and hence
(a $\alpha b \alpha b-2 b \alpha a \alpha b+b \alpha b \alpha a \beta d(a)+3(a \alpha a \alpha b-a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0$
\qquad
from(6) and (7), we get
4(a $\alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0$
and since M is 2-torsion free Γ-ring,then
(a $\alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0 \square$
Lemma2.3:- Let M be a 2-torsion free Γ-ring which satisfy the condition $\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{c}$, for all $\mathrm{a}, \mathrm{b}, \boldsymbol{c} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$, then $\boldsymbol{D}: M \rightarrow \mathrm{M}$ be a Generalized Jordan left derivation and $d: M \rightarrow \mathrm{M}$ be the relating Jordan left derivation then $[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=0$

Proof:- In (4) replace c by $[a, b]=a \quad \alpha b-b \alpha a$
$\boldsymbol{Y}=\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta[\boldsymbol{a}, \boldsymbol{b}]+[\boldsymbol{a}, \boldsymbol{b}] \alpha \boldsymbol{b} \beta \boldsymbol{a})$
$=a \alpha b \beta D([a, b])+[a, b] \alpha b \beta D(a)+2 a \alpha b \beta d([a, b])+2[a, b] \alpha b \beta d(a)+a \alpha[a, b]$
$\beta \boldsymbol{d}(\boldsymbol{b})+[a, b] \alpha a \beta d(b)-b \alpha a \beta d([a, b])-b \alpha[a, b] \beta \boldsymbol{d}(a)$
$=\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{b} \alpha \boldsymbol{a})+[\boldsymbol{a}, \boldsymbol{b}] \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+2 \boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}([\boldsymbol{a}, \boldsymbol{b}])+$
$2[a, b] \alpha b \beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \alpha[a, b] \beta \boldsymbol{d}(\boldsymbol{b})+[a, b] \alpha a \beta d(b)-b \alpha a \beta d([a, b])-b \alpha[a, b] \beta \boldsymbol{d}(a)$
since $[a, b] \beta d([a, b])=0$ from [3,lemma 2.2,(iii)]
$\boldsymbol{Y}=\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{b} \alpha \boldsymbol{a})+[\boldsymbol{a}, \boldsymbol{b}] \alpha \boldsymbol{b} \beta \boldsymbol{D}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}([\boldsymbol{a}, \boldsymbol{b}])+$
$2[a, b] \alpha b \beta d(a)-b \alpha[a, b] \beta d(a)+a \alpha[a, b] \beta d(b)+[a, b] \alpha a \beta d(b)$
On the other hand,
$\boldsymbol{Y}=\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta[\boldsymbol{a}, \boldsymbol{b}]+[\boldsymbol{a}, \boldsymbol{b}] \alpha \boldsymbol{b} \beta \boldsymbol{a})$
$=\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a} \alpha \boldsymbol{b}-\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{b} \alpha \boldsymbol{a}+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{b} \alpha \boldsymbol{a}-\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{a})$
$=\boldsymbol{D}(\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{D}(\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{a})$
$=\boldsymbol{a} \alpha \boldsymbol{b} \beta \mathrm{D}(\boldsymbol{a} \alpha \mathrm{b})+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{b} \alpha \boldsymbol{a} \beta \mathrm{D}(\mathrm{b} \alpha a)+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{d}(b \alpha a)$
Then by comparing these two expression of Y and since from [3,Lemma2.2],we have
$[a, b] \beta d(a \alpha b)=a \alpha[a, b] \beta d(b)+b \alpha[a, b] \beta d(a)$
then we get
$-[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}([a, b])+2[a, b] \alpha b \beta d(a)-$ $\boldsymbol{b} \alpha[a, b] \beta \boldsymbol{d}(a)+[a, b] \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})-b \alpha[a, b] \beta d(a)-$
$\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{b} \alpha a)=\mathbf{0}$
then
$-[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))+a \alpha b \beta d([a, b])+2[a, b] \quad \alpha b \beta d(a)-2 b \alpha[a, b]$
$\beta \boldsymbol{d}(\boldsymbol{a})+\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})+\boldsymbol{b} \alpha \boldsymbol{a} \beta \boldsymbol{d}(\boldsymbol{b} \alpha a)=\mathbf{0}$
$-[a, b] \beta(\boldsymbol{D}(\boldsymbol{b} \alpha \boldsymbol{a})-\boldsymbol{b} \alpha \boldsymbol{D}(\boldsymbol{a})-\boldsymbol{a} \alpha d(\boldsymbol{b}))+[a, b] \beta \boldsymbol{d}([a, b])+2[a, b] \alpha b \beta d(a)$
$-2 b \alpha[a, b] \beta d(a)=0$
by [3,Lemma2.2,iii],we have
$[a, b] \beta d([a, b])=0$ for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.
Then

$$
\begin{array}{r}
-[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=2(-[a, b] \alpha b+b \alpha[a, b]) \beta d(a) \\
=2(b \alpha[a, b]-[a, b] \alpha b) \beta d(a)
\end{array}
$$

since
$(b \alpha[a, b]-[a, b] \alpha b) \beta \boldsymbol{d}(a)=[a, b] \beta \boldsymbol{d}(\boldsymbol{a} \alpha \boldsymbol{b})-\boldsymbol{a} \alpha[a, b] \beta \boldsymbol{d}(b)-[a, b] \alpha b \beta d(a)$

$$
\begin{aligned}
& =[a, b] \beta(d(a \alpha b)-b \alpha d(a))-a \alpha[a, b] \beta d(b) \\
& =[a, b] \beta a \alpha d(b)-a \alpha[a, b] \beta d(b) \\
& =([a, b] \alpha a-a \alpha[a, b]) \beta d(b)
\end{aligned}
$$

then
$-[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=-2(a \alpha[a, b]-[a, b] \alpha a) \beta d(b)$

$$
\begin{equation*}
=-2(a \alpha a \alpha b-2 a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b) . \tag{9}
\end{equation*}
$$

so by [Lemma 2.2],we get
$[a, b] \beta(D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=0$. \qquad
Theorem2.4:- let M be a 2-torsion free Γ-ring has a commuator left non-Zero divisor and $\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{c}$ for all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ and $\mathrm{D}: M \rightarrow \mathrm{M}$ is \boldsymbol{a} Generalized Jordan left derivation on M and $d: M \rightarrow \mathrm{M}$ is the relating Jordan left derivation Then D is a Generalized left derivation on M.
Proof:- if we suppose that
$\mathrm{G}(\mathrm{b}, \mathrm{a})=\boldsymbol{D}(\boldsymbol{b} \alpha a)-b \alpha \boldsymbol{D}(\boldsymbol{a})-\boldsymbol{a} \alpha d(b)$
Then (10) becomes
$[a, b] \beta \boldsymbol{G}(\boldsymbol{b}, \boldsymbol{a})=0$ for all $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$
Since M has a commuator left non-Zero divisor then $\exists \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$ such that $[x, y] \beta \boldsymbol{c}=0$ implies that $\boldsymbol{c}=\mathbf{0}$

It is easy to see that from (11),
$[x, y] \beta \boldsymbol{G}(y, x)=0$ and so $\boldsymbol{G}(y, x)=0$
In (11) replace a by a+x, then we get
$[x, b] \beta \boldsymbol{G}(b, a)+[a, b] \beta \boldsymbol{G}(b, x)=0$.
replace b by b+y in (12), then we get
$[x, y] \beta \boldsymbol{G}(b, a)=0 \Rightarrow \boldsymbol{G}(b, a)=0$
i.e $D(b \alpha a)=b \alpha D(a)+a \alpha d(b)$
$\Rightarrow D$ is a Generalized left derivation on M.
Theorem 2.5:- let M be a 2-torsion free completely prime Γ-ring and $\boldsymbol{a} \alpha \boldsymbol{b} \beta \boldsymbol{c}=\boldsymbol{a} \beta \boldsymbol{b} \alpha \boldsymbol{c}$ for all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$ and $D: M \rightarrow M$ is a Generalized Jordan left derivation on M.Then D is a Generalized left derivation on M.

Proof:- Since[a,b] $\beta \boldsymbol{G}(\boldsymbol{b}, \boldsymbol{a})=0$ for all $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{M}$ and $\alpha, \beta \in \Gamma$
And since M is completely prime Γ-ring,then either $[a, b]=0$ or $G(b, a)=0$
If $[a, b]=0$ for all $a, b \in M$ and $\alpha \in \Gamma \Rightarrow M$ is commutative and so D is a Generalized left derivation on M.if $G(b, a)=0$ then D is a Generalized left derivation on M.

REFERENCES

[1]Ashraf,M.,Rehman,N.:On Lie ideals and Jordan left derivations of prime rings,Arch.Math.(Brno)36,201-206(2000)
[2]W.E.Barnes"On the Γ-rings of Nobusawa"Pacific J.Math.,18(1966),411-422.
[3] Y.Ceven,"'Jordan left derivations on completely prime Gamma rings",Fenbilimleri Dergisi(2002)cilt 23say 12.
[4]N. Nobusawa." on a generalization of the ring theory ,Osaka J.Math.,1(1964)
[5] Rajaa.C.Shaheen,"Generalized Jordan homomorphisms and Jordan left derivation on some rings,M.S.C thesis,2005.

