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Abstract. In this paper, we define a subclass of p- valent harmonic functions defined by a linear operator and study some results as
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1. Introduction

A continuous function f =u-+iv is a complex valued
harmonic function in a complex C if both u and v are real
harmonic in C. In any simple connected domain D c C we
can write f = h + g, where h and g are analytic in D, we
call h the analytic part and g the co —analytic part of f.

A necessary and sufficient condition for f to be locally
univalent and sense —preserving in D is that |h'(z)| >
|g'(2)| in D, see Clunie and Sheil —Small [3].

Denote by M(p) the class of functions f = h+ g that are
harmonic multivalent and sense —preserving in the unit disk
U={z:]z| <1}. For f =h+ g € M(p), we may express
the analytic function h and g as:

(1.1)
Let N(p) denote the subclass of M(p) consisting of
functions = h + g, where h and g are given by:

f@=2+ ) lage*,

k=n+p
[ee]

g = ) bz,

k=n+p-1
[b| < 1. (1.2)
We introduce here a class N, (p, @) of harmonic functions of
the form (1.1) that satisfy the inequality

zP~1
Re{ - —___,} >a,
[£p(h* 01)(2)] — [£p(g * D1)(2)]
where0 < <%,/1 =>0,p€eN and
L,f(z) = L,h(2) + Lpg(2) . (1.3)
The operator £,, denotes the linear operator introduced in [6].
For h and g given by (1.1), we obtain

L,h(z) = zP + Z [/'l(——1>+1 (@) =P a,z®,

(Cl)k -p

k=n+p

Lyg(z) = Z [/1( * 1) - 1] E Z;k_p bz*,
k=n+p-1 €2 kg
where a4, a,, ¢y, ¢, are positive real numbers , A > 0,p € N .

Now, the convolution of h, g is given by (1.2) and

D@D =2+ ) Al e = ) Bt

k=n+p k=n+p-1
is defined by
hrdp)@ =27+ D | Ayl ayle*
k=n+p
(9 *¢2)(2) = | Bill bielz", bl <1,
k=n+p—-1

we further denote by N;(p, @) the subclass of M, (p, @) that
satisfies the relation

N @ = N[ | M),
Lemma (1.1)[1]:If « = 0 , then Rew > « if and only if

lw—- 1+ a)| <|w+ (1—-a)|, where w be any complex
number.

2. Main Results

Theorem 2.1: Let f = h + g (h and g are given by (1.1)). If

i ket [A(S— 1) + 1] E‘:;:‘:mku |

k=n+p
¢ i)
k=n+p—-1
( 2)k p
=1 | Biell bl < p, (2.1)
2)k -p
where (OSa<;,/120,pEN,zEU) , then f s

harmonic p —valent sense —preserving in U and f € M;(p, a)

Proof. Let
A(2)

zP~1
w(z) = _ ' = .
® {[Lp(h *01)(2)] = [£p(g * (Z)l)(Z)]’} B(z)
By using the fact that in Lemma (1.1) Re(w) = « if and only
if w—A+a)|<|w+ (1 -a)l, it is sufficient to show
that
|A(z) — (1 + @)B(2)| -

|A(z) + (1 — @)B(2)| < 0. (2.2)
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Substituting for A(z) and B(z) the appropriate expressions f(2)
(2.2), we get = Xk
1A(z) — (1 + @)B@)| — |A(2) + (1 - B =4 ) - el
ka2 (5 -1) + 1] 22
p (c)k-p
= [z -1+ a)|pzP?t ® e
+ @k, (2.3)
k=ntp-1ka [/1 (E + 1) - 1] (2)kp
+ 5 o) kG ER
where
k=n+p © ©
+1] (@ | Al ay |z*1 Z el + Z 17l =P,
( 1)k -p k=n+p k=n+p-1
k show that the coefficients bounds given by (2.1) is sharp.
- Z k [/1 (—+ 1) The function of the form (2.3) are in M,(p, @) because in
kenip-1 =~ P view of (2 3) we infer that
3 (@)=
— 1] 2 gy ka[z(——1)+1] 0K | A
( Z)k -p k=n+p 1)k b
— 2"+ (1 - ) [pzP! § Z ka[/l( +1)
k=n+p-1
(az)y-
~ 1| 5 Bl bl
C2)k- -p

V3 b
e Z e + Z el =

+ 1]( ) | Al aklzk_1 k=n+p k=n+p—1
C1) k- =
el 1 Now , we need to prove that the condition (2.1) is
N [ ( + ) also necessary for function of (1.2) to be in the class
k= n+p 1 N/l(p: (){).
(az)p- (@2)-p 1 Theorem 2.2. Let f = h+ g (h and g are given by (1.2)).
-1 | Bicl| b |z Then EN , ) if and only if
( z)k -p AP y
ay)k—
N (@i > ka2 (B 1)+ 1] 22 A
< Z ka[/l(——l)+1] T2 Al knp Drp
k=n+p €1)k- P
P S efa(Een)
+ Z ka[/l( +1) -
1o, 1] g <
— 1| EE2 Bl bl - p <0, 1 (i
(€2)e—p where(OSa<;,/120,pEN,ZEU).

by inequality (2.1), which implies that f € N;(p, ). The

harmchic fur ol Proof. By notation Ny (p, @) € M,(p, @) , the sufficient part

of Theorem (2.2) follows at once from Theorem (2.1), we get

Re{ 2" 1—_}
[£p(h* 01)(2)] = [£y(g * 1) (@)

( )
zP~1
= Re
S K (a1) (az)
pzrit Y k[/l(;—l)+1] (Cl)" 20k 4| a2kt + Z k[/l( + 1)—1] 2l | Bl b2k
k k=n+p k=n+p )
>a,
if we choose =z to be real and let z — 17, we obtain the
condition (2.1). hi(z) = zP + Z lax,;|z*
Theorem 2.3. The class N; (p, @) is a convex set. k=n+p
Proof. Let the function f;(2)(j =1,2) be in the class = .
N;(p, @). Tt is sufficient to show that the function H defined gj(2) = Z |bie ;| (@)~
by : ) k=n+p-1
H@) = A-NA@+7LE), 0<y<D Since for 0 <y <1

is in the class N; (p, @), where f; = h; + g, and
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HE) =22+ ) (=Pl - vla]) 2+

k=n+p

- Z (A =Pbial = ¥lbeal) @ .

k=n+p-1
In view of Theorem (2.2), we have

i ka [A (S— 1) + 1]?11)&| Agl ((1 - 7)|ak.|

k=n+p Cl)k—p
—)’Iak,2|)
- k
+ Z ka[/l(—+1>
k=n+p-1 P
(az)k—p
—1]—|B| 1-)|b
(Cz)k_p k (( Y | k,1|
_Vlbk,2|)
= k (@)
=1-y) Z ka [/1(——1)+1] (Cl)k plAk||ak,1|
k=ntp p 1/k-p
c k
+ Z ka[/l(—+1)
k=n+p-1 p
(az)k—p
—1] B, l|b
(Cz)k_pl k|| k,ll
= k _
+y Z ka[l(——1)+1](a1)k plAk||ak,2|
k=mtp p (Cl)k—p
- k
+ Z ka[/l(—+ 1)
k=n+p-1 p
(az)k—p
—1] | B,||b
(CZ k—p . | k2|

<sA-ypt+yw=p,
hence H(z) € N,(p, «). For harmonic functions

ey

=z 4 Z la |z*
(o]

k=n+p

£ lbd@* 24)
k=n+p-1
and

Y ISl 25)
k=n+p-1
we define the convolution of f and F as

FeP@ =2+ ) lanlzt

k=n+p
[oe]

+ ) Ihsd@*.26)

k=n+p-1

In the following theorem , we examine the convolution
property of the class N, (p, @).
Theorem 2.4. If f and F are in Ny(p,a), then (f *F) €

Ny(p, ).

Proof. Let f and F of the forms (2.4) and (2.5) belongs to
N, (p, @). Then the convolution of f and F is given by (2.6).
Note that || <1 and |si| <1, since F € Ny(p, a). Then
we can write

i ka [/1 (S - 1) + 1] Eal)"‘p | Al lagr]

k=n+p Cl)k—p
k
+ Z ka[/l(—+1)
k=n+p-1 p
(az)k—p
-1 | Bellbisil
. k1D Sk
k )
< Z ka[z(——1)+1]?ll))#|,4k||ak|
k=n+p p € k-p
k
+ Z ka[/l(—+1)
k=n+p-1 p
(az)k—p
—1]—|B||b 1
(Cz)k—p « «

The right hand side of the above inequality is bounded by p
because f € N,(p,a). Therefore (f * F) € Ny(p, @).

Now, we will examine the closure property of the class
N; (p, @) under the generalized Bernardi —Libera —Livingston
integral operator (see [2],[4] and [5]) D.,(f) which is
defined by

Dey(f)(2) =

Cc

tpfztc‘lf(t)dt, (c
0

z
> —p). 2.7)
Theorem 2.5. Let f € N;(p, @). Then D, ,,(f) belong to the
class Ny (p, @).

Proof. From the representation of D ,,(f), it follows that

D.,(f) = C;—Cpf t<"H{h() + g(0)}dt

c+ # g
=P ftc‘l t? + z lag |t* | dt
0

ZC
k=n+p
z [ee]
+ftc-1 Z |b |tk | dt
9 k=n+p-1
[oe]
=zP + Z v z"
k=n+p
[ee]
+ z wy (2)F
k ’
k=n+p-1

c+ c+
where v, = ﬁ |aland wy, = ﬁ |by|. Therefore
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ka [,1 (— - 1) + 1] @iy ) (C - p) ||

kn+p (c)k-p c+k
. Z kaiGe)
18 () o

< i ka[/l(g—l) 1](3:_:|Ak||ak|
+p

v > i)
k=n+p-1
. 1]( Z)k P
Z)k -D
Since € Ny(p,a) , by Theorem (2.2) , we have D, (f) €

N}L(p' C().

| Billbel < p.
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