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1. Introduction

Let S be the class of all functions of from the:

f2) =z + Z a,z", (meN), )

which are analytic and univalent in the open unit disk
U={z€C:|z] <1}.

Let D denote the subclass of S containing of functions of
the from:

[oe]

f(z)=z—2anzn, (a, =0,n€N). (2)
n=2

The Hadamard product (or convolution) of two power

series

f(z)=z- Z a,z" and g(z)

n=2

A i b,z" ©)

n=2

in D is defined by:
. (f+9)2) = f(2) * g(2)

— - Z a,ba". )

n=2
For positive real values of a,...,, and 3, ...,,Bm(ﬁj *
0,~1,..,j =12,..,m),
the generalized hypergeometric function ,F,,(z)is defined
by:
I (2)
(@)n - (@)n 2"
(@ s @i B B 2) L (Bn - (Bmdn 1
t<m+1;,meN,=NU{0};z€l),
where (a),, is the pochhammer symbol defined by
(@)n
n=20

1,
z{a(a’+1)(a+2) w(a+n—-1), a €N. (6)

)

The notation F,, is quite useful for representing many
well-know functions such as the exponential, the Bessel
and laguerre polynomial. Let
Hlay, ...,a; B, s Bml:D = D
be a linear operator defined by
H[alr e @y lgll !.Bm]f(z)
=2 Fp(ay, ., @ Brs oves B 2) * f(2)

- =z
L Z W, (ay; ;m)a,z", )
where
W, (aq; 1;m)
(@)n-1 - (@In-1 1 (8)

- (,Bl)n—l (,Bm)n—l . (Tl - 1)'
For notational simplicity, we use shorter notation H;, [a4]
for

Hley, ..., a; By, -, Bl
In the sequel. It follows from (7) that

Hy[11f (2) = f(2), Hy[21f (@) = zf'(2).

The linear operator Hj,[a] is called Dozik-Srivastava
operator (see [5]) introduced by Dozik and Srivastava
which was subsequently extended by Dziok and Raina [4]
by using the generalized hypergeometric function, recently

Srivastava et. al. [12] defined.the linear operator £}, -** as
follows:

LY S (@) =f(2)
if‘,;f (2) = A = DHy[eq]f (2) + A(Hp [aq]f (2))]
Lyt f(@), - A=0), €)]
Ly f(2) = Lot (Lo f () (10)

and in general,
LYSf(2) = L5 (LY f (@), <m+1; ,mE N,

ALm ALm

=Nu{0};zeU). (11)

If the function f(z) is given by (1), then we see form (7),
(8), (9) and (11) that
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LY f(2)

=z— z WY (ay; A5 m)a,z™, (12)
n=2
where

W) (ay; A; 5m)

) ,neN\{1}y

_ ((al)n—l w(@In-q[1+A(n —1)]

(Bl)n—l (ﬁm)n—l (n - 1)!
€ Ny). (13)

Unless otherwise stated. We note that when 7y =
1and A = 0 the linear operator £} would reduce to the
familiar Dziok-Srivastava linear operator given by (see
[5]), includes (as its special cases) various other linear
operators introduced and studied by Carlson and Shaffer

[3], Owa [9] and Ruscheweyh [10].

For tow analytic functions f,g € D, we say that f
is subordinate to g, written f(z) < g(z) if there
exists as Schwarsz function w(z), which (by
definition) is analytic in U with w(0) =
Oand |w(z)| <1 forallz€ U, such that f(z)=
(9(2)),z € U. Furthermore, if the function g(z) is
univalent in U, then we have the following
equivalence (see [8]):
f(@) < g2 = f(0)=g(0)and f(U) < g(U).

Definition 1: For any function f € U and ¢ > 0, the ¢-
neighborhood of f is defined as:

Ny (P).= {g(z) = 7= ba"

= D:Z nla, — by|
n=2

< qb}. (14)

In particular, for the function e(z) = z, we see that

Ny (e) = {g(z) =z— Z byz™

n=2

ED: ) nlby| < ¢}. (15)

n=2

The concept of neighborhoods was first introduced by
Goodman [6] and then generalized by Ruscheweyh [11].

Definition 2: For fixed parameters 4 and B,with —1 <
B<0and 0 <A< 1. We say that f € D is in the class
K(y,c,a,A,,m A, B) if it satisfies the following
subordination condition:

1+ Az

Lre < )
f@) <175,

ALm

(16)

In view of the definition of subordination (16) is
equivalent to the following condition:

| Limf @
|BLY™ f(2) — Az

Aum

<1, (zel). 17

For convenience, we write

Ky, ca;,A,m1—-2n-1) =
K(y,c,a, A, m,n),where K(y,c,a,,A,,m,n) denotes
the class of function in Dsatisfying the inequality:

Re{Ll™ f(2)} >n,(0<n<1,z€U).

Aim

2. Neighborhoods for the class
K(y,c,ay,A,, m A, B):

Theorem 1: A function f € D belong to the class
K(y,c,ai,4,1,m, A, B)if and only if
D W s sm) (1 - AB)ay

n=2
< [1+A(A-B-1)], (17)
fory,c,,m €Ng=NU{0},t<m+1,1>0,-1<B
<0and 0 <A < 1.

Proof: Let f € K(y, ¢, ay,1,1,m, A, B).Then

1+ Az
Ly f(2) < T35, %€ U. (18)

Therefore there exists an analytic function w such that
LY (B—1)— Az

Aum

w(z) = LI (B — AB) + A% (19)
Hence
WD | Ly (B —1)—Az |
|£V% (B — AB) + A2z

ALm

B | (B—1z -3, W ay; 15m)(B—=1)a,z" — Az |

(B — AB)z — 32, W) " (ay; ;; m)(B — AB)a,z" + A%z

< 1.
Thus

e{ (B—1)z— X%, WY (a; 4 5m)B — 1)a,z" — Az

(B —AB)z — X2, W™ (ay;A; ; m)(B — AB)a,z™ + A%z

<1 (20)

Taking |z| = r, for sufficiently small r with0 <r < 1,
the denominator of (20) is positive and so it is positive for
all ¥ with 0 < r < 1, since w(z) is analytic for |z| < 1.
Then , the inequality (20) yields

Z W (ay; A 5m) (A —B)a,r™ + (B—A— Dr
n=2

< Z W, (ay; A;;m)(AB — B) + (B + A? — AB)r.

n=2

Equivalently,
Z WY (ay; A,5m) (1 — AB)a,r™
n=2

<[1+4 A4 -B-D]r,

and (17)follows upon letting r — 1.
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Conversely, for |z| =7,0 <r <1, we have r™* < r. That
1S,

Z WY (ag; A,5m) (1 — AB)a,r™
n=2
SYE, W (@ A um) (1 — AB)a,r < [1+
A(A—B - 1)]r.

From (17), we have

(B-A-1)z+ Z W)Y (ay; A; 5, m)(X — B) a,z®

n=2

<B-A-Dr+ Z W) (ay; A; ;m)(1 = B) a,r™

n=2

< Z W, (ay; 4,5 m)(AB — B) a,r™
n=2

+ (A2 + B —AB)r

< Z WY (ay; 2;;m)(AB — B) apz"

n=2

+ (A2 + B — AB)z

This prove that

1+ Az
Lamf @ < 1375507

and hence f € K(y,c,ay,4,,m,A,B) .

eEU

Theorem 2: If

_ [1+A(A—-B—-1)] 1)

(@) V¥c ,
(an)s.(@)y j
((Bln...(ﬁmn A+ ’1)> (1—A4B)

then K(y, ¢, a;, 4,,m, A, B) € Ny (e).

Proof: It follows from 17), that if
f € K(y,c,ay, A4, m, A, B), then

Wy " “(ays; 4;5m)(1 — AB) Z na,
n=2
<[1+4A(A-B-1)],

L1y - @)y g - (1= 4B) i na
(B - Ba: o

<[1+A(4A-B-1)]

hence

(22)
which implies,

[oe]

[1+AA—B —-1)]

na, <

y+c
n=2 (a1)1--(a)1 e
((/31)1---(/3m)1 U /1)> (1-AB)

= ¢. (23)
Using (15), we get the result.

Definition 3: The function g defined by

9@ =2=) by
n=2

is said to be member of the class Kz(y, ¢, ay,4,1,m, A, B)
if there exists a function f € K(y,c,ay,4,1,m, 4, B) such
that

9(2) ‘
=—-1|<1-3,
@ 4
(zeU0<pB
<1). (24)
Theorem 3: If f € K(y,c,ay,4,1,m,A,B) and
B
=1
B W+ (ay; 4 5m)(1 — AB) (25)

2 [WJ”(““‘ ;m)(1—AB) — [1+A(A—B — 1)]]
then Ny (f) © Kp(y, ¢, @1, 4,,m, A, B).

Proof: Let g € Ny (f). Then we have from (14) that

> wlay— bl <9,

n=2
which implies the coefficient inequality

S ¢
Z a0 = bl <.
n=2

Also since f € K(y, ¢, a1, 4,1, m, A, B), we have from (17)
= [1+AA—-B-1)]
W) (ay; 4, m)(1 — AB)

a, <

n=2
where

Wn (alr/l' L m) ((ﬁ1)1 (ﬁm)l (1 + l) ’

so that
9@) 1’ _ [Er=a(an - b,)z"|  Ya-alan — byl
f(2) y+CZ = Yimez AnZ" | 1-XYn-2an
w, AL 1—-AB
_9 i hem=AB)

T2 W a Aum)[1+AA-B-1]

Thus by Definition (3), g € Kg(y, ¢, a1, 4,,mA,B) for B
given by (25). This completes the proof.

3. Convolution Properties

Theorem 4: Let the function f;(j = 1,2) defined by

fi@) =z~- Z a,,z",

n=2
(an;=0,=1,2), (26)
be in the class K(y, ¢, ay, 4,1, m, A, B).

Then f; * f, € K(y,¢,ay, 4,1, m, A, 0), where
o
W) (ap hum) (A2 —A+1)—[1+AA-B-1D]?

= W) (a4 ;m)A(1— AB)2 — [A+[1+ A(A - B - 1D]?]

Proof: We must find the largest o such that

[oe]

WY (ay; A 5m)(1 — Ao)
Z [1+A(A—-0-1)]

ap 0y < 1.

n=2
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Since f; € K(y,c,ay,4,1,m,A,B)(j = 1,2), then

Z WY *(ay; 4;5m)(1 — AB)

<1,
LT +A(A-B-D] ™=
G=12). (27)
By Cahuch-Schwarz inequality, we get
o W (ay; A, m)(1 — AB)
ZZ [M+4AA—B—1)] V&ninz
n:
<1. (28).
We went only show that
WY (ay; A 5m)(1 — Ao)
M+4AA—0—1D]  ‘nitn2
W (ay; 5, m)(A = AB)
[1+A(A-B-1)] V2

This equivalently to

[1+A(A—0—-1)](1—-AB)
Y, An,10n,2 <
[1+A(A—=B—-1)]( - Ao)

from (28), we have

[1+A(4—-B-1)]
Jan1apo < e J
S W (e A ym)(1 — AB)

Thus it is sufficient to show that
[14+AA—-B—-1)]
W) (ay; A;5m)(1 — AB)
4 [1+A4A4—-0—-1)](1—AB)
T [1+AA4-B-1)]1 - Ac)

which implies to
o

WY (a; hm) (A2 —A+1)=[1+AA—-B—-1)]?

¥ W) (ay;4;5m)A(1 — AB)? — [A+ [L+A(A — B=1)]3]

Theorem 5: Let the function f;(j = 1,2) defined by (26)
be in the class K (y, ¢, aq, A, 1, m, A, B). Then the function A
defined by

h(z) = z — i(an,lz

+ aps?) 2, @9
belong to the class K(y, ¢, aq, 4,1, m, A, €), where

&

W, ¢ (ay; 2 5m)2A(1 — AB)? — 2A[1 + A(A — B

<
WY (ay; A 5m)2(1 — AB)2(1 + A + AZ) — WY ™ (ay; A;5,m)2)

Proof: We must find the largest € such that

[oe]

WY (ay; 4 5m)(1 — Ae)
Z [1+A@—¢—1)]

(an1? +ayz?) < 1.

n=2
Since f; € K(y,c,ay,A,1,m, A, B, £)(j = 1,2), we get
o (W (g um)(1— AR\
Z an,l

[L+AA-B - 1)]

WY (ay; 4 ;m)(1 — AB) ’
i (Z [1+A(A-B-1)] a’“)

<1, (30)
and

o (W (g Asm)(L— AB)\
Z( [1+A4-B - 1)] > Oz

S W (g A m)(1— AB) )
= (Z [1+A(4-B - 1)] aﬂ)

n=2
<L 31
Combining the inequalities (30) and (31), gives

[oe]

1 (W) (ay; A 5m)(1 — AB)\
Z_ (anl2 +an22)
12\ [1+4(A-B-1] ' :
n=

<1. (32
But h € K(y, ¢, a;, A, 1, m, A;¢), if and only if

[ee]

WY (aq; 4 5m)(1 — Ag)
Z [T+ A4 —¢c—-1)]
<1, (33)
the inequality (33) will be satisfied if
Wy T (ay; A um)(1 — Ae)
[1+A(A4=B-1)]
J W, (ay; A;1;m)? (1.~ AB)?
- 2[M+AA-B-1D]2
(n=23..)

n=2

(an,12 + an,zz)

so that

WY "(ay; A;1,m)?A(1 — AB)? — 2A[1 + A(A — B — DJ?

e < ,
WY (ag; 4 5m)2(1 — AB)2(1 + A+ A2) = W)™ (ay; 4, s m)2[[1 + A(A=B — 1)]]2

and this completes the proof.

4. Integral Mean Inequalities for the
Fractional Integral

Definition 4[8]: The fractional integral of order s (s > 0)
is defined for a function by

D;*f(z)
z
1 f@®
= dt, 34
rs)) z—tv)t=s (B4
0
where the function f is analytic in a simply-connected
region of the complex 2z — planecontaining, and

multiplicity of (z —t)S"1 is removed by requiring
log(z — t) to be real, when (z — t) > 0.

In 1925, Littlweood [7] proved the following
subordination theorem:

Theorem 6 (Littlweood [7]) : If f and g are analytic in U

with f < g, then for
u>0andz=ref(0<r<1)

f FDIHdo < f 9@+ df.
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Theorem 7: Let f € K(y,c,a1,4,1,m, A, B) and suppose

that f, is defined by Similarly, from (35) and Definition 4, we get
foze [1+AA-B-D] D,* "f(z)
" WY (ay; 4 5m)(1— AB) _ @z
(n = 2). (35) [(s+n+2)
Also let . [1 +AA-B-DIIn+ DI'(s+n+2) -1
Z(i M1 @ W e hum(—AB(n+s+n+ 1) )
n+1 %i
[1+AA—B— DT + DI(s fzn +3) 2 Forzint >0andz=re(0 <r < 1), we must shovslllthat
W) (ay; 5m)(1 — AB)I(n+s+n+DT2—1n) ©36) f 1_Zr(s+n+2)( e H@D 2| a6
for0<n<is>0,where(i—n)y4 denote  the — I'(2) T+l
i=
Pochhammer symbol defined by on
(G=Mprr=G—mMGE=n+1)..i. Sf 1
. . : 0
I(gt(hze)r)engﬁlsts an analytic function g defined by [1+AA—B =D+ DI(s+1+2) . Iz 0
W (ag A m)(1— AB)(n +s + 0+ 1) W (s A m)(1 = ABYTR)T(n + s+ 1 + 1) '
n I R4 2] .
= (l
[1+AA-B-DI(n+1) Z By setting
— My H(Da; 271, (37) I'(s+n+2)
where i > 71 and 1- Z —F(Z) =My HDa zy
N t)) i=2
H@) =77 =1
s S 2) F(l+g3;)’7+1) [1+ A —B— DT+ DI(s + 7+ 2) ()"
5>0,i=>2), - z ,
dlen, for z = re®® anbuomer =T W (g 2 )L —ABT@T(n + s+ + 1) -
—s— u we find that
[ 1o reofda (42"
W) (ay; 4;5,m)(A—AB)T(n+s+n+1) i(_
s = i
sf|DZS " (@)|" do, (s > 0, [1+A(A—B—-DII(n+1)
0 — H()a; par i
> 0). (39) 77)77+1 i
! which readily yields w(0) = 0. For such a function g, we
Proof: Let . obial
| n—-1
f(2) =Z—Zaizl. |(q(z))| -
i=2 Wny+c(a1;/1;t;m)(1—AB)F(n+s+r]+1)2(_
< i
Forn = 0 and Definition 4, we get [1 * A(A — B - PDIT (.
en [(2)zstn*t — My HDa;lz| 7! B
DD S D W@ sm)( - ABT( +s + 1 + 1) 2] Z(i
o = [I+AA—-B-DIl(n+1)
FrG+ DI(s+n+2) )
C LT@EGts+n+1) L - n)n+1H+(Ci)at B
r(2)25+n+l; =T W, (ay; A m)(1 —AB)T(n+ s +n+ 1)I(2—1n) Z('
=l—‘(5+—n+2)< [1+AA—-B—-DII(s+n+3)I(n+1)
o0 — H(a; <|z| < 1.
ZF(s+n +2)(_ M1 '
) —— (i
s I'(2) This completes the proof of the theorem.
—Mp+1H (@) a; z= 1), By taking n = 0 in the Theorem 7, we have the following
corollary:
where
HD) = ri@é-1) Corollary 1: Letf € K(y,c,a;,A,1,m,A,B) and suppose
FG+s+n+1) that f,, is defined by (35). Also let
(s20,i=2) - [1+A(A - B — 1)IT(n + 1)I(s + 3)
zi WY (ag; A um)(1 — AB)I(s + 1 + DIR)’
Since H is decreasing function of i, we have i=2 n s N
r2-mn n=2.
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If there exists an analytic function g defined by
(@@)" =
Wt (as;4;5m)(1-AB)T(s+7+1)
[1+4(4-B-D)IT(n+1) )
where
r@)

Ti+s+1)’
then, forz =re® and 0 < r < 1

i=2 lH(l)al,Zl_ly

H@) = (s>0,i<2),

2T 2T
[ 271 a0 < [ 172 r)1 a0, (s > 0.1
0 0
> 0).
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