International Mathematical Forum, Vol. 6, 2011, no. 46, 2267-2278

On a Class of Meromorphic Univalent Functions Defined by Linear Derivative Operator

Waggas Galib Atshan and Jumana Hikmet Sulman
Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya, Diwaniya, Iraq
waggashnd@yahoo.com, hikmetj@yahoo.com

Abstract

In this paper, we introduce the class of meromorphic univalent functions defined by linear derivative operator. We obtain a coefficient inequality, closure theorem, Hadamard product (or convolution) and integral operator for the functions in the class $k^{\lambda, 1}(\beta, \alpha)$.

Mathematics Subject Classification: Primary 30C45; Secondary 30C50, 26A33

Keywords: Meromorphic univalent function, Hadamard product, Integral operator

1 Introduction

Let \sum denote the class of functions f of the form :

$$
\begin{equation*}
f(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic and meromorphic univalent in the punctured unit disk $U^{*}=$ $\{z \in \mathbb{C}: 0<|z|<1\}=U \backslash\{0\}$. Let \mathcal{A} be a subclass of \sum of functions of the form:

$$
\begin{equation*}
f(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad\left(a_{n} \geq 0, \quad n \in \mathbb{N}\right) \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is meromorphic starlike function of order $\rho,(0 \leq \rho<1)$ if

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho, \quad(z \in U) \tag{3}
\end{equation*}
$$

The class of all such functions is denoted by $\mathcal{A}^{*}(\rho)$. A function $f \in \mathcal{A}$ is meromorphic convex function of order $\rho,(0 \leq \rho<1)$ if

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho, \quad(z \in U) \tag{4}
\end{equation*}
$$

The Hadamard product (or convolution) of two functions, f is given by (2) and

$$
\begin{equation*}
g(z)=z^{-1}+\sum_{n=1}^{\infty} b_{n} z^{n}, \quad\left(b_{n} \geq 0, n \in \mathbb{N}\right) \tag{5}
\end{equation*}
$$

is defined by

$$
(f * g)(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

We shall need to state the extended linear derivative operator of Ruscheweyh type for the function belonging to the class \mathcal{A} which is defined by the following convolution

$$
\begin{equation*}
D_{*}^{\lambda, 1} f(z)=\frac{z^{-1}}{(1-z)^{\lambda+1}} * f(z), \quad(\lambda>-1 ; \quad f \in \mathcal{A}) \tag{6}
\end{equation*}
$$

In terms of binomial coefficients, (6) can be written as

$$
\begin{equation*}
D_{*}^{\lambda, 1} f(z)=z^{-1}+\sum_{n=1}^{\infty}\binom{\lambda+n}{n} a_{n} z^{n}, \quad(\lambda>-1 ; \quad f \in \mathcal{A}) \tag{7}
\end{equation*}
$$

The linear operator $D^{\lambda, 1}$ analogous to $D_{*}^{\lambda, 1}$ (defined by 6), was consider recently by Raina and Srivastava [5] on the space of analytic and p-valent function in $U\left(U=U^{*} \cup\{0\}\right)$. Also the linear operator $D_{*}^{\lambda, p}$ was studied on meromorphic multivalent functions for other class in [2].
Definition 1 : Let $f \in \mathcal{A}$ be given by (2). The class $k^{\lambda, 1}(\beta, \alpha)$ is defined by:
$k^{\lambda, 1}(\beta, \alpha)=\left\{f \in \mathcal{A}:\left|\frac{\frac{z\left(D_{x}^{\lambda, 1} f(z)\right)^{\prime \prime}}{\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}+2}{\frac{z\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime \prime}}{\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}+2 \alpha}\right|<\beta, \lambda>-1,0 \leq \alpha<1,0<\beta \leq 1\right\}$.
Some of the following properties have been found on other classes in [4], [1] and [3].

2 Coefficient Inequality

Theorem 1: Let $f \in \mathcal{A}$. Then $f \in k^{\lambda, 1}(\beta, \alpha)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))] a_{n} \leq 2 \beta(1-\alpha) \\
\lambda>-1, \quad 0 \leq \alpha<1,0<\beta \leq 1 \tag{9}
\end{gather*}
$$

The result is sharp for the function

$$
f(z)=z^{-1}+\frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]} z^{n}, \quad n \geq 1
$$

Proof : Assume that the inequality (9) holds true and let $|z|=1$, then from (8), we have

$$
\begin{align*}
& \left|z\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime \prime}+2\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}\right|-\beta\left|z\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime \prime}+2 \alpha\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}\right| \\
& =\left|\sum_{n=1}^{\infty} n(n+1)\binom{\lambda+n}{n} a_{n} z^{n-1}\right| \\
& -\beta\left|2(1-\alpha) z^{-2}+\sum_{n=1}^{\infty} n(n-1+2 \alpha)\binom{\lambda+n}{n} a_{n} z^{n-1}\right| \tag{10}\\
& \leq \sum_{n=1}^{\infty}\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))] a_{n}-2 \beta(1-\alpha) \leq 0 .
\end{align*}
$$

Hence by the principle of maximum modulus , $f \in k^{\lambda, 1}(\beta, \alpha)$. Conversely, suppose that f defined by (2) is in the class $k^{\lambda, 1}(\beta, \alpha)$, then from (7), we have

$$
\left|\frac{\frac{z\left(D_{x}^{\lambda, 1} f(z)\right)^{\prime \prime}}{\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}+2}{\frac{z\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}{\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}+2 \alpha}\right|=\left|\frac{\sum_{n=1}^{\infty} n(n+1)\binom{\lambda+n}{n} a_{n} z^{n-1}}{2(1-\alpha) z^{-2}+\sum_{n=1}^{\infty} n(n-1+2 \alpha)\binom{\lambda+n}{n} a_{n} z^{n-1}}\right|<\beta .
$$

Since $|\operatorname{Re}(z)| \leq|z|$ for all z, we have

$$
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty} n(n+1)\binom{\lambda+n}{n} a_{n} z^{n-1}}{2(1-\alpha) z^{-2}+\sum_{n=1}^{\infty} n(n-1+2 \alpha)\binom{\lambda+n}{n} a_{n} z^{n-1}}\right\}<\beta
$$

we choose the value of z on the real axis so that $\frac{z\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime \prime}}{\left(D_{*}^{\lambda, 1} f(z)\right)^{\prime}}$ is real. Upon clearing the denominator of (10) and letting $z \rightarrow 1^{-}$through real values, we get the inequality (9).

Sharpness of the result follows by setting

$$
\begin{equation*}
f(z)=z^{-1}+\frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]} z^{n}, \quad n \geq 1 \tag{11}
\end{equation*}
$$

Corollary 1: Let $f \in k^{\lambda, 1}(\beta, \alpha)$. Then

$$
a_{n} \leq \frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}
$$

where $\lambda>-1,0 \leq \alpha<1,0<\beta \leq 1$.
Theorem 2: The class $k^{\lambda, 1}(\beta, \alpha)$ is convex set.
Proof : Let f and g be the arbitrary elements of $k^{\lambda, 1}(\beta, \alpha)$. Then for every $\gamma(0<\gamma<1)$, we show that $(1-\gamma) f(z)+\gamma g(z) \in k^{\lambda, 1}(\beta, \alpha)$. Thus, we have

$$
(1-\gamma) f(z)+\gamma g(z)=z^{-1}+\sum_{n=1}^{\infty}\left[(1-\gamma) a_{n}+\gamma b_{n}\right]
$$

and

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)}\left[(1-\gamma) a_{n}+\gamma b_{n}\right] \\
& =(1-\gamma) \sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} a_{n} \\
& +\gamma \sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} b_{n} \leq 1 .
\end{aligned}
$$

This completes the proof.

3 Closure Theorem

Theorem 3: Let the function f_{i} defined by

$$
f_{i}(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n, i} z^{n}, \quad\left(a_{n, i} \geq 0, \quad n \in \mathbb{N}, n \geq 1\right)
$$

be in the class $k^{\lambda, 1}\left(\beta_{i}, \alpha_{i}\right),\left(0 \leq \alpha_{i}<1,0<\beta_{i} \leq 1, n \in \mathbb{N}, n \geq 1\right)$ for each $i=1,2, \cdots, m$. Then the function h defined by

$$
h(z)=z^{-1}+\frac{1}{m} \sum_{n=1}^{\infty}\left(\sum_{i=1}^{m} a_{n, i}\right) z^{n}
$$

is in the class $k^{\lambda, 1}(\beta, \alpha)$, where

$$
\begin{equation*}
\beta=\min _{1 \leq i \leq m}\left\{\beta_{i}\right\} \quad \text { and } \quad \alpha=\min _{1 \leq i \leq m}\left\{\alpha_{i}\right\} . \tag{12}
\end{equation*}
$$

Proof : Since $f_{i} \in k^{\lambda, 1}\left(\beta_{i}, \alpha_{i}\right)$ for each $i=1,2, \cdots, m$, we note that

$$
\sum_{n=1}^{\infty}\binom{\lambda+n}{n} n\left[n\left(1+\beta_{i}\right)+\left(1+\beta_{i}\left(2 \alpha_{i}-1\right)\right)\right] a_{n, i} \leq 2 \beta_{i}\left(1-\alpha_{i}\right)
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\binom{\lambda+n}{n} n\left[n\left(1+\beta_{i}\right)+\left(1+\beta_{i}\left(2 \alpha_{i}-1\right)\right)\right]\left(\frac{1}{m} \sum_{i=1}^{m} a_{n, i}\right) \\
& =\frac{1}{m} \sum_{i=1}^{m}\left(\sum_{n=1}^{\infty}\binom{\lambda+n}{n} n\left[n\left(1+\beta_{i}\right)+\left(1+\beta_{i}\left(2 \alpha_{i}-1\right)\right)\right] a_{n, i}\right) \\
& \leq \frac{1}{m} \sum_{i=1}^{m} 2 \beta_{i}\left(1-\alpha_{i}\right) \leq 2 \beta(1-\alpha) .
\end{aligned}
$$

Thus we get

$$
\sum_{n=1}^{\infty}\binom{\lambda+n}{n} n\left[n\left(1+\beta_{i}\right)+\left(1+\beta_{i}\left(2 \alpha_{i}-1\right)\right)\right]\left(\frac{1}{m} \sum_{i=1}^{m} a_{n, i}\right) \leq 2 \beta(1-\alpha)
$$

Hence by Theorem 1, we have $h \in k^{\lambda, 1}(\beta, \alpha)$, where α and β is given by (12). This completes the proof of the theorem.

4 Hadamard Product

Theorem 4: Let $f, g \in k^{\lambda, 1}(\beta, \alpha)$. Then $(f * g) \in k^{\lambda, 1}(\delta, \alpha)$ for

$$
\begin{aligned}
& f(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} z^{n} \\
& g(z)=z^{-1}+\sum_{n=1}^{\infty} b_{n} z^{n}
\end{aligned}
$$

and

$$
(f * g)(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

where

$$
\delta=\frac{2 \beta^{2}(\alpha-1)(n+1)}{2 \beta^{2}(1-\alpha)(n+2 \alpha-1)-\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]^{2}}
$$

Proof: Since f and g are in the class $k^{\lambda, 1}(\beta, \alpha)$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} a_{n} \leq 1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} b_{n} \leq 1 \tag{14}
\end{equation*}
$$

We have to find the largest δ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\delta)+(1+\delta(2 \alpha-1))]}{2 \delta(1-\alpha)} a_{n} b_{n} \leq 1 \tag{15}
\end{equation*}
$$

By Cauchy-Schwarz inequality, we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} \sqrt{a_{n} b_{n}} \leq 1 \tag{16}
\end{equation*}
$$

We want only to show that

$$
\begin{aligned}
& \frac{\binom{\lambda+n}{n} n[n(1+\delta)+(1+\delta(2 \alpha-1))]}{2 \delta(1-\alpha)} a_{n} b_{n} \\
& \leq \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} \sqrt{a_{n} b_{n}} .
\end{aligned}
$$

This equivalently to

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{\delta[n(1+\beta)+(1+\beta(2 \alpha-1))]}{\beta[n(1+\delta)+(1+\delta(2 \alpha-1))]} \tag{17}
\end{equation*}
$$

From (16), we get

$$
\sqrt{a_{n} b_{n}} \leq \frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}
$$

Thus it is enough to show that

$$
\frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]} \leq \frac{\delta[n(1+\beta)+(1+\beta(2 \alpha-1))]}{\beta[n(1+\delta)+(1+\delta(2 \alpha-1))]}
$$

which simplifies to

$$
\delta \leq \frac{2 \beta^{2}(\alpha-1)(n+1)}{2 \beta^{2}(1-\alpha)(n+2 \alpha-1)-\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]^{2}}
$$

Theorem 5 : Let the functions $f_{j}(j=1,2)$ defined by

$$
f_{j}(z)=z^{-1}+\sum_{n=1}^{\infty} a_{n, j} z^{n}, \quad\left(a_{n, j} \geq 0, j=1,2\right)
$$

be in the class $k^{\lambda, 1}(\beta, \alpha)$. Then the function h defined by

$$
\begin{equation*}
h(z)=z^{-1}+\sum_{n=1}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n} \tag{18}
\end{equation*}
$$

belongs to the class $k^{\lambda, 1}(\beta, \alpha)$, where

$$
\eta=\frac{4 \beta^{2}(\alpha-1)(n+1)}{4 \beta^{2}(1-\alpha)(n+2 \alpha-1)-\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]^{2}}
$$

Proof : Note that

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(\frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)}\right)^{2} a_{n, j}^{2} \\
& \leq\left(\sum_{n=1}^{\infty} \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)} a_{n, j}\right)^{2} \leq 1 \quad(j=1,2) . \tag{19}
\end{align*}
$$

For $f_{j} \in k^{\lambda, 1}(\beta, \alpha)(j=1,2)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)}\right)^{2}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1 \tag{20}
\end{equation*}
$$

In order to obtain our result, we have to find the largest η such that

$$
\frac{[n(1+\eta)+(1+\eta(2 \alpha-1))]}{\eta} \leq \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]^{2}}{4 \beta^{2}(1-\alpha)}, n \geq 1
$$

so that

$$
\eta \leq \frac{4 \beta^{2}(\alpha-1)(n+1)}{4 \beta^{2}(1-\alpha)(n+2 \alpha-1)-\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]^{2}}
$$

5 Integral Operator and Partial Sums

Next, we consider some properties have been found on the other class in [3].
Theorem 6 : The $f \in k^{\lambda, 1}(\beta, \alpha)$ if and only if the function F given by

$$
\begin{equation*}
F(z)=\frac{\lambda}{z^{\lambda+1}} \int_{0}^{z} t^{\lambda} f(t) d t, \quad \lambda>-1 \tag{21}
\end{equation*}
$$

is in the class $k^{\lambda+1,1}(\beta, \alpha)$.
Proof: By using of (21), we have

$$
\begin{equation*}
\lambda f(z)=(\lambda+1) F(z)+z F^{\prime}(z) \tag{22}
\end{equation*}
$$

which, in the right hand of (7), implies

$$
\lambda\left(D_{*}^{\lambda, 1} f(z)\right)=(\lambda+1)\left(D_{*}^{\lambda, 1} F(z)\right)+z\left(D_{*}^{\lambda, 1} F(z)\right)^{\prime}=\lambda\left(D_{*}^{\lambda+1,1} F(z)\right) .
$$

Therefore, we have

$$
D_{*}^{\lambda, 1} f(z)=D_{*}^{\lambda+1,1} F(z),
$$

and the desired result follows at once.
Theorem 7 ; Let $f \in k^{\lambda, 1}(\beta, \alpha)$. Then the function F defined by

$$
\begin{equation*}
F(z)=\frac{\lambda}{z^{\lambda+1}} \int_{0}^{z} t^{\lambda} f(t) d t=z^{-1}+\sum_{n=1}^{\infty} \frac{\lambda}{\lambda+n+1} a_{n} z^{n}, \quad \lambda>-1 \tag{23}
\end{equation*}
$$

is meromorphically starlike in the disk $|z|<R_{1}$, where

$$
\begin{equation*}
R_{1}=\inf _{n}\left\{\frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))](\lambda+n+1)}{2 \beta \lambda(n+1)(1-\alpha)}\right\} \tag{24}
\end{equation*}
$$

The result is sharp for the function

$$
f(z)=z^{-1}+\frac{2 \beta(1-\alpha)}{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]} z^{n} .
$$

Proof: We show that

$$
\begin{equation*}
\left|\frac{z F^{\prime}(z)}{F(z)}+1\right| \leq 1 \quad \text { in } \quad|z|<R_{1} . \tag{25}
\end{equation*}
$$

R_{1} is given by (24). In view of (23) we have

$$
\left|\frac{z F^{\prime}(z)+F(z)}{F(z)}\right|=\left|\frac{\sum_{n=1}^{\infty} \frac{\lambda}{\lambda+n+1} n a_{n} z^{n+1}}{1+\sum_{n=1}^{\infty} \frac{\lambda}{\lambda+n+1} a_{n} z^{n+1}}\right| \leq \frac{\sum_{n=1}^{\infty} \frac{\lambda}{\lambda+n+1} n a_{n}|z|^{n+1}}{1-\sum_{n=1}^{\infty} \frac{\lambda}{\lambda+n+1} a_{n}|z|^{n+1}} \leq 1
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{\lambda(n+1)}{\lambda+n+1} a_{n}|z|^{n+1} \leq 1
$$

This is enough to consider

$$
|z|^{n+1} \leq \frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))](\lambda+n+1)}{2 \beta \lambda(n+1)(1-\alpha)}
$$

Therefore,

$$
|z| \leq\left\{\frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))](\lambda+n+1)}{2 \beta \lambda(n+1)(1-\alpha)}\right\}^{\frac{1}{n+1}}
$$

for $n \in \mathbb{N}, n \geq 1$. The result follows by setting $|z|=R_{1}$.
Theorem 8: Let $f \in \mathcal{A}$ be given by (2) and define the partial sums $s_{1}(z)$ and $s_{k}(z)$ by $s_{1}(z)=z^{-1}$ and

$$
s_{k}(z)=z^{-1}+\sum_{n=1}^{k-1} a_{n} z^{n}
$$

suppose also that

$$
\begin{equation*}
\sum_{n=1}^{\infty} d_{n} a_{n} \leq 1, \quad\left(d_{n}=\frac{\binom{\lambda+n}{n} n[n(1+\beta)+(1+\beta(2 \alpha-1))]}{2 \beta(1-\alpha)}\right) \tag{26}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{s_{k}(z)}\right\}>1-\frac{1}{d_{k}} \quad \text { and } \operatorname{Re}\left\{\frac{s_{k}(z)}{f(z)}\right\}>1-\frac{d_{k}}{1+d_{k}} . \tag{27}
\end{equation*}
$$

Each of the bounds in (27) is the best possible for $n \in \mathbb{N}$.
Proof : For the coefficients d_{n} given by (26), it is not difficult to verify that $d_{n+1}>d_{n}>1, n=1,2, \cdots$.

Therefore, by using the hypothesis (26), we have

$$
\begin{equation*}
\sum_{n=1}^{k-1} a_{n}+d_{k} \sum_{n=k}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} d_{n} a_{n} \leq 1 \tag{28}
\end{equation*}
$$

By setting

$$
\begin{equation*}
g_{1}(z)=d_{k}\left(\frac{f(z)}{s_{k}(z)}-\left(1-\frac{1}{d_{k}}\right)\right)=1+\frac{d_{k} \sum_{n=k}^{\infty} a_{n} z^{n+1}}{1+\sum_{n=1}^{k-1} a_{n} z^{n+1}} \tag{29}
\end{equation*}
$$

and applying (28) we find that

$$
\begin{equation*}
\left|\frac{g_{1}(z)-1}{g_{1}(z)+1}\right| \leq \frac{d_{k} \sum_{n=k}^{\infty} a_{n}}{2-2 \sum_{n=1}^{k-1} a_{n}-d_{k} \sum_{n=k}^{\infty} a_{n}} \leq 1 \tag{30}
\end{equation*}
$$

which readily yields the left asseration (27). If we take

$$
\begin{equation*}
f(z)=z^{-1}-\frac{z^{k}}{d_{k}} \tag{31}
\end{equation*}
$$

then

$$
\frac{f(z)}{s_{k}(z)}=1-\frac{z^{k}}{d_{k}} \rightarrow 1-\frac{1}{d_{k}}\left(z \rightarrow 1^{-}\right)
$$

which shows that the bound in (27) is the best possible for each $n \in \mathbb{N}$. Similarly, if we put

$$
g_{2}(z)=\left(1+d_{k}\right)\left(\frac{s_{k}(z)}{f(z)}-\frac{d_{k}}{1+d_{k}}\right)=1-\frac{\left(1+d_{k}\right) \sum_{n=k}^{\infty} a_{n} z^{n+1}}{1+\sum_{n=1}^{k-1} a_{n} z^{n+1}}
$$

and make use of (28) we obtain

$$
\begin{equation*}
\left|\frac{g_{2}(z)-1}{g_{2}(z)+1}\right| \leq \frac{\left(1+d_{k}\right) \sum_{n=k}^{\infty} a_{n}}{2-2 \sum_{n=1}^{k-1} a_{n}+\left(1-d_{k}\right) \sum_{n=k}^{\infty} a_{n}} \leq 1 \tag{32}
\end{equation*}
$$

which leads us to the assertion (27). The bounds given in the right of (27) is sharp with the function given by (31). The proof of the theorem is complete.

References

[1] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II ,Surveys in Mathematics and its Applications, 3 (2008), 67-77.
[2] S. P. Goyal and J. K. Prajapat, A new class of meromorphic multivalent functions involving certain linear operator, 25(2) (2009), 167-176.
[3] Ming -Sheng Liu and Nian -Sheng Song, Two new subclasses of meromorphically multivalent functions associated with Generalized Hypgeometric function, Southeast Asian Bulletin of Mathematics, 34 (2010),705-727.
[4] H. Orhan, D. Răducanu and E. Deniz, Subclass of meromorphic multivalent functions defined by a differential operator, Math CV, 27 Aug 2010, arXiv:1008.4691v1, 1-23.
[5] R. K. Raina and H. M. Srivastava, Inclusion and neighborhoods properties of some analytic and multivalent functions, J. Inequal. Pure and Appl. Math., 7(1) (2006), Article 5,1-6.

Received: March, 2011

