Synthesis of Some Substituted Pyrimidines Derived from 3-Acetyl Coumarin

Qassim A.H. Jaber and Nabeel A.A. AL-Radha*

Department of Chemistry, College of Education, Al-Qadisiyah University, Iraq
*Corresponding author: Tel: +964 7903620810; E-mail: nabeel1959@yahoo.com; khalidke_1962@yahoo.com
(Received:
Accepted:
)
AJC-0000

The research work conducted during this study targets mainly the synthesis of a number of derivatives of coumarin containing ring pyrimidin-2-one substitutes different aromatic rings, taking advantage of the Biginelli reaction which includes the reaction of (3-acetyl coumarin) with suitable aromatic aldehydes and urea at the presence of AlCl_{3} and ethanol absolute as a solvent. It has been indicated various scientific journals that have been referenced to the presence of biological activity is important and diverse to these kinds of compounds, which is the preparation of compound 3-acetyl coumarin (7) to be used as a compound base. The compounds created heterocyclic are expected to have various important biological and therapeutic applications. This proves structural formulas for each of new synthetic compounds on the basis of chemical reactions, rigorous analysis of the elements, the spectra infrared (FT-IR) and nuclear magnetic resonance of the (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C} N \mathrm{NR}$), in addition to various physical available means means.

Keywords: Coumarin derivatives, Pyrimidines substituted, 4,3-Dihydro-(4-aryl-6-coumarin)pyrimidin-2-one.

INTRODUCTION

Coumarin derivatives received considerable attention by researchers as one of the compounds that possess medical and biological activities as well as industrial uses, where many of the products that contain coumarin units showed a various of pharmacological activities ${ }^{1-4}$. It is also found that compounds containing pyrimidine ring play an important role in many biological systems such as vitamins, enzymes assistance and many antibiotics as well as its presence in the nucleic acids ${ }^{5}$, which attracted multiple biological activities of compounds pyrimidine much attention in the past few years, so the researchers worked hard in the preparation of these compounds because of its great diversity in the effectiveness of biological and pharmaceutical critria ${ }^{6}$. The pyrimidine derivatives are major elements of a large number of pharmaceutical manufactured which show a group of derivatives pyrimidine activity as antimicrobial ${ }^{8}$, analgesic, antiviral, anti-inflammatory ${ }^{9}$, also antiHIV 10, anti-tubercular ${ }^{11}$, anti-tumor ${ }^{12}$, anti-malarial ${ }^{13}$ and diuretic ${ }^{14}$, in addition to the pyrimidine compounds are also used as hypnotic drugs for the nervous system ${ }^{15}$. It can also prepare this type of compounds through a various of ways and Biginelli reaction ${ }^{16}$ of the most important ways used for the preparation of this type of compounds, which includes this reaction blending ethyl acetoacetate (1) or its derivatives with benzaldehyde (2) or its derivatives, urea (3) and that the process occurs, the reaction is heating mixture of the three
components dissolved in the solvent particularly with the availability of acidic conditions to produce through this method new derivatives pyrimidine known as 4,3-dihydro-pyrimidin2 -one (4) as shown in the following equation:

Uracil is a very important class of pyrimidine derivatives ${ }^{17 \mathrm{a}}$, where exhibit various pharmacological and biological activity $^{17 \mathrm{~b}}$, for example, fluorouracil (5) is used widely as an anti-cancer ${ }^{18}$. While the compound 5-nitrouracil (6) used to inhibition of the enzyme thymidine phosphorylase ${ }^{19}$ and also its derivative showed antibacterial activity ${ }^{20}$. Also 5-cinnamoyl-6-aminouracil (7) derivatives are used as agents inhibition against the growth of cancer cells ${ }^{21}$. While 6-aminouracils (8) find wide application as starting materials for the preparation of many of the active compounds and biologically important as well as, its derivatives can be used as a coupling component in dye chemistry ${ }^{22}$. In addition to the above mentioned properties, it was prepared a series of coumarin derivatives containing on pyrimidine ring (Scheme-I) and so by taking advantage of Biginelli condensing ${ }^{23}$.

(5)

(6)

(7)

(8)

EXPERIMENTAL

General experimental procedures: The chemicals used in the synthesis of all compounds were purchased from Aldrich, Merck and BDH Chemical Companies and used without further purification. The melting points were measured on an Electrothermal Melting point/SMP (Gallenkamp) and are uncorrected.

Either devices used in the spectral measurements are: (1) Infrared spectroscopy of type FT-IR spectrophotometer (Shimadzu), where KBr tablet used as a reference for those measurements. (2) Nuclear magnetic resonance spectroscopy of the proton and carbon-type Biospin Auance III and 400 MHz (Germany) 600 MHz using (DMSO- d_{6}) as solvent and TMS as a reference.

Either thin layer chromatography (TLC) was performed on Alumina plates covered with silica gel layer and the spots were developed with iodine vapour. Elemental analyses (CHN) were carried out by using Vario Elemental Anlayzer 3000 (Shimadzu, Japan).

Synthesis of compound 3-acetyl coumarin ${ }^{24}$ (7): Added $(12.21 \mathrm{~g} / 0.1 \mathrm{~mol})$ of salicyldehyde to $(13.0 \mathrm{~g} / 0.1 \mathrm{~mol})$ of ethyl acetoacetate, then put the mixture in a beaker capacity (100 $\mathrm{mL})$ containing $(10 \mathrm{~mL})$ ethanol absolute and then was added (5) drops from catalyst (piperidine), the mixture was rapid stirred for 0.5 h at $5-10{ }^{\circ} \mathrm{C}$. The yellow solid separated was filtered off subsequently washed with ethanol, dried and recrystallized from ethanol to give 3-acetyl coumarin as yellow crystals. Yield: $15.7 \mathrm{~g}(83 \%)$, m.p. $=120-122^{\circ} \mathrm{C}$ (sawn 119$\left.121^{\circ} \mathrm{C}\right), \mathrm{R}_{\mathrm{f}}=0.42$.

Preparation of a series of compounds 3,4-dihydro(4-aryl-6-coumarin)pyrimidin-2-one ${ }^{23}(8-13)$: A solution of 3acetylcoumarin (5 mmol) in ethanol absolute $(20 \mathrm{~mL})$ contains $\mathrm{AlCl}_{3}(10 \mathrm{~mol} \%)$ was refluxed with the appropriate substituted benzaldehyde (5 mmol) and urea (4 mmol) for about 8-12 h . The progress of reaction was monitored by TLC. After the completion of reaction, the reaction mixture was allowed to reach ambient temperature and then the precipitate formed was filtered, washed with water, dried and recrystallized from ethanol to get pure powder.

Synthesis of 3,4-dihydro-4-(4-hydroxyphenyl)-6-(2-oxo$\mathbf{2 H}$-chromen-3-yl)pyrimidin-2(1H)-one (8): The compound 8 was prepared according to general method where taking (0.56 $\mathrm{g}, 3 \mathrm{mmol}$) of compound 7 with ($0.36 \mathrm{~g}, 3 \mathrm{mmol}$) of 4-hydroxybenzadehyde and $(0.24 \mathrm{~g}, 4 \mathrm{mmol})$ of urea. After reflux the mix for 10 h , the compound was obtained $\mathbf{8}$ as brown precipitate,
after recrystallization. Yield: $0.65 \mathrm{~g}(64 \%)$, m.p. $=193-195^{\circ} \mathrm{C}, \quad 101$ $\mathrm{R}_{\mathrm{f}}=0.66$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ (334.33): C, 68.26; 102 H, 4.22; N, 8.38. Found (\%): C, 67.96; H, 4.12; N, 8.11. 103

Synthesis of 3,4-dihydro-4-(4-methoxyphenyl)-6-(2- 104 oxo-2H-chromen-3-yl)pyrimidin-2(1H)-one (9): The 105 compound 9 was prepared according to general method where 106 taking ($0.56 \mathrm{~g}, 3 \mathrm{mmol}$) of compound 7 with ($0.4 \mathrm{~g}, 3 \mathrm{mmol}$) 107 of 4-methoxybenzadehyde and $(0.24 \mathrm{~g}, 4 \mathrm{mmol})$ of urea. After 108 reflux the mix for 8.5 h . The compound was obtained com- 109 pound $\mathbf{9}$ as reddish brown precipitate, after recrystallization. 110 Yield: $0.62 \mathrm{~g}(59 \%), \mathrm{m} . \mathrm{p} .=117-119^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.64$. Anal. 111 calcd. (\%) for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}(348.35)$: C, $68.96 ; \mathrm{H}, 4.63 ; \mathrm{N}, 8.04$. 112 Found (\%): C, 68.72; H, 4.48; N, 7.85.

Synthesis of 3,4-dihydro-4-(4-chlorophenyl)-6-(2-oxo$\mathbf{2 H}$-chromen-3-yl)pyrimidin-2(1H)-one (10): The compound 10 was prepared according to general method where taking ($0.56 \mathrm{~g}, 3 \mathrm{mmol}$) of compound 7 with $(0.42 \mathrm{~g}, 3 \mathrm{mmol})$ of 4chlorobenzadehyde and ($0.24 \mathrm{~g}, 4 \mathrm{mmol}$) of urea. After reflux in the mixture for 11 h , the compound was obtained compound 10 as brown precipitate, after recrystallization. Yield: 0.74 g (69 \%), m.p. $=241-243{ }^{\circ} \mathrm{C}, \mathrm{R}_{f}=0.56$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}(352.77)$: C, 64.69; H, 3.71; N, 7.94. Found (\%): C, 64.41; H, 3.56; N, 7.73.

Synthesis of 3,4-dihydro-4-(2,4-dichlorophenyl)-6-(2-oxo-2H-chromen-3-yl)pyrimidin-2(1H)-one (11): The compound $\mathbf{1 1}$ was prepared according to general method where taking ($0.56 \mathrm{~g}, 3 \mathrm{mmol}$) of compound 7 with $(0.52 \mathrm{~g}, 3 \mathrm{mmol})$ of 2,4-dichlorobenzadehyde and ($0.24 \mathrm{~g}, 4 \mathrm{mmol}$) of urea. After reflux the mix for 9 h , the compound was obtained compound 11 as white precipitate, after recrystallization. Yield: 0.68 g (58 \%), m.p. $=263-265{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.62$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}_{2}$ (387.22): C, 58.93; H, 3.12; N, 7.23. Found (\%): C, 58.72; H, 2.94; N, 7.07.

Synthesis of 3,4-dihydro-4-(4-bromophenyl)-6-(2-oxo$\mathbf{2 H}$-chromen-3-yl)pyrimidin-2(1H)-one (12): The compound 12 was prepared according to general method where taking $(0.56 \mathrm{~g}, 3 \mathrm{mmol})$ of compound 7 with ($0.55 \mathrm{~g}, 3 \mathrm{mmol}$) of 4bromobenzadehyde and ($0.24 \mathrm{~g}, 4 \mathrm{mmol}$) of urea. After reflux the mix for 12 h . Was obtained compound $\mathbf{1 2}$ as brown precipitate, after recrystallization. Yield: $0.72 \mathrm{~g}(60 \%)$, m.p. $=237-$ $239^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.45$. Anal. calcd. (\%) for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}(397.22)$: C, $57.45 ;$ H, $3.30 ;$ N, 7.05. Found (\%): C, 57.32; H, 3.14; N, 142 6.84 .

Synthesis of3,4-dihydro-4-(4-bromophenyl)-6-(2-oxo2 H -chromen-3-yl)pyrimidin-2(1H)-one (13): The compound 13 was prepared according to general method where taking $(0.56 \mathrm{~g}, 3 \mathrm{mmol})$ of compound 7 with $(0.44 \mathrm{~g}, 3 \mathrm{mmol})$ of 4bromobenzadehyde and ($0.24 \mathrm{~g}, 4 \mathrm{mmol}$) of urea. After reflux the mix for 9 h . Was obtained compound $\mathbf{1 3}$ as greenish yellow precipitate, after recrystallization. Yield: $0.67 \mathrm{~g}(62 \%)$, m.p. $=209-211{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.54$. Anal. calcd. (\%) for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$ (361.39): C, 69.79; H, 5.30; N, 11.63. Found (\%): C, 69.58; H, 5.16; N, 11.47.

RESULTS AND DISCUSSION

The synthetic strategies adopted in the synthesis of the intermediate and target compounds are depicted in the Scheme- 155 I. The base compound 3-acetyl coumarin 7 was prepared from 156

Scheme-I: Synthetic pathway for the compounds 7-13 and their structures

(7)

(8-13)

$$
\begin{aligned}
\mathrm{R}= & \mathbf{8}: 4-\mathrm{OH}, \mathbf{9}: 4-\mathrm{OMe}, \mathbf{1 0} ; 4-\mathrm{Cl}, \mathbf{1 1} ; 2,4-(\mathrm{Cl})_{2}, \\
& \mathbf{1 2} ; 4-\mathrm{Br}, \mathbf{1 3} ; 4-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned}
$$

The mechanism proposed for this reaction includes two steps ${ }^{26}$: The first aldol condensation between benzaldeyde and methyl group to form a stabilized carbenium ion. A second 170 step is the nucleophilic addition of urea gives the intermediate, which quickly dehydrates to give the desired product (SchemeII).

The melting point was uncorrected which determined by 174 open capillary tube and was listed in the Table-1 as well as other Physical properties. The synthesized compounds were characterized by their elemental analysis, IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR. The IR spectra of the compounds $\mathbf{8 - 1 3}$ showed characteristic absorption bands at $3440-3172 \mathrm{~cm}^{-1}(\mathrm{OH} ; \mathrm{NH})$ stretching, 1751-1712 cm^{-1} due to (lactone $\mathrm{C}=\mathrm{O}$) and1697-1643 cm^{-1} attributed to the (amid $\mathrm{C}=\mathrm{O}$) stretching vibration. The absorption band seen at a $1596-1565 \mathrm{~cm}^{-1}$ could be attributed to the $(\mathrm{C}=\mathrm{C})$ stretching and other absorption bands was listed in Table-2. The ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $\mathbf{8 - 1 3}$ showed singlet in the range $11.18-9.81 \mathrm{ppm}$, which is characteristic for N - H and singlet in the range $9.01-8.22 \mathrm{ppm}$ due to $\mathrm{H}-4$ for coumarin, as well as aromatic protons which is showed at range 187 7.98-7.00 ppm and other singles were listed in the Table-3. The ${ }^{13} \mathrm{C}$ NMR spectra of the compounds $\mathbf{8 - 1 3}$ showed singlet

TABLE-1

PHYSICO-CHEMICAL DATA OF THE COMPOUNDS 8-13

Comp. No.	R	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)$	Colour	R_{f}
$\mathbf{8}$	$\mathrm{OH}-4$	$193-195$	64	Brown powder	0.66
$\mathbf{9}$	$\mathrm{OMe}-4$	$217-219$	59	Reddish brown	0.70
$\mathbf{1 0}$	$4-\mathrm{Cl}$	$241-243$	69	Brown powder	0.56
$\mathbf{1 1}$	$2,4-\mathrm{Di}(\mathrm{Cl})$	$263-265$	58	White powder	0.62
$\mathbf{1 2}$	$4-\mathrm{Br}$	$237-239$	60	Brown powder	0.45
$\mathbf{1 3}$	$4-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	$209-211$	62	Powder yellow	0.52

$[79]=\mathrm{R}=4-\mathrm{OH},[80]=\mathrm{R}=4-\mathrm{OMe},[81]=\mathrm{R}=4-\mathrm{Cl},[82]=\mathrm{R}=2,4-(\mathrm{Cl})_{2},[83]=\mathrm{R}=4-\mathrm{Br},[84]=\mathrm{R}=4-\mathrm{N}(\mathrm{CH} 3)_{2}$

Scheme-II

TABLE-2 FT-IR SPECTRA DATA OF THE COMPOUNDS 8-13						
Comp N	$\mathrm{KBr}, \mathrm{v}_{\text {max }}, \mathrm{cm}^{-1}$					
p.	N-H	C-H aromatic	$\mathrm{C}=\mathrm{O}$ lactone	$\mathrm{C}=\mathrm{O}$ amide	C=C Olfe.	Other
8	3386	3070	1725	1697	1565	OH 3440
9	3326	3039	1720	1676	1573	O-CH3 1056
10	3354	3018	1743	1687	1567	C-Cl 726
11	3332	3008	1751	1650	1589	C-Cl 640, 684
12	3178	3024	1720	1650	1596	C-Br 663
13	3201	3070	1712	1643	1593	-

TABLE-3
${ }^{1}$ H NMR SPECTRA DATA OF THE COMPOUNDS 8-13

Comp. No.	${ }^{1} \mathrm{H}$ NMR (ppm)					
	H-4 coumarin	H-5' pyrimidine	Ar-H	N-H (2H)d	H-4' pyrimidine	Other
8	8.79	8.07	7.98-7.16	6.86	6.74	OH 5.27
9	8.67	7.97	7.80-7.01	6.90	6.11	$\mathrm{O}-\mathrm{CH}_{3} 3.87$
10	8.72	8.52	7.38-7.23	6.81	5.83	-
11	8.79	8.75	7.65.7.17	6.96	5.93	-
12	8.22	8.19	8.08-7.67	6.44	5.58	-
13	9.01	8.27	7.71-7.00	96.6	5.93	$\mathrm{N}-\left(\mathrm{CH}_{3}\right)_{2} 3.22$

TABLE-4 ${ }^{13}$ C NMR SPECTRA DATA OF THE COMPOUNDS 8-13									
Comp. No.	$\begin{gathered} \mathrm{C}=\mathrm{O} \\ \text { lactone } \end{gathered}$	$\mathrm{C}=\mathrm{O}$ amide	$\begin{gathered} \text { C4"-arom. } \\ \text { phenyl } \end{gathered}$	C8a coum.	C1"-arom. phenyl	C-arom.	C5'-pyri.	C4'-pyri.	Other
8	167.75	158.12	158.93	157.67	154.92	134.6-116.6	116.33	64.95	-
9	165.45	157.56	157.52	160.80	139.26	133.3-118.2	112.58	61.15	OMe 60.42
10	162.43	160.02	137.63	154.34	149.18	134.5-116.6	112.86	81.22	-
11	164.58	156.71	150.12	150.90	150.82	139.6-119.7	116.29	85.44	-
12	162.24	157.85	142.70	156.62	145.97	132.9-118.8	115.20	56.70	-
13	162.05	156.88	150.62	153.25	146.02	137.6-128.3	108.4	62.05	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} 40.05$

190 in the range $167.75-162.05 \mathrm{ppm}$ which is characteristic of 191 (lactone $\mathrm{C}=\mathrm{O}$) and singlet in the range $160.02-156.71 \mathrm{ppm}$ attributed to (amid $\mathrm{C}=\mathrm{O}$), as well as aromatic atoms carbon which is showed at range $139.6-116.06 \mathrm{ppm}$ and other singles were listed in the Table-4. Either elemental analysis (C-H-N) was listed in the Table-5.

196

TABLE-5
C-H-N SPECTRA DATA OF THE COMPOUNDS 8-13

Comp. No.	Elemental analysis (\%): Calcd. (Found)		
	C	H	N
$\mathbf{8}$	$68.26(67.96)$	$4.22(4.12)$	$8.38(8.11)$
$\mathbf{9}$	$68.96(68.72)$	$4.63(4.48)$	$8.04(7.85)$
$\mathbf{1 0}$	$64.69(64.41)$	$3.71(3.56)$	$7.94(7.73)$
$\mathbf{1 1}$	$58.93(58.72)$	$3.12(2.94)$	$7.23(7.07)$
$\mathbf{1 2}$	$57.45(57.32)$	$3.30(3.14)$	$7.05(6.84)$
$\mathbf{1 3}$	$69.79(69.58)$	$5.30(5.16)$	$11.63(11.47)$

ACKNOWLEDGEMENTS

(\%) Calcd (
-
I am extremely thankful to Prof. Dr. Najim A. Al-Masoudi for providing all facilities and conducting spectral measurements and their interpretation and encouragement for successful completion of this work.

REFERENCES

1. E.A. Gunnewegh, A.J. Hoefnagel, R.S. Downing and H. van Bekkum, Recl. Trav. Chim. Pays Bas, 115, 226 (1996).
2. W.-C. Sun, K.R. Gee and R.P. Haugland, Bioorg. Med. Chem. Lett., 8, 3107 (1998).
3. J. Oyamada, C. Jia, Y. Fujiwara and T. Kitamura, Med.Chem. Lett., 14, 380 (2002).
4. R.D.H. Murray, J. Medez and S.A. Brown, The Natural Coumarins: Occurrence, Chemistry and Biochemistry, Wiley, New York, p. 68 (1982).
5. F. Hueso-Ureña, N.A. Illán-Cabeza, M.N. Moreno-Carretero, J.M. Martínez-Martos and M.J. Ramírez-Expósito, J. Inorg. Biochem., 94, 326 (2003).
6. H.S. Basavaraja, K.V. Jayadevaiah and M.M. Hussain, J. Pharm. Sci. Res., 12, 5 (2010).
7. R. Patel, K. Desai and J. Chikhalia, Ind. Chem. Soc., 80, 138 (2003).
8. K. Desai, R. Patel and K. Chikhalia, J. Ind. Chem., 45, 773(2006).
9. A.E.-G.E. Amr, N.M. Sabry and M.M. Abdulla, Monatsh. Chem., 138, 699 (2007).
10. N. Fujiwara, T. Nakajima, Y. Ueda, H. Fujita and H. Kawakami, Bioorg. Med. Chem., 16, 9804 (2008).
11. L. Ballell, R.A. Field, G.A.C. Chung and R.J. Young, Bioorg. Med. Chem. Lett., 17, 1736 (2007).
12. E. Wagner, K. Al-Kadasi, M. Zimecki and W. Sawka-Dobrowolska, Eur. J. Med. Chem., 43, 2498 (2008).
13. K. Gorlitzer, S. Herbig and R.D. Walter, J. Pharm. Res., 52, 670 (1997).
14. I.V. Ukrainets, I.A. Tugaibei, N.L. Bereznyakova, V.N. Kravchenko and A.V. Turov, Chem. Heterocycl. Compd., 44, 565 (2008).
15. S.Q. Wang, L. Fang, X.J. Liu and K. Zhao, Chin. Chem. Lett., 15, 885 (2004).
16. C.O. Kappe, Tetrahedron, 49, 6937 (1993).
17. Wamhoff, Dzenis and K. Hirota, J. Adv. Heterocyclic Chem., 55, 129 (1992).; Z. SeferoÄŸlu, ARKIVOC, 7, 42 (2009).
18. P.G. Ellis, The Chemistry of Heterocyclic Dyes; E.C. Taylor, Editor; Wiley Interscience: Chichester; 47; pp. 1-20 (1987).
19. E. Coats, W.R. Glave and C. Hansch, J. Med. Chem., 13, 913 (1970).
20. B.H. Lee, J.H. Shin and M.K. Lim, Bull. Korean Chem. Soc., 18, 734 (1997).
21. J.L. Bernier, J.P. Henichart, V. Warin, C. Trentesaux and J.C. Jardillier, J. Med. Chem., 28, 497 (1985).
22. A.R. Katritzky and C.W. Rees, "Comprehensive Heterocyclic Chemistry", $3^{\text {th }}$ Ed., Pergamon Press: Oxford,pp. 57,(1984).
23. S. Anil and K. Sanjay, Indian J. Chem., 46B, 1690 (2007).
24. HaiderK, A.Al-chriti,MS.C.thesis,Al-Kufa university, (2013).
25. B.S. Jayashree, S. Arora and K.N. Venugopala, Asian J. Chem., 20, 1 (2008).
26. F. Sweet and J.D. Fissekis, J. Am. Chem. Soc., 95, 8741 (1973).
