Purely Quasi-Dedekind Modules
 And
 Purely Prime Modules

Tha'ar Younis Ghawi
Department of Mathematics, College of Education
University of AL-Qadisiya \IRAQ
E-mail : thaar_math83@yahoo.com

Abstract

An R-submodule N of an R-module M is called pure if $I N=N \cap I M$ for every ideal I of R. In this paper we introduce the notion of purely quasi-invertible submodule and a purely quasiDedekind module, where an R-submodule N of an R-module M is called purely quasi-invertible if, N is pure and $\operatorname{Hom}_{R}(M / N, M)=0$. And an R-module M is called purely quasi-Dedekind if, every nonzero pure submodule N of M is quasi-invertible ; that is $\operatorname{Hom}_{R}(M / N, M)=0$. Beside these, we also introduce the notion of purely prime module, where an R-module M is called purely prime module if $a n n_{R} M=a n n_{R} N$ for all nonzero pure submodule N of M. We gave many properties related with this concepts. And we studied the relationships between these concepts and several other types of modules. In this paper R is a commutative ring with unity and M is a unitary R-module .

Key Words : Purely quasi-invertible Submodules; Pure Submodules; Purely quasi-Dedekind Modules; Purely prime Modules .

0. Introduction

Let R be a ring and M be a unital R-module. If N is a submodule of M, we write $N \leq M$ and if N is an essential submodule of M then we write $N \leq_{e} M$, also if N is a direct summand of M then we write $N \leq{ }^{\oplus} M$. Recall an R-submodule N of an R-module M is called pure if $I N=N \cap I M$ for every ideal I of R [5], [10], and N is called quasi-invertible if, $\operatorname{Hom}_{R}(M / N, M)=0$ [14]. And an R-module M is called quasi-Dedekind if, each nonzero submodule of M is quasi-invertible [14] . And an R-module M is called prime module if $\operatorname{ann}_{R} M=a n n_{R} N$ for all nonzero submodule N of M [8] . Ghawi Th.Y. in [11] introduced the concepts of essentially quasi-invertible submodules and essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasiDedekind modules, where a submodule N of an R-module M is called essentially quasi-invertible if $N \leq_{e} M$ and N is quasi-invertible, and M is called essentially quasi-Dedekind if every essential submodule of M is quasi-invertible.

This paper has been organized on three sections. In section 1, we generalized the concept of quasiinvertible submodule to a purely quasi-invertible submodule, where a submodule N of a module M is called purely quasi-invertible if N is a pure and quasi-invertible submodule. We give some basic properties of this class of submodules.

In section 2, we introduce the concept of a purely quasi-Dedekind module as a generalization to concept a quasi-Dedekind module, where an R-module M is called purely quasi-Dedekind if, every nonzero pure submodule of M is quasi-invertible. We prove that if M a purely quasi-Dedekind module with M / K is projective for all pure submodule K of M then M / N is a purely quasiDedekind module, for all $N \leq M$. Also, we show by an example a direct sum of purely quasiDedekind modules need not be a purely quasi-Dedekind module (see Ex 2.14). On the other hand we give a condition under which the direct sum of purely quasi-Dedekind modules is a gain purely quasi-Dedekind (see Prop 2.15) .

Finally, in section 3, we introduce and study the concept purely prime module as a generalization of prime module, where an R-module M is called a purely prime module if $a n n_{R} M=a n n_{R} N$ for all nonzero pure submodule N of M. We see that every prime module is a purely prime module, but the converse is not true. Also we give some equivalent formulas and results of this concept .

1. Purely Quasi-Invertible Submodules

Firstly, we recall that an R-submodule N of an R-module M is pure if, $I N=N \cap I M$ for every ideal I of R [5], [10] . Mijbass A.S. in [14] introduced the following concept, an R-submodule N of an R-module M is called quasi-invertible if, $\operatorname{Hom}_{R}(M / N, M)=0$. And an ideal J of a ring R is called quasi-invertible if J is a quasi-invertible R-submodule. In this section we introduce and study a generalization of the concept a quasi-invertible submodule namely " purely quasi-invertible " .

Definition 1.1. An R-submodule N of an R-module M is called purely quasi-invertible if N is pure and $\operatorname{Hom}_{R}(M / N, M)=0$. And an ideal I of a ring R is called purely quasi-invertible if I is a purely quasi-invertible R-submodule . It is clear that every purely quasi-invertible submodule is a quasiinvertible submodule. The following example shows that the converse is false.

Example 1.2. Let R be an integral domain and let $\bar{R}=R[x, y]$ be the polynomial ring of two independent variables x and y, then \bar{R} is also an integral domain. Let $I=(x, y)$ is the ideal of \bar{R} generated by x and y, so by $[14, \operatorname{Ex} 1.3(1)$, P.6] I is quasi-invertible. But I is not pure of \bar{R}, thus I is not purely quasi-invertible; To see this: Let $R=Z, \bar{R}=Z[x, y]$, let $I=(x, y)=\left\{x f_{1}+y f_{2}: f_{1}, f_{2} \in \bar{R}\right\}$, thus by [14, Ex 1.3(1), P.6] I is quasi-invertible. Now, Let $J=\{f \in \bar{R}: f(x, y)=a \quad, a \in 2 Z\}$ then $J=\left\{a x f_{1}+a y f_{2}: f_{1}, f_{2} \in \bar{R}\right\} \neq\{0\}=I \cap J \bar{R}$; that is I not pure, hence I is not purely quasi-invertible .

Remarks and Examples 1.3.

1) In any nonzero module $M .0$ is not purely quasi-invertible, but M is a purely quasi-invertible submodule.
2) If N is a proper direct summand of an R-module M then N is pure by [21], but not quasiinvertible, since there exists $0 \neq K \leq M$ such that $M=K \oplus N$ and $\operatorname{Hom}_{R}(M / N, M)=\operatorname{Hom}_{R}(K \oplus N / N, K \oplus N)=\operatorname{Hom}_{R}(K, K \oplus N) \neq 0$.

Recall that an R-module M is called semisimple if, every submodule of M is a direct summand of M [12, P.189] .
3) If M is a semisimple module, then M is the only purely quasi-invertible submodule of M; since every proper submodule of M is direct summand; that is pure not quasi-invertible (see Rem.and.Ex 1.3(2)) .
4) Let $M=Z_{4}$ as Z-module, $N=(\overline{2})$ is not a purely quasi-invertible submodule of Z_{4} as Z-module. In fact N is not quasi-invertible, since $\operatorname{Hom}_{Z}\left(Z_{4} /(\overline{2}), Z_{4}\right) \cong Z_{2} \neq 0$. Also, N is not pure, since $\overline{2}=\overline{2} \cdot \overline{1} \in(\overline{2}) \cap 2\left(Z_{2}\right)$ but $\overline{2} \notin 2(\overline{2})$.
5) If N is a purely quasi-invertible R-submodule of an R-module M, then $a n n_{R} M=a n n_{R} N$.

Proof. Follows by [14, Prop 1.4, P.7] .
However, the converse of (Rem.and.Ex 1.3(5)) is not true as the following example shows: Consider Z-module $Z \oplus Z_{4}$, let $N=2 Z \oplus Z_{4} \leq Z \oplus Z_{4}$, then ann $_{Z}\left(Z \oplus Z_{4}\right)=a n n_{Z}\left(2 Z \oplus Z_{2}\right)=0$ but $N=2 Z \oplus Z_{4}$ is not purely quasi-invertible of $Z \oplus Z_{4}$ as Z-module. In fact N is not pure, since $(2, \overline{2})=2(1, \overline{1}) \in\left(2 Z \oplus Z_{4}\right) \cap 2\left(Z \oplus Z_{4}\right)$ but $(2, \overline{2}) \notin 2\left(2 Z \oplus Z_{4}\right)$.
6) Let I be an ideal of a ring R. If I is purely quasi-invertible then $\operatorname{ann}_{R}(I)=0$.

Proof. Obvious .
The converse of (Rem.and.Ex 1.3(6)) is not true in general, consider the following example:
Let $R=Z$, let $I=2 Z$ then $\operatorname{ann}_{Z}(I)=a n n_{Z}(2 Z)=0$, but I is not pure of Z, since $J=4 Z$ be an ideal of Z and $J=(4 Z)(2 Z)=8 Z \neq 4 Z=(2 Z) \cap(4 Z)=I \cap J Z$, so it is not purely quasi-invertible ideal of Z.
7) If $M=M_{1} \oplus M_{2}$ is an R-module and let K be a purely quasi-invertible in M_{i} for some ${ }_{i=1,2}$, then it is not necessarily that K is a purely quasi-invertible submodule of M;
For example: In the Z-module $Z \oplus Z_{2}, K=Z_{2}$ is a purely quasi-invertible submodule of Z_{2} as Z-module, but $Z_{2} \cong(0) \oplus Z_{2}$ which is not a purely quasi-invertible submodule of $Z \oplus Z_{2}$ as Z-module, since $\operatorname{Hom}_{Z}\left(Z \oplus Z_{2} /(0) \oplus Z_{2}, Z \oplus Z_{2}\right)=\operatorname{Hom}_{Z}\left(Z, Z \oplus Z_{2}\right) \neq 0$; that is $(0) \oplus Z_{2}$ not quasi-invertible.

Remark 1.4. We do not whether the intersection of purely quasi-invertible submodules is purely quasi-invertible.

Recall that an R-module M has the pure intersection property (briefly PIP) if, the intersection of any two pure submodules is again pure [3, def 2.1, P.33].

Now we can introduce the following result .
Proposition 1.5. Let M be an R-module has $P I P$. If N_{1}, N_{2} are purely quasi-invertible submodules of M then $N_{1} \cap N_{2}$ is also.

Proof. Since M has PIP then $N_{1} \cap N_{2}$ is pure in M. But it is easy to see that $\operatorname{Hom}\left(M / N_{1} \cap N_{2}, M\right) \subseteq \operatorname{Hom}\left(M / N_{1}, M\right)+\operatorname{Hom}\left(M / N_{2}, M\right)$. Hence $\operatorname{Hom}\left(M / N_{1} \cap N_{2}, M\right)=0$ and so that $N_{1} \cap N_{2}$ is a purely quasi- invertible submodule of M .

Recall that an R-module M is called multiplication if, for each submodule N of $M, N=I M$ for some ideal I of R. Equivalently, M is multiplication if, for each submodule N of M, $N=[N: M] . M$, where $[N: M]=\{r \in R: r M \subseteq N\}[19]$.

Corollary 1.6. Let M be a multiplication R-module. If N_{l}, N_{2} are purely quasi-invertible submodules of M then $N_{1} \cap N_{2}$ is also .

Proof. Follows by [3, Prop 2.3, p.33] and (Prop 1.5).
However, the following results (1.5), (1.6) gives necessary conditions for make (Rem 1.4) is true .
Remark 1.7. Let M be an R-module and let N be a purely quasi-invertible submodule of M. If $K \leq M$ such that $K \cong N$ then it is not necessarily that K is a purely quasi-invertible submodule of M. We can give the following example show that .

Example 1.8. Let $M=Z$ as Z-module, let $N=Z$ be a submodule of M, then N is a purely quasiinvertible submodule of M, but $K=2 Z \cong Z=N$ is not a purely quasi-quasi-invertible submodule of M. In the fact $K=2 Z$ is not pure in M.

Remark 1.9. Let M_{1}, M_{2} be R-modules and let $f: M_{1} \longrightarrow M_{2}$ be R-homomorphism . If N is a purely quasi-invertible submodule of M_{I} then not necessary that the image of N is a purely quasi-invertible submodule of M_{2}. For example : Consider Z-modules Z_{4}, Z_{6}. Let $f: Z_{6} \longrightarrow Z_{4}$ be Z-homomorphism define by $f(\bar{x})=2 \bar{x}$ for all $\bar{x} \in Z_{6}$. Let $N=Z_{6}$, it is well known that N is a purely quasi-invertible submodule of Z_{6} as Z-module, but $f(N)=f\left(Z_{6}\right)=\{\overline{0}, \overline{2}\}=(\overline{2})$ is not purely quasi-invertible submodule of Z_{4} as Z-module (see Rem.and.Ex 1.3(4)).

Recall that a nonzero R-module M is called a rational extension of the R-submodule N of M if, for all $m_{1}, m_{2} \in M, m_{2} \neq 0$, there exists an element $r \in R$ such that $r m_{1} \in N$ and $r m_{2} \neq 0$ [20]. And recall that an R-module M is regular if for all $a \in M$ and for all $r \in R$, there exists $x \in R$ such that $r x r a=r a$. Equivalently, every submodule of M is pure [7] .

Proposition 1.10. Let M be a module over regular ring R and let $N \leq M$. If M is a rational extension of N then N is a purely quasi-invertible submodule of M.

Proof. Since M is a rational extension of N then by $[14, \operatorname{Prop} 3.3, \operatorname{P.14]} N$ is a quasi-invertible submodule of M. On the other hand, since R is a regular ring then M is a regular R-module; that is every submodule of M is pure, thus N is a purely quasi-invertible submodule of M.

Recall that an R-submodule N of an R-module M is called small (briefly $N \ll M$) if, for all $K \leq M$ with $N+K=M$ implies $K=M$ [12, P.106]. And recall that an R-submodule N of R module M is called $S Q I$-submodule if, for each $f \in \operatorname{Hom}_{R}(M / N, M)$ then $f\left(\frac{M}{N}\right)$ is a small in M [17, p.44].

Remark 1.11. It is clear that every quasi-invertible submodule is $S Q I$-submodule, hence every purely quasi-invertible submodule is $S Q I$-submodule. But the converse is not true in general, the following example shows .

Example 1.12. Let $M=Z_{4}$ as Z-module and let $N=(\overline{2}) \leq M$. Then N is $S Q I$-submodule of Z_{4}, but it is known that N is not a purely quasi-invertible submodule of Z_{4} (See Rem.and.Ex 1.3(4)).

We end this section by the following theorem .
Theorem 1.13. Let M be a faithful multiplication over integral domain R. If N is a pure submodule of M then [$N: M$] is a purely quasi-invertible ideal of R.

Proof. Assume that N is a pure submodule of M. Since M be a faithful multiplication R-module, so by [4, Coro 1.2, P.65] [$N: M$] is a pure ideal of R. But R is an integral domain, hence by [14, Ex 1.3(1), P.6] every nonzero ideal of R is quasi-invertible, thus [$N: M$] is a quasi-invertible ideal of R. Hence [$N: M$] is a purely quasi-invertible ideal of R.

2. Purely Quasi-Dedekind Modules

Recall that an R-module M is called quasi-Dedekind if, every nonzero submodule of M is quasiinvertible; that is $\operatorname{Hom}_{R}(M / N, M)=0$ for all nonzero submodule N of M [14, P.24]. In this section we give generalization of the concept a quasi-Dedekind module namely " purely quasi-Dedekind module ". We list some basic properties of purely quasi-Dedekind modules. Also we give a characterization of this concept. We study the relationships between a purely quasi-Dedekind modules with other related modules .We begin with the following definition :

Definition 2.1. An R-module M is said to be purely quasi-Dedekind if, every proper nonzero pure submodule of M is quasi-invertible. And a ring R is called purely quasi-Dedekind if R is a purely quasi-Dedekind R-module .

It is clear that every quasi-Dedekind R-module is a purely quasi-Dedekind R-module . But the converse may note be, as the following example shows :

Example 2.2. Consider Z-module Z_{4}, it is clear that Z_{4} is purely quasi-Dedekind, since Z_{4} as Z module has no proper pure submodule. But it is not quasi-Dedekind, since $(\overline{2}) \leq Z_{4}$ and $\operatorname{Hom}_{Z}\left(Z_{4} /(\overline{2}), Z_{4}\right) \cong Z_{2} \neq 0$.

Remarks and Examples 2.3.

1) Every simple R-module is a purely quasi-Dedekind R-module .
2) Every nonzero semisimple and (not simple) module is not a purely quasi-Dedekind module. In particular Z_{6} as Z-module is semisimple and (not simple) but it is not purely quasi-Dedekind .
3) Every integral domain R is a quasi-Dedekind R-module [14, Ex 1.4(1), P.24], so it is a purely quasi-Dedekind R-module. But the converse need not be in general; For example: Let $M=Z_{4}$ as Z_{4}-module, then Z_{4} is purely quasi-Dedekind, but Z_{4} is not an integral domain .
4) Z as Z-module is purely quasi-Dedekind. $0, Z$ are the only pure submodules of Z.
5) Let M be a regular R-module. Then M is purely quasi-Dedekind if and only if M is quasiDedekind
Proof. Clear .
6) Let M be a module over regular ring R. Then M is purely quasi-Dedekind if and only if M is quasi-Dedekind.
Proof. Follows by (Rem.and.Ex 2.3(5)) and since every module over a regular ring is regular .
7) If M is a purely quasi-Dedekind R-module then $a n n_{R} N=a n n_{R} M$ for all nonzero pure submodule N of M.
Proof. Follows by (Rem.and.Ex 1.3(5)) .

Proposition 2.4. Let M be an R-module with $\bar{R}=R / J$, where J is an ideal of R such that $J \subseteq a n n_{R} M . M$ is a purely quasi-Dedekind R-module if and only if M is a purely quasi-Dedekind \bar{R}-module .

Proof. We have by [12, P.51] $\operatorname{Hom}_{R}(M / N, M)=\operatorname{Hom}_{\bar{R}}(M / N, M)$ for all submodule N of M. Thus the result is obtained.

Proposition 2.5. Let M be a uniform R-module with $a n n_{R} M$ is a maximal ideal of R, then M is a purely quasi-Dedekind R-module .

Proof. Follows by [11, Coro 1.2.10 and (Rem.and.Ex 1.2.2(5))] .

Theorem 2.6. Let M be an R-module. If M is purely quasi-Dedekind then for all $f \in E n d_{R}(M)$ and Kerf is a pure submodule of M implies $f=0$.

Proof. Let $f \in \operatorname{End}_{R}(M)$ and Kerf is a pure submodule of M. Suppose that $f \neq 0$, define $g: M / \operatorname{Kerf} \longrightarrow M$ by $g(m+$ Kerf $)=f(m)$ for all $m \in M$. It is easy to see that g is Welldefined and $g \neq 0($ since $f \neq 0)$. Hence $\operatorname{Hom}_{R}(M / \operatorname{Kerf}, M) \neq 0$ which is a Contradiction.

Proposition 2.7. Let M be an R-module such that for all pure submodule N of M, and for all $K \leq M$ such that $N \leq K \leq M$ implies K is pure in M. If for all $f \in \operatorname{End}_{R}(M)$, Kerf is a pure submodule of M implies $f=0$, then M is a purely quasi-Dedekind R-module .

Proof. Suppose that there exists $0 \neq N \leq M, N$ is pure such that $\operatorname{Hom}_{R}(M / N, M) \neq 0$; that is there exists R-homomorphism $f: M / N \longrightarrow M$ and $f \neq 0$. Now, consider the following diagram : $M \xrightarrow{\pi} M / N \xrightarrow{f} M$, where π is the canonical projection map. Let $\phi=f o \pi$, so $\phi \in \operatorname{End}_{R}(M)$, but $N \subseteq \operatorname{Ker} \phi$ and N is a nonzero pure submodule of M, thus $\operatorname{Ker} \phi$ is a nonzero pure submodule of M (by hypothesis). On the other hand $\phi(M)=f(M / N) \neq 0$ which is a contradiction .

We will need the following lemma for the proof next proposition .

Lemma 2.8. Let M_{1}, M_{2} be R-modules and let $f: M_{1} \longrightarrow M_{2}$ be R-epimorphism. If N is a pure submodule of M_{2} then $f^{-1}(N)$ is a pure submodule of M_{1}.

Proof. Assume that I is an ideal of R, then $I f^{-1}(N)=f^{-1}(I N)=f^{-1}\left(N \cap I M_{2}\right)=$ $f^{-1}(N) \cap f^{-1}\left(I M_{2}\right)=f^{-1}(N) \cap I f^{-1}\left(M_{2}\right)=f^{-1}(N) \cap I . M_{1}$, since f is epimorphism. Thus $f^{-1}(N)$ is a pure submodule of M_{l}.

Now, we can introduce the following proposition .
Proposition 2.9. Let M_{1}, M_{2} be R-modules such that M_{1} is isomorphic to M_{2}. Then M_{1} is purely quasi-Dedekind if and only if M_{2} is purely quasi-Dedekind.

Proof. Suppose that M_{1} is a purely quasi-Dedekind R-module. Since $M_{1} \cong M_{2}$, so there exists $f: M_{1} \longrightarrow M_{2}$ be R-isomorphism. Let N be a nonzero pure submodule of M_{2}, thus by above lemma $f^{-1}(N)$ is a nonzero pure submodule of M_{1}, so $\operatorname{Hom}_{R}\left(M_{1} / f^{-1}(N), M_{1}\right)=0$.
But $\operatorname{Hom}_{R}\left(M_{2} / N, M_{2}\right) \cong\left(\operatorname{Hom}_{R}\left(M_{1} / f^{-1}(N), M_{1}\right)\right.$, since $M_{1} \cong M_{2}$. Thus $\operatorname{Hom}_{R}\left(M_{2} / N, M_{2}\right)=0$ for all nonzero pure submodule N of M_{2}. Therefore M_{2} is purely quasi-Dedekind. The proof of the converse is similarly .

Remark 2.10. Let M be a purely quasi-Dedekind R-module and $N \leq M$ then not necessary that M / N is a purely quasi-Dedekind R-module, as the following example shows .

Example 2.11. It is know that Z as Z-module is purely quasi-Dedekind, let $N=6 Z \leq Z$. But $Z / 6 Z \cong Z_{6}$ is not a purely quasi-Dedekind as Z-module (see Rem.and.Ex 2.3(2)).

Now, we shall give a necessary condition under which the (Rem 2.10) is true .
Proposition 2.12. Let M be a purely quasi-Dedekind R-module with $\frac{M}{K}$ is projective for all pure submodule K of M, then $\frac{M}{N}$ is a purely quasi-Dedekind R-module for all $N \leq M$.

Proof. Let $N \leq M$. If $N=0$, then nothing to prove. Now, let $0 \neq N \leq M$. Suppose that $\frac{U}{N}$ is a pure submodule of $\frac{M}{N}$, then by (Lemma 2.8) $\pi^{-1}\left(\frac{U}{N}\right)$ is a pure submodule of M, where π is the canonical projection map, so U is a pure submodule of M, hence $\frac{M}{U}$ is projective by hypothesis. Assume that $\frac{M}{N}$ is not purely quasi-Dedekind, thus there exists a nonzero R-homomorphism
$f: \frac{M / N}{U / N} \longrightarrow \frac{M}{N}$. But $\operatorname{Hom}_{R}\left(\frac{M / N}{U / N}, \frac{M}{N}\right) \cong \operatorname{Hom}_{R}\left(\frac{M}{U}, \frac{M}{N}\right)$, so there exists R-homomorphism $g: \frac{M}{U} \longrightarrow M$ such that $\pi o g=f$.

$g \neq 0($ since $f \neq 0)$, thus $\operatorname{Hom}_{R}\left(\frac{M}{U}, M\right) \neq 0, U$ is pure. Hence M is not a purely quasi-Dedekind R-module which is a contradiction. Therefore $\frac{M}{N}$ must to be a purely quasi-Dedekind R-module .

Remark 2.13. Let M be an R-module and $N \leq M$. If M / N is a purely quasi-Dedekind R-module then not necessary that M is a quasi-Dedekind R-module; For example: Consider Z-module Z_{6}, $N=(\overline{2}) \leq Z_{6}$. Then $Z_{6} /(\overline{2}) \cong Z_{2}$ is a purely quasi-Dedekind as Z-module, but Z_{6} is not a purely quasi-Dedekind as Z-module (see Rem.and.Ex 2.3 (1), (2)) .

The following example shows the direct sum of purely quasi-Dedekind modules is not necessary that a purely quasi-Dedekind module .

Example 2.14. Each of Z_{2}, Z_{3} as Z-module is purely quasi-Dedekind (see Rem.and.Ex 2.3(1)), but $Z_{2} \oplus Z_{3} \cong Z_{6}$ is not a purely quasi-Dedekind as Z-module .

Now, we gives a condition under which the direct sum of purely quasi-Dedekind modules is also purely quasi-Dedekind in the next proposition.

Proposition 2.15. Let M and N be a purely quasi-Dedekind R-modules with $a n n_{R} M+a n n_{R} N=R$ then $M \oplus N$ is a purely quasi-Dedekind R-module .

Proof. Assume that K is a pure submodule of $M \oplus N$. And since $a n n_{R} M+a n n_{R} N=R$ then by same way of the proof of [1, Prop 4.2, Ch.1] $K=K_{1} \oplus K_{2}$, where $K_{1} \leq M$ and $K_{2} \leq N$.But $K_{1} \leq^{\oplus} K$ and $K_{2} \leq^{\oplus} K$ then by [21] K_{1}, K_{2} are pure in K, but K is pure in $M \oplus N$ by hypothesis, then K_{l} is pure in M and K_{2} is pure in N; to show this : Assume that there exists be an ideal I of R such that $I K_{1} \neq K_{1} \cap I M$ and $\left(I K_{2} \neq K_{2} \cap I N\right.$ or $\left.I K_{2}=K_{2} \cap I N\right)$ then $I K=I\left(K_{1} \oplus K_{2}\right)=I K_{1} \oplus I K_{2} \neq\left(K_{1} \cap I M\right) \oplus\left(K_{2} \cap I N\right)=\left(K_{1} \oplus K_{2}\right) \cap I(M \oplus N)=K \cap I(M \oplus N)$ which is a contradiction. So $\operatorname{Hom}_{R}\left(M / K_{1}, M\right)=0$ and $\operatorname{Hom}_{R}\left(N / K_{2}, N\right)=0$, since M and N is purely quasi-Dedekind. On the other hand we have $\operatorname{Hom}_{R}(M \oplus N / K, M \oplus N)=$ $\operatorname{Hom}_{R}\left(M \oplus N / K_{1} \oplus K_{2}, M \oplus N\right) \subseteq \operatorname{Hom}_{R}\left(M / K_{1}, M\right) \cap \operatorname{Hom}_{R}\left(N / K_{2}, N\right)=0$. Hence $M \oplus N$ is a purely quasi-Dedekind R-module.

Recall that an R-module M is scalar if, for all $f \in \operatorname{End}_{R}(M)$ then there exists $r \in R$ such that $f(x)=r x$ for all $x \in M$ [18, P.8].

In the following proposition we shall study the endomorphism ring of purely quasi-Dedekind module.

Proposition 2.16. Let M be a scalar R-module with $\operatorname{ann}_{R} M$ is a prime ideal of R, then $E n d_{R}(M)$ is a purely quasi-Dedekind ring .

Proof. Since M be a scalar R-module, then by [15, Lemma 6.2, P.80] $\operatorname{End}_{R}(M) \cong R / a n n_{R} M$, But $a n n_{R} M$ is a prime, so $E n d_{R}(M)$ is an integral domain. Hence by (Rem.and.Ex 2.3(3)) $E n d_{R}(M)$ is a purely quasi-Dedekind ring .

Corollary 2.17. If M is a scalar and prime R-module, then $E n d_{R}(M)$ is a purely quasi-Dedekind ring .

Proof. It is clearly, since M is prime implies $a n n_{R} M$ is a prime ideal, so the result is obtained by (Prop 2.16) .

Proposition 2.18. Let M be a scalar faithful R-module. $\operatorname{End}_{R}(M)$ is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring .

Proof. Suppose that M is a scalar R-module, so $E n d_{R}(M) \cong R / a n n_{R} M$ by [15,Lemma 6.2, P.80], but M is a faithful, thus $R / a n n_{R} M \cong R$, so $E n d_{R}(M) \cong R$. Hence we have on the result.

Corollary 2.19. Let M be a finitely generated multiplication faithful R-module $\cdot \operatorname{End}_{R}(M)$ is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring .

Proof. Since M is a finitely generated multiplication R-module, then by [16, The.3.2] M is scalar R-module; that is M is a scalar faithful R-module, thus by (Prop 2.18) the result is obtained .

Recall that an R-module M is called quasi-prime if $a n n_{R} N$ is a prime ideal of R for each $0 \neq N \leq M$ [2, def 1.2.1].

Proposition 2.20. Let M be a quasi-injective scalar and quasi-prime R-module then $E n d_{R}(N)$ is a purely quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Assume that $0 \neq N \leq M$. Since M is a quasi-injective scalar R-module, then by [18, Prop 1.1.16] N is a scalar R-module, thus $E n d_{R}(N) \cong R / a n n_{R} N$ by [15, Lemma 6.2, P.80]. But M is a quasi-prime R-module, so $a n n_{R} N$ is a prime ideal of R; that is $E n d_{R}(N) \cong R / a n n_{R} N$ is an integral domain. Hence by (Rem.and.Ex 2.3(3)) End $d_{R}(N)$ is a purely quasi-Dedekind ring .

We end this section by the following two corollaries .
Corollary 2.21. If M is an injective scalar and quasi-prime R-module then $E n d_{R}(N)$ is a purely quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Obvious .
Corollary 2.22. Let M be a quasi-injective scalar R-module and let $0 \neq N \leq M$ be a faithful R module. Then $E n d_{R}(N)$ is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring

Proof. Follows by [18, Prop 1.1.16] and (Prop 2.18).

3. Purely Prime Modules

Recall that an R-module M is called prime if, $a n n_{R} M=a n n_{R} N$ for all nonzero submodule N of M [8]. In this section we see that if M is purely quasi-Dedekind then $a n n_{R} M=a n n_{R} N$ for all nonzero pure submodule N of M (Prop 3.2). This leads us to introduce many of important statement to this concept with other concepts in this section. We start this section with the following definition :

Definition 3.1. An R-module M is said to be purely prime if, $a n n_{R} M=a n n_{R} N$ for all nonzero pure submodule N of M.

It is clear that every prime module is a purely prime module, but the converse need not be in general; for example : Z_{4} as Z-module is purely prime. In fact Z_{4} has no proper nonzero pure submodule as Z-module, but it is not prime as Z-module, since $(\overline{2}) \leq Z_{4}, a n n_{Z}(\overline{2})=2 Z \neq 4 Z=a n n_{Z}\left(Z_{4}\right)$.

Proposition 3.2. Every purely quasi-Dedekind module is a purely prime module .
Proof. Follows by (Rem.and.Ex 2.3(7)) .

Proposition 3.3. Let M be an R-module. Then M is a purely prime R-module if and only if M is a purely prime \bar{R}-module, where $\bar{R}=R / a n n_{R} M$.

Proof. \Rightarrow) Suppose that N is a nonzero pure \bar{R}-submodule of M. It is easy to see that N is a nonzero pure R-submodule of M. Let I be an ideal of \bar{R}, so it is also ideal of R, thus $I N=N \cap I M$ hence N is a pure R-submodule of M, so that $\operatorname{ann}_{R} M=a n n_{R} N$. Now, it is clear that $a n n_{\bar{R}} M \subseteq a n n_{\bar{R}} N$, beside let $r+a n n_{\bar{R}} M \in a n n_{\bar{R}} N$ then $r N=0$; that is $r \in a n n_{R} N=a n n_{R} M$, hence $r+a n n_{\bar{R}} M \in \operatorname{ann}_{\bar{R}} M$, therefore $a n n_{R} M=a n n_{R} N$.
$\Leftarrow)$ The proof is similarly .

Proposition 3.4. Let M be a uniform regular R-module. Then the following statements are equivalent:

1) M is a prime R-module .
2) M is a purely prime R-module .
3) M is a purely quasi-Dedekind R-module .
4) M is a quasi-Dedekind R-module .

Proof.

(1) $\Leftrightarrow(2):$ Clear .
(3) \Rightarrow (2): Follows by (Prop 3.2).
$(2) \Leftarrow(3)$: Suppose that M is purely prime, and since M is regular, so M is prime; that is M is prime uniform, thus by [14, The 3.11, P.37] M is quasi-Dedekind and hence M is purely quasiDedekind.
$(3) \Leftrightarrow(4)$: Follows by (Rem.and.Ex 2.3(5)) .
Corollary 3.5. Let M be a multiplication uniform regular R-module. Then
$(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \Rightarrow(7)$

1) M is a prime R-module .
2) M is a purely prime R-module .
3) M is a purely quasi-Dedekind R-module .
4) M is a quasi-Dedekind R-module .
5) $E n d_{R}(M)$ is an integral domain .
6) $E n d_{R}(M)$ is a quasi-Dedekind ring .
7) $E n d_{R}(M)$ is a purely quasi-Dedekind ring.

Proof.

$(1) \Leftrightarrow(2) \Leftrightarrow(3) \Leftrightarrow(4)$: Follows by (Prop 3.4) .
$(4) \Leftrightarrow(5)$: Follows by [11, Prop 2.1.27] .
$(5) \Leftrightarrow(6)$: Follows by [11, Rem.and.Ex 1.1.2(7)]
(6) \Rightarrow (7) : Clear .

Recall that an R-module M is monoform if for each $N \leq M$ and for each $f \in \operatorname{Hom}_{R}(N, M)$, $f \neq 0$ implies $\operatorname{Kerf}=0$ [22].

Remark 3.6. Every monoform module is a purely quasi-Dedekind module and hence it is a purely prime module.

The converse of above remark is not true in general; for example : Consider Z-module $Z \oplus Z$ then it is known that is purely prime, since it is prime. But $Z \oplus Z$ is not monoform as Z-module.

Proposition 3.7. Let M be a uniform regular ring. Then the following statements are equivalent :

1) R is a monoform ring .
2) R is an integral domain .
3) R is a quasi-Dedekind ring .
4) R is a purely quasi-Dedekind ring .
5) R is a purely prime ring .
6) R is a prime ring .

Proof.

$(1) \Leftrightarrow(2) \Leftrightarrow(3)$: Follows by [11, Coro 2.3.20] .
$(3) \Leftrightarrow(4):$ Clear .
(4) \Rightarrow (5) : Clear .
(5) \Rightarrow (4) : Assume that R is purely prime, and since R is regular, then R is prime. But R is uniform, so by [14, The 3.11, P.37] R is quasi-Dedekind, hence R is a purely quasi-Dedekind ring .
$(5) \Leftrightarrow(6):$ Clear .

Proposition 3.8. Let M be an R-module. If M is embedded in each of its nonzero pure submodule then M is a purely prime R-module .

Proof. Suppose that N is a nonzero pure submodule of M. It is known that $a n n_{R} M \subseteq a n n_{R} N$.
On the other hand, let $r \in a n n_{R} N$ then $r N=0$. But M is embedded in N (by hypothesis), so there exists a monomorphism $f: M \longrightarrow N$, thus $f(r M)=r f(M) \subseteq r N=0$ implies $r M=0$ (since f is monomorphism), so $r \in a n n_{R} M$ and $a n n_{R} M=a n n_{R} N$. Hence M is a purely prime R-module .

Corollary 3.9. Let M be a uniform regular R-module such that M is embedded in each of its nonzero pure submodule then M is a quasi-Dedekind R-module and hence it is a purely quasi-Dedekind R module.

Proof. Follows by (Prop 3.8) and (Prop 3.4) .
Recall that an R-module M is said to be weak cancellation if, for any two ideals A, B of R with $A M=B M$ implies that $A+a n n_{R} M=B+a n n_{R} M$. And recall that an R-module M is cancellation if M is weak cancellation and faithful [6] .

Mijbass A.S. in [13, P. 62 , P.63] introduce the following two results :
Theorem 3.10. Let M be an R-module and let N be a pure in M with $a n n_{R} N=a n n_{R} M$. If N is a weak cancellation R-module then M is a weak cancellation R-module .

Corollary 3.11. Let M be an R-module and let N be a pure in M with $a n n_{R} N=a n n_{R} M$. If N is a cancellation R-module then M is a cancellation R-module .

We end this section by the following two corollaries .
Corollary 3.12. Let M be a purely prime R-module and let N be a pure in M. If N is a weak cancellation R-module then M is a weak cancellation R-module .

Proof. Follows by (Th 3.10) .
Corollary 3.13. Let M be a purely prime R-module and let N be a pure in M. If N is a cancellation R-module then M is a cancellation R-module .

Proof. Follows by (Coro 3.11) .

REFERENCES

[1] Abbas M.S. ,(1991), On fully stable Modules , ph.D.Thesis, College of Science, University of Baghdad.
[2] Abdul - Razak H. M ,(1999), Quasi - Prime Modules and Quasi - Prime Submodules, M.Sc.Thesis, College of Education Ibn AL- Haitham ,University of Baghdad.
[3] AL-Bahraany B.H. ,(2000), Modules with the pure intersection property , Ph.D.Thesis, College of Science , University of Baghdad.
[4] Ali M.M. and Smith D.J. ,((2004), Pure submodules of Multiplication Modules, Contributions to Algebra and Geometry, Heldermann Verlag ,NO.1, p.61-74 .
[5] Anderson F.W., Fuller K.R. ,(1974), Rings and Categories of Modules, Springer -Verlag, Berlin , Heidelberg , Newyork, .
[6] Atiyah M .F., Macdonald I.G. ,(1969), Introduction to commutative algebra, Addison Wesley, London .
[7] Cheatham T.J. and Smith J.R. ,((1976), Regular and Semisimple Modules, parific Journal Math ,NO. 66 , p.315-323.
[8] Desale G. , Nicholson W.K., (1981), Endoprimitive rings, J. Algebra ,NO.70, p.548-560.
[9] Faith C. ,(1967), Lectures on injective Modules and quotient rings, Springer - Verlag, Berlin, Heidelberg, Newyork.
[10] Fieldhouse D.J., (1969), Pure theories, Math . Ann , NO.184, p.1-8.
[11] Ghawi Th.Y. ,(2010), Some generalizations of Quasi - Dedekind Modules, M.Sc.Thesis ,College of Education Ibn AL- Haitham ,University of Baghdad.
[12] Kasch F. ,(1982), Modules and rings, Academic press, London .
[13] Mijbass A.S.(1992), Cancellation Modules, MS.c.Thesis, College of Science, University of Baghdad.
[14] Mijbass A.S.,(1997), Quasi-Dedekind Modules, Ph.D.Thesis, College of Science, University of Baghdad.
[15] Mohamed-Ali E. A. (2006), On Ikeda - Nakayama Modules, Ph .D .Thesis, College of Education Ibn AL- Haitham, University of Baghdad .
[16] Naoum A.G. ,(1990), On the ring of endomorphisms of a finitely generated multiplication Modules, Periodica Math, Hungarica ,Vol .21(3), p. 249-255.
[17] Naoum A.G. ,Hadi I. M - A ., (2002), SQI Submodules and SQD Modules, Iraqi J.Sci , Vol.43.D, NO. 2 , P. $43-54$.
[18] Shihab B. N. ,(2004), Scalar Reflexive Modules, Ph .D.Thesis, College of Education Ibn AL-Haitham, University of Baghdad
[19] Smith P.F. , (1988), Some remarks on Multiplication Modules, Arch . Math, NO. 50, p. 223 - 235.
[20] Storrer H. H., (1972), On Goldman's primary decomposition, Lecture notes in mathematics, Vol. 246, Springer-Verlag, Berlin, Heidelberg, Newyork .
[21] Yaseen S.H. ,(1985), F - Regular Modules, M.Sc.Thesis, University of Baghdad .
[22] Zelmanowitz J. M., (1986), Representation of rings with faithful polyform Modules, Comm. In Algebra, 14 (6), p.1141-1169.

المقاسات شبهـ ديديكاندية النقية

و
 المقاسـات الأولية النقية

> ثائر يونس غاوي
> العراق \جامـعة القادستّـية
> كلية التربية ـ ـ قسم الرّياضيـات
> thaar_math83@yahoo.com: البريد الالكتروني

Abstract

(المستخلص : تالف M = تالف N لكل مقاس جزئي غيرصفري نقي N من M . لقد أعطينا العديد من الخواص الأساسية المتعلقة بهذه الكففاهيم . كذلك درسنا العلاقات بين هذه المفاهيم و أنواع عديدة أخرى من اللقاسات ـ ـ في هذا البحث الحلقة R هي أبداليـة بمحايد و M مقاسـاً أحادياً على R .

