Purely Quasi-Dedekind Modules And Purely Prime Modules

Tha'ar Younis Ghawi Department of Mathematics , College of Education University of AL-Qadisiya \ IRAQ E-mail : thaar_math83@yahoo.com

Abstract. An *R*-submodule *N* of an *R*-module *M* is called pure if $IN = N \cap IM$ for every ideal *I* of *R*. In this paper we introduce the notion of purely quasi-invertible submodule and a purely quasi-Dedekind module, where an *R*-submodule *N* of an *R*-module *M* is called purely quasi-invertible if, *N* is pure and $Hom_R(M/N, M) = 0$. And an *R*-module *M* is called purely quasi-Dedekind if, every nonzero pure submodule *N* of *M* is quasi-invertible ; that is $Hom_R(M/N, M) = 0$. Beside these, we also introduce the notion of purely prime module, where an *R*-module *M* is called purely prime module if $ann_RM = ann_RN$ for all nonzero pure submodule *N* of *M*. We gave many properties related with this concepts. And we studied the relationships between these concepts and several other types of modules. In this paper *R* is a commutative ring with unity and *M* is a unitary *R*-module.

Key Words : Purely quasi-invertible Submodules; Pure Submodules; Purely quasi-Dedekind Modules; Purely prime Modules .

0. Introduction

Let *R* be a ring and *M* be a unital *R*-module. If *N* is a submodule of *M*, we write $N \leq M$ and if *N* is an essential submodule of *M* then we write $N \leq_e M$, also if *N* is a direct summand of *M* then we write $N \leq^{\oplus} M$. Recall an *R*-submodule *N* of an *R*-module *M* is called pure if $IN = N \cap IM$ for every ideal *I* of *R* [5], [10], and *N* is called quasi-invertible if, $Hom_R(M/N, M) = 0$ [14]. And an *R*-module *M* is called quasi-Dedekind if, each nonzero submodule of *M* is quasi-invertible [14]. And an *R*-module *M* is called prime module if $ann_R M = ann_R N$ for all nonzero submodule *N* of *M* [8]. Ghawi Th.Y. in [11] introduced the concepts of essentially quasi-invertible submodules and quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-Dedekind modules. W of an *R*-module *M* is called essentially quasi-invertible if $N \leq_e M$ and *N* is quasi-invertible, and *M* is called essentially quasi-Dedekind if every essential submodule of *M* is quasi-invertible.

This paper has been organized on three sections. In section 1, we generalized the concept of quasiinvertible submodule to a purely quasi-invertible submodule, where a submodule N of a module M is called purely quasi-invertible if N is a pure and quasi-invertible submodule. We give some basic properties of this class of submodules. In section 2, we introduce the concept of a purely quasi-Dedekind module as a generalization to concept a quasi-Dedekind module, where an *R*-module *M* is called purely quasi-Dedekind if, every nonzero pure submodule of *M* is quasi-invertible. We prove that if *M* a purely quasi-Dedekind module with M/K is projective for all pure submodule *K* of *M* then M/N is a purely quasi-Dedekind module, for all $N \le M$. Also, we show by an example a direct sum of purely quasi-Dedekind modules need not be a purely quasi-Dedekind module (see Ex 2.14). On the other hand we give a condition under which the direct sum of purely quasi-Dedekind modules is a gain purely quasi-Dedekind (see Prop 2.15).

Finally, in section 3, we introduce and study the concept purely prime module as a generalization of prime module, where an *R*-module *M* is called a purely prime module if $ann_R M = ann_R N$ for all nonzero pure submodule *N* of *M*. We see that every prime module is a purely prime module, but the converse is not true. Also we give some equivalent formulas and results of this concept.

1. Purely Quasi-Invertible Submodules

Firstly, we recall that an *R*-submodule *N* of an R-module *M* is pure if, $IN = N \cap IM$ for every ideal *I* of *R* [5], [10]. Mijbass A.S. in [14] introduced the following concept, an *R*-submodule *N* of an *R*-module *M* is called quasi-invertible if, $Hom_R(M/N, M) = 0$. And an ideal *J* of a ring *R* is called quasi-invertible if *J* is a quasi-invertible *R*-submodule. In this section we introduce and study a generalization of the concept a quasi-invertible submodule namely " purely quasi-invertible ".

Definition 1.1. An *R*-submodule *N* of an *R*-module *M* is called purely quasi-invertible if *N* is pure and $Hom_R(M/N, M) = 0$. And an ideal *I* of a ring *R* is called purely quasi-invertible if *I* is a purely quasi-invertible *R*-submodule . It is clear that every purely quasi-invertible submodule is a quasi-invertible submodule . The following example shows that the converse is false .

Example 1.2. Let *R* be an integral domain and let $\overline{R} = R[x, y]$ be the polynomial ring of two independent variables *x* and *y*, then \overline{R} is also an integral domain. Let I = (x, y) is the ideal of \overline{R} generated by *x* and *y*, so by [14, Ex 1.3(1), P.6] *I* is quasi-invertible. But *I* is not pure of \overline{R} , thus *I* is not purely quasi-invertible; To see this: Let R = Z, $\overline{R} = Z[x, y]$, let $I = (x, y) = \{xf_1 + yf_2 : f_1, f_2 \in \overline{R}\}$, thus by [14, Ex 1.3(1), P.6] *I* is quasi-invertible. Now, Let $J = \{f \in \overline{R} : f(x, y) = a \ a \in 2Z\}$ then $JI = \{axf_1 + ayf_2 : f_1, f_2 \in \overline{R}\} \neq \{0\} = I \cap J\overline{R}$; that is *I* not pure, hence *I* is not purely quasi-invertible.

Remarks and Examples 1.3.

- 1) In any nonzero module M. θ is not purely quasi-invertible, but M is a purely quasi-invertible submodule .
- 2) If *N* is a proper direct summand of an *R*-module *M* then *N* is pure by [21], but not quasiinvertible, since there exists $0 \neq K \leq M$ such that $M = K \oplus N$ and $Hom_R(M/N, M) = Hom_R(K \oplus N/N, K \oplus N) = Hom_R(K, K \oplus N) \neq 0$.

Recall that an *R*-module *M* is called semisimple if, every submodule of *M* is a direct summand of M [12, P.189].

- 3) If *M* is a semisimple module, then *M* is the only purely quasi-invertible submodule of *M*; since every proper submodule of *M* is direct summand; that is pure not quasi-invertible (see Rem.and.Ex 1.3(2)).
- 4) Let $M = Z_4$ as Z-module, $N = (\overline{2})$ is not a purely quasi-invertible submodule of Z_4 as Z-module. In fact N is not quasi-invertible, since $Hom_Z(Z_4/(\overline{2}), Z_4) \cong Z_2 \neq 0$. Also, N is not pure, since $\overline{2} = \overline{2.1} \in (\overline{2}) \cap 2(Z_2)$ but $\overline{2} \notin 2(\overline{2})$.
- 5) If *N* is a purely quasi-invertible *R*-submodule of an *R*-module *M*, then $ann_R M = ann_R N$. **Proof.** Follows by [14, Prop 1.4, P.7]. \Box

However, the converse of (Rem.and.Ex 1.3(5)) is not true as the following example shows: Consider Z-module $Z \oplus Z_4$, let $N = 2Z \oplus Z_4 \le Z \oplus Z_4$, then $ann_Z (Z \oplus Z_4) = ann_Z (2Z \oplus Z_2) = 0$ but $N = 2Z \oplus Z_4$ is not purely quasi-invertible of $Z \oplus Z_4$ as Z-module. In fact N is not pure, since $(2,\overline{2}) = 2(1,\overline{1}) \in (2Z \oplus Z_4) \cap 2(Z \oplus Z_4)$ but $(2,\overline{2}) \notin 2(2Z \oplus Z_4)$.

6) Let *I* be an ideal of a ring *R*. If *I* is purely quasi-invertible then $ann_R(I) = 0$. **Proof.** Obvious. \Box

The converse of (Rem.and.Ex 1.3(6)) is not true in general, consider the following example: Let R = Z, let I = 2Z then $ann_Z(I) = ann_Z(2Z) = 0$, but I is not pure of Z, since J = 4Z be an ideal of Z and $JI = (4Z)(2Z) = 8Z \neq 4Z = (2Z) \cap (4Z) = I \cap JZ$, so it is not purely quasi-invertible ideal of Z.

7) If $M = M_1 \oplus M_2$ is an *R*-module and let *K* be a purely quasi-invertible in M_i for some i = 1, 2, then it is not necessarily that *K* is a purely quasi-invertible submodule of *M*; For example: In the *Z*-module $Z \oplus Z_2$, $K = Z_2$ is a purely quasi-invertible submodule of Z_2 as *Z*-module, but $Z_2 \cong (0) \oplus Z_2$ which is not a purely quasi-invertible submodule of $Z \oplus Z_2$ as *Z*-module, since $Hom_Z (Z \oplus Z_2/(0) \oplus Z_2, Z \oplus Z_2) = Hom_Z (Z, Z \oplus Z_2) \neq 0$; that is $(0) \oplus Z_2$ not quasi-invertible.

Remark 1.4. We do not whether the intersection of purely quasi-invertible submodules is purely quasi-invertible.

Recall that an *R*-module *M* has the pure intersection property (briefly *PIP*) if, the intersection of any two pure submodules is again pure [3, def 2.1, P.33].

Now we can introduce the following result .

Proposition 1.5. Let *M* be an *R*-module has *PIP*. If N_1, N_2 are purely quasi-invertible submodules of *M* then $N_1 \cap N_2$ is also.

Proof. Since *M* has *PIP* then $N_1 \cap N_2$ is pure in *M*. But it is easy to see that $Hom(M/N_1 \cap N_2, M) \subseteq Hom(M/N_1, M) + Hom(M/N_2, M)$. Hence $Hom(M/N_1 \cap N_2, M) = 0$ and so that $N_1 \cap N_2$ is a purely quasi-invertible submodule of M. \Box Recall that an *R*-module *M* is called multiplication if, for each submodule *N* of *M*, N = IM for some ideal *I* of *R*. Equivalently, *M* is multiplication if, for each submodule *N* of *M*, N = [N : M] M, where $[N : M] = \{r \in R : rM \subseteq N\}$ [19].

Corollary 1.6. Let *M* be a multiplication *R*-module. If N_1, N_2 are purely quasi-invertible submodules of *M* then $N_1 \cap N_2$ is also .

Proof. Follows by [3, Prop 2.3, p.33] and (Prop 1.5).

However, the following results (1.5), (1.6) gives necessary conditions for make (Rem 1.4) is true.

Remark 1.7. Let *M* be an *R*-module and let *N* be a purely quasi-invertible submodule of *M*. If $K \le M$ such that $K \cong N$ then it is not necessarily that *K* is a purely quasi-invertible submodule of *M*. We can give the following example show that .

Example 1.8. Let M = Z as Z-module, let N = Z be a submodule of M, then N is a purely quasiinvertible submodule of M, but $K = 2Z \cong Z = N$ is not a purely quasi-quasi-invertible submodule of M. In the fact K = 2Z is not pure in M.

Remark 1.9. Let M_1 , M_2 be *R*-modules and let $f : M_1 \longrightarrow M_2$ be *R*-homomorphism. If *N* is a purely quasi-invertible submodule of M_1 then not necessary that the image of *N* is a purely quasi-invertible submodule of M_2 . For example : Consider *Z*-modules Z_4, Z_6 . Let $f : Z_6 \longrightarrow Z_4$ be *Z*-homomorphism define by $f(\overline{x}) = 2\overline{x}$ for all $\overline{x} \in Z_6$. Let $N = Z_6$, it is well known that *N* is a purely quasi-invertible submodule of Z_6 as *Z*-module, but $f(N) = f(Z_6) = \{\overline{0}, \overline{2}\} = (\overline{2})$ is not purely quasi-invertible submodule of Z_4 as *Z*-module (see Rem.and.Ex 1.3(4)).

Recall that a nonzero *R*-module *M* is called a rational extension of the *R*-submodule *N* of *M* if, for all $m_1, m_2 \in M, m_2 \neq 0$, there exists an element $r \in R$ such that $rm_1 \in N$ and $rm_2 \neq 0$ [20]. And recall that an *R*-module *M* is regular if for all $a \in M$ and for all $r \in R$, there exists $x \in R$ such that rxra = ra. Equivalently, every submodule of *M* is pure [7].

Proposition 1.10. Let *M* be a module over regular ring *R* and let $N \le M$. If *M* is a rational extension of *N* then *N* is a purely quasi-invertible submodule of *M*.

Proof. Since *M* is a rational extension of *N* then by [14, Prop 3.3, P.14] *N* is a quasi-invertible submodule of *M*. On the other hand, since *R* is a regular ring then *M* is a regular *R*-module ; that is every submodule of *M* is pure, thus *N* is a purely quasi-invertible submodule of *M*. \Box

Recall that an *R*-submodule *N* of an *R*-module *M* is called small (briefly $N \ll M$) if, for all $K \leq M$ with N+K = M implies K = M [12, P.106]. And recall that an *R*-submodule *N* of *R*-module *M* is called *SQI*-submodule if, for each $f \in Hom_R(M/N, M)$ then $f(\frac{M}{N})$ is a small in *M* [17, p.44].

Remark 1.11. It is clear that every quasi-invertible submodule is *SQI*-submodule, hence every purely quasi-invertible submodule is *SQI*-submodule. But the converse is not true in general, the following example shows .

Example 1.12. Let $M = Z_4$ as Z-module and let $N = (\overline{2}) \le M$. Then N is SQI-submodule of Z_4 , but it is known that N is not a purely quasi-invertible submodule of Z_4 (See Rem.and.Ex 1.3(4)).

We end this section by the following theorem .

Theorem 1.13. Let M be a faithful multiplication over integral domain R. If N is a pure submodule of M then [N : M] is a purely quasi-invertible ideal of R.

Proof. Assume that *N* is a pure submodule of *M*. Since *M* be a faithful multiplication *R*-module, so by [4, Coro 1.2, P.65] [N : M] is a pure ideal of *R*. But *R* is an integral domain, hence by [14, Ex 1.3(1), P.6] every nonzero ideal of *R* is quasi-invertible, thus [N : M] is a quasi-invertible ideal of *R*. Hence [N : M] is a purely quasi-invertible ideal of *R*. \Box

2. Purely Quasi-Dedekind Modules

Recall that an *R*-module *M* is called quasi-Dedekind if, every nonzero submodule of *M* is quasiinvertible; that is $Hom_R(M/N, M) = 0$ for all nonzero submodule *N* of *M* [14, P.24]. In this section we give generalization of the concept a quasi-Dedekind module namely " purely quasi-Dedekind module ". We list some basic properties of purely quasi-Dedekind modules. Also we give a characterization of this concept. We study the relationships between a purely quasi-Dedekind modules with other related modules. We begin with the following definition :

Definition 2.1. An *R*-module *M* is said to be purely quasi-Dedekind if, every proper nonzero pure submodule of *M* is quasi-invertible. And a ring *R* is called purely quasi-Dedekind if *R* is a purely quasi-Dedekind *R*-module .

It is clear that every quasi-Dedekind *R*-module is a purely quasi-Dedekind *R*-module . But the converse may note be, as the following example shows :

Example 2.2. Consider Z-module Z_4 , it is clear that Z_4 is purely quasi-Dedekind, since Z_4 as Z-

module has no proper pure submodule. But it is not quasi-Dedekind, since $(\bar{2}) \le Z_4$ and $Hom_{Z}(Z_4/(\bar{2}), Z_4) \cong Z_2 \ne 0$.

Remarks and Examples 2.3.

- 1) Every simple *R*-module is a purely quasi-Dedekind *R*-module .
- 2) Every nonzero semisimple and (not simple) module is not a purely quasi-Dedekind module. In particular Z_6 as Z-module is semisimple and (not simple) but it is not purely quasi-Dedekind.
- 3) Every integral domain R is a quasi-Dedekind R-module [14, Ex 1.4(1), P.24], so it is a purely quasi-Dedekind R-module. But the converse need not be in general; For example: Let $M = Z_4$ as Z_4 -module, then Z_4 is purely quasi-Dedekind, but Z_4 is not an integral domain.
- 4) Z as Z-module is purely quasi-Dedekind . 0, Z are the only pure submodules of Z.

- 5) Let *M* be a regular *R*-module . Then *M* is purely quasi-Dedekind if and only if *M* is quasi-Dedekind .
 Proof. Clear . □
- 6) Let *M* be a module over regular ring *R*. Then *M* is purely quasi-Dedekind if and only if *M* is quasi-Dedekind .
 Proof. Follows by (Rem.and.Ex 2.3(5)) and since every module over a regular ring is regular . □
- 7) If *M* is a purely quasi-Dedekind *R*-module then $ann_R N = ann_R M$ for all nonzero pure submodule *N* of *M*. **Proof.** Follows by (Rem.and.Ex 1.3(5)). \Box

Proposition 2.4. Let *M* be an *R*-module with $\overline{R} = R/J$, where *J* is an ideal of *R* such that $J \subseteq ann_R M$. *M* is a purely quasi-Dedekind *R*-module if and only if *M* is a purely quasi-Dedekind \overline{R} -module.

Proof. We have by [12, P.51] $Hom_R(M/N, M) = Hom_{\overline{R}}(M/N, M)$ for all submodule N of M. Thus the result is obtained. \Box

Proposition 2.5. Let *M* be a uniform *R*-module with $ann_R M$ is a maximal ideal of *R*, then *M* is a purely quasi-Dedekind *R*-module.

Proof. Follows by [11, Coro 1.2.10 and (Rem.and.Ex 1.2.2(5))]. \Box

Theorem 2.6. Let *M* be an *R*-module. If *M* is purely quasi-Dedekind then for all $f \in End_R(M)$ and *Kerf* is a pure submodule of *M* implies f = 0.

Proof. Let $f \in End_R(M)$ and Kerf is a pure submodule of M. Suppose that $f \neq 0$, define $g: M/Kerf \longrightarrow M$ by g(m + Kerf) = f(m) for all $m \in M$. It is easy to see that g is Well-defined and $g \neq 0$ (since $f \neq 0$). Hence $Hom_R(M/Kerf, M) \neq 0$ which is a Contradiction. \Box

Proposition 2.7. Let *M* be an *R*-module such that for all pure submodule *N* of *M*, and for all $K \le M$ such that $N \le K \le M$ implies *K* is pure in *M*. If for all $f \in End_R(M)$, *Kerf* is a pure submodule of *M* implies f = 0, then *M* is a purely quasi-Dedekind *R*-module.

Proof. Suppose that there exists $0 \neq N \leq M$, *N* is pure such that $Hom_R(M/N, M) \neq 0$; that is there exists R-homomorphism $f: M/N \longrightarrow M$ and $f \neq 0$. Now, consider the following diagram : $M \xrightarrow{\pi} M/N \xrightarrow{f} M$, where π is the canonical projection map. Let $\phi = fo\pi$, so $\phi \in End_R(M)$, but $N \subseteq Ker\phi$ and *N* is a nonzero pure submodule of *M*, thus $Ker\phi$ is a nonzero pure submodule of *M* (by hypothesis). On the other hand $\phi(M) = f(M/N) \neq 0$ which is a contradiction. \Box

We will need the following lemma for the proof next proposition .

Lemma 2.8. Let M_1 , M_2 be *R*-modules and let $f : M_1 \longrightarrow M_2$ be *R*-epimorphism. If *N* is a pure submodule of M_2 then $f^{-1}(N)$ is a pure submodule of M_1 .

Proof. Assume that I is an ideal of R, then $If^{-1}(N) = f^{-1}(IN) = f^{-1}(N \cap IM_2) = f^{-1}(N) \cap f^{-1}(IM_2) = f^{-1}(N) \cap If^{-1}(M_2) = f^{-1}(N) \cap If^{-1}(M_2) = f^{-1}(N) \cap IM_1$, since f is epimorphism. Thus $f^{-1}(N)$ is a pure submodule of M_I . \Box

Now, we can introduce the following proposition .

Proposition 2.9. Let M_1 , M_2 be *R*-modules such that M_1 is isomorphic to M_2 . Then M_1 is purely quasi-Dedekind if and only if M_2 is purely quasi-Dedekind.

Proof. Suppose that M_1 is a purely quasi-Dedekind *R*-module. Since $M_1 \cong M_2$, so there exists $f: M_1 \longrightarrow M_2$ be *R*-isomorphism. Let *N* be a nonzero pure submodule of M_2 , thus by above lemma $f^{-1}(N)$ is a nonzero pure submodule of M_1 , so $Hom_R(M_1/f^{-1}(N), M_1) = 0$. But $Hom_R(M_2/N, M_2) \cong (Hom_R(M_1/f^{-1}(N), M_1))$, since $M_1 \cong M_2$. Thus $Hom_R(M_2/N, M_2) = 0$ for all nonzero pure submodule *N* of M_2 . Therefore M_2 is purely quasi-Dedekind. The proof of the converse is similarly. \Box

Remark 2.10. Let *M* be a purely quasi-Dedekind *R*-module and $N \le M$ then not necessary that M/N is a purely quasi-Dedekind *R*-module, as the following example shows.

Example 2.11. It is know that Z as Z-module is purely quasi-Dedekind, let $N = 6Z \le Z$. But $Z/6Z \cong Z_6$ is not a purely quasi-Dedekind as Z-module (see Rem.and.Ex 2.3(2)).

Now, we shall give a necessary condition under which the (Rem 2.10) is true.

Proposition 2.12. Let *M* be a purely quasi-Dedekind *R*-module with $\frac{M}{K}$ is projective for all pure submodule *K* of *M*, then $\frac{M}{N}$ is a purely quasi-Dedekind *R*-module for all $N \le M$.

Proof. Let $N \le M$. If N = 0, then nothing to prove. Now, let $0 \ne N \le M$. Suppose that $\frac{U}{N}$ is a pure submodule of $\frac{M}{N}$, then by (Lemma 2.8) $\pi^{-1}(\frac{U}{N})$ is a pure submodule of M, where π is the canonical projection map, so U is a pure submodule of M, hence $\frac{M}{U}$ is projective by hypothesis. Assume that $\frac{M}{N}$ is not purely quasi-Dedekind, thus there exists a nonzero R-homomorphism

 $g \neq 0$ (since $f \neq 0$), thus $Hom_R(\frac{M}{U}, M) \neq 0$, U is pure. Hence M is not a purely quasi-Dedekind *R*-module which is a contradiction. Therefore $\frac{M}{N}$ must to be a purely quasi-Dedekind *R*-module.

Remark 2.13. Let *M* be an *R*-module and $N \le M$. If M/N is a purely quasi-Dedekind *R*-module then not necessary that *M* is a quasi-Dedekind *R*-module; For example: Consider *Z*-module Z_6 , $N = (\overline{2}) \le Z_6$. Then $Z_6/(\overline{2}) \cong Z_2$ is a purely quasi-Dedekind as *Z*-module, but Z_6 is not a purely quasi-Dedekind as *Z*-module (see Rem.and.Ex 2.3 (1), (2)).

The following example shows the direct sum of purely quasi-Dedekind modules is not necessary that a purely quasi-Dedekind module .

Example 2.14. Each of Z_2 , Z_3 as Z-module is purely quasi-Dedekind (see Rem.and.Ex 2.3(1)), but $Z_2 \oplus Z_3 \cong Z_6$ is not a purely quasi-Dedekind as Z-module.

Now, we gives a condition under which the direct sum of purely quasi-Dedekind modules is also purely quasi-Dedekind in the next proposition .

Proposition 2.15. Let *M* and *N* be a purely quasi-Dedekind *R*-modules with $ann_R M + ann_R N = R$ then $M \oplus N$ is a purely quasi-Dedekind *R*-module.

Proof. Assume that *K* is a pure submodule of $M \oplus N$. And since $ann_R M + ann_R N = R$ then by same way of the proof of [1, Prop 4.2, Ch.1] $K = K_1 \oplus K_2$, where $K_1 \leq M$ and $K_2 \leq N$. But $K_1 \leq^{\oplus} K$ and $K_2 \leq^{\oplus} K$ then by [21] K_1 , K_2 are pure in *K*, but *K* is pure in $M \oplus N$ by hypothesis, then K_1 is pure in *M* and K_2 is pure in *N*; to show this : Assume that there exists be an ideal *I* of *R* such that $IK_1 \neq K_1 \cap IM$ and $(IK_2 \neq K_2 \cap IN)$ or $IK_2 = K_2 \cap IN$) then $IK = I(K_1 \oplus K_2) = IK_1 \oplus IK_2 \neq (K_1 \cap IM) \oplus (K_2 \cap IN) = (K_1 \oplus K_2) \cap I(M \oplus N) = K \cap I(M \oplus N)$ which is a contradiction. So $Hom_R(M/K_1, M) = 0$ and $Hom_R(N/K_2, N) = 0$, since *M* and *N* is purely quasi-Dedekind . On the other hand we have $Hom_R(M \oplus N/K, M \oplus N) = Hom_R(M \oplus N/K_1 \oplus K_2, M \oplus N) \subseteq Hom_R(M/K_1, M) \cap Hom_R(N/K_2, N) = 0$. Hence $M \oplus N$ is a purely quasi-Dedekind *R*-module . \Box

8

Recall that an *R*-module *M* is scalar if, for all $f \in End_R(M)$ then there exists $r \in R$ such that f(x) = rx for all $x \in M$ [18, P.8].

In the following proposition we shall study the endomorphism ring of purely quasi-Dedekind module .

Proposition 2.16. Let *M* be a scalar *R*-module with $ann_R M$ is a prime ideal of *R*, then $End_R(M)$ is a purely quasi-Dedekind ring.

Proof. Since *M* be a scalar *R*-module, then by [15, Lemma 6.2, P.80] $End_R(M) \cong R/ann_R M$, But $ann_R M$ is a prime, so $End_R(M)$ is an integral domain. Hence by (Rem.and.Ex 2.3(3)) $End_R(M)$ is a purely quasi-Dedekind ring. \Box

Corollary 2.17. If *M* is a scalar and prime *R*-module, then $End_R(M)$ is a purely quasi-Dedekind ring.

Proof. It is clearly, since *M* is prime implies $ann_R M$ is a prime ideal, so the result is obtained by (Prop 2.16). \Box

Proposition 2.18. Let *M* be a scalar faithful *R*-module $.End_R(M)$ is a purely quasi-Dedekind ring if and only if *R* is a purely quasi-Dedekind ring.

Proof. Suppose that *M* is a scalar *R*-module, so $End_R(M) \cong R/ann_R M$ by [15,Lemma 6.2, P.80], but *M* is a faithful, thus $R/ann_R M \cong R$, so $End_R(M) \cong R$. Hence we have on the result. \Box

Corollary 2.19. Let *M* be a finitely generated multiplication faithful *R*-module $.End_{R}(M)$ is a purely quasi-Dedekind ring if and only if *R* is a purely quasi-Dedekind ring .

Proof. Since *M* is a finitely generated multiplication *R*-module, then by [16, The.3.2] *M* is scalar *R*-module; that is *M* is a scalar faithful *R*-module, thus by (Prop 2.18) the result is obtained . \Box

Recall that an *R*-module *M* is called quasi-prime if $ann_R N$ is a prime ideal of *R* for each $0 \neq N \leq M$ [2, def 1.2.1].

Proposition 2.20. Let *M* be a quasi-injective scalar and quasi-prime *R*-module then $End_R(N)$ is a purely quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Assume that $0 \neq N \leq M$. Since *M* is a quasi-injective scalar *R*-module, then by [18, Prop 1.1.16] *N* is a scalar *R*-module, thus $End_R(N) \cong R/ann_R N$ by [15, Lemma 6.2, P.80]. But *M* is a quasi-prime *R*-module, so $ann_R N$ is a prime ideal of *R*; that is $End_R(N) \cong R/ann_R N$ is an integral domain. Hence by (Rem.and.Ex 2.3(3)) $End_R(N)$ is a purely quasi-Dedekind ring. \Box We end this section by the following two corollaries .

Corollary 2.21. If *M* is an injective scalar and quasi-prime *R*-module then $End_R(N)$ is a purely quasi-Dedekind ring for all $0 \neq N \leq M$.

Proof. Obvious . \Box

Corollary 2.22. Let *M* be a quasi-injective scalar *R*-module and let $0 \neq N \leq M$ be a faithful *R*-module. Then $End_R(N)$ is a purely quasi-Dedekind ring if and only if *R* is a purely quasi-Dedekind ring

Proof. Follows by [18, Prop 1.1.16] and (Prop 2.18). \Box

3. Purely Prime Modules

Recall that an *R*-module *M* is called prime if, $ann_R M = ann_R N$ for all nonzero submodule *N* of *M* [8]. In this section we see that if *M* is purely quasi-Dedekind then $ann_R M = ann_R N$ for all nonzero pure submodule *N* of *M* (Prop 3.2). This leads us to introduce many of important statement to this concept with other concepts in this section. We start this section with the following definition :

Definition 3.1. An *R*-module *M* is said to be purely prime if, $ann_R M = ann_R N$ for all nonzero pure submodule *N* of *M*.

It is clear that every prime module is a purely prime module, but the converse need not be in general; for example : Z_4 as Z-module is purely prime. In fact Z_4 has no proper nonzero pure submodule as Z-module, but it is not prime as Z-module, since $(\overline{2}) \le Z_4$, $ann_Z(\overline{2}) = 2Z \ne 4Z = ann_Z(Z_4)$.

Proposition 3.2. Every purely quasi-Dedekind module is a purely prime module .

Proof. Follows by (Rem.and.Ex 2.3(7)). \Box

Proposition 3.3. Let *M* be an *R*-module. Then *M* is a purely prime *R*-module if and only if *M* is a purely prime \overline{R} -module, where $\overline{R} = R/ann_R M$.

Proof. \Rightarrow) Suppose that *N* is a nonzero pure \overline{R} -submodule of *M*. It is easy to see that *N* is a nonzero pure *R*-submodule of *M*. Let *I* be an ideal of \overline{R} , so it is also ideal of *R*, thus $IN = N \cap IM$ hence *N* is a pure *R*-submodule of *M*, so that $ann_R M = ann_R N$. Now, it is clear that $ann_{\overline{R}}M \subseteq ann_{\overline{R}}N$, beside let $r + ann_{\overline{R}}M \in ann_{\overline{R}}N$ then rN = 0; that is $r \in ann_R N = ann_R M$, hence $r + ann_{\overline{R}}M \in ann_{\overline{R}}M$, therefore $ann_R M = ann_R N$.

 \Leftarrow) The proof is similarly . \Box

Proposition 3.4. Let M be a uniform regular R-module. Then the following statements are equivalent :

- 1) M is a prime R-module .
- 2) M is a purely prime R-module .
- 3) M is a purely quasi-Dedekind R-module .
- 4) M is a quasi-Dedekind R-module .

Proof.

- $(1) \Leftrightarrow (2)$: Clear.
- $(3) \Rightarrow (2)$: Follows by (Prop 3.2).

(2) \leftarrow (3): Suppose that *M* is purely prime, and since *M* is regular, so *M* is prime; that is *M* is prime uniform, thus by [14, The 3.11, P.37] *M* is quasi-Dedekind and hence *M* is purely quasi-Dedekind.

 $(3) \Leftrightarrow (4)$: Follows by (Rem.and.Ex 2.3(5)). \Box

Corollary 3.5. Let *M* be a multiplication uniform regular *R*-module. Then

 $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Rightarrow (7)$

- 1) M is a prime R-module.
- 2) M is a purely prime R-module .
- 3) M is a purely quasi-Dedekind R-module .
- 4) M is a quasi-Dedekind R-module .
- 5) $End_{R}(M)$ is an integral domain.
- 6) $End_{R}(M)$ is a quasi-Dedekind ring.
- 7) $End_{R}(M)$ is a purely quasi-Dedekind ring.

Proof.

 $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$: Follows by (Prop 3.4).

- $(4) \Leftrightarrow (5)$: Follows by [11, Prop 2.1.27].
- $(5) \Leftrightarrow (6)$: Follows by [11, Rem.and.Ex 1.1.2(7)]
- $(6) \Rightarrow (7)$: Clear. \Box

Recall that an *R*-module *M* is monoform if for each $N \le M$ and for each $f \in Hom_R(N, M)$, $f \ne 0$ implies Kerf = 0 [22].

Remark 3.6. Every monoform module is a purely quasi-Dedekind module and hence it is a purely prime module .

The converse of above remark is not true in general; for example : Consider Z-module $Z \oplus Z$ then it is known that is purely prime, since it is prime. But $Z \oplus Z$ is not monoform as Z-module.

Proposition 3.7. Let *M* be a uniform regular ring. Then the following statements are equivalent :

- 1) R is a monoform ring.
- 2) R is an integral domain .
- 3) R is a quasi-Dedekind ring.
- 4) R is a purely quasi-Dedekind ring.
- 5) R is a purely prime ring.
- 6) R is a prime ring.

Proof.

(1) \Leftrightarrow (2) \Leftrightarrow (3) : Follows by [11, Coro 2.3.20]. (3) \Leftrightarrow (4) : Clear. (4) \Rightarrow (5) : Clear. (5) \Rightarrow (4) : Assume that *R* is purely prime, and since *R* is regular, then *R* is prime. But *R* is uniform, so by [14, The 3.11, P.37] *R* is quasi-Dedekind, hence *R* is a purely quasi-Dedekind ring. (5) \Leftrightarrow (6) : Clear. \Box

Proposition 3.8. Let M be an R-module. If M is embedded in each of its nonzero pure submodule then M is a purely prime R-module .

Proof. Suppose that *N* is a nonzero pure submodule of *M*. It is known that $ann_R M \subseteq ann_R N$. On the other hand, let $r \in ann_R N$ then rN = 0. But *M* is embedded in *N* (by hypothesis), so there exists a monomorphism $f : M \longrightarrow N$, thus $f(rM) = rf(M) \subseteq rN = 0$ implies rM = 0 (since *f* is monomorphism), so $r \in ann_R M$ and $ann_R M = ann_R N$. Hence *M* is a purely prime *R*-module. \Box

Corollary 3.9. Let M be a uniform regular R-module such that M is embedded in each of its nonzero pure submodule then M is a quasi-Dedekind R-module and hence it is a purely quasi-Dedekind R-module .

Proof. Follows by (Prop 3.8) and (Prop 3.4) . \Box

Recall that an *R*-module *M* is said to be weak cancellation if, for any two ideals *A*, *B* of *R* with AM = BM implies that $A + ann_R M = B + ann_R M$. And recall that an *R*-module *M* is cancellation if *M* is weak cancellation and faithful [6].

Mijbass A.S. in [13, P.62, P.63] introduce the following two results :

Theorem 3.10. Let *M* be an *R*-module and let *N* be a pure in *M* with $ann_R N = ann_R M$. If *N* is a weak cancellation *R*-module then *M* is a weak cancellation *R*-module.

Corollary 3.11. Let *M* be an *R*-module and let *N* be a pure in *M* with $ann_R N = ann_R M$. If *N* is a cancellation *R*-module then *M* is a cancellation *R*-module.

We end this section by the following two corollaries .

Corollary 3.12. Let M be a purely prime R-module and let N be a pure in M. If N is a weak cancellation R-module then M is a weak cancellation R-module .

Proof. Follows by (Th 3.10) . \Box

Corollary 3.13. Let M be a purely prime R-module and let N be a pure in M. If N is a cancellation R-module then M is a cancellation R-module .

Proof. Follows by (Coro 3.11) . \Box

REFERENCES

- [1] Abbas M.S. ,(1991), On fully stable Modules , ph.D.Thesis , College of Science , University of Baghdad.
- [2] Abdul Razak H. M ,(1999), Quasi Prime Modules and Quasi Prime Submodules, M.Sc.Thesis, College of Education Ibn AL- Haitham ,University of Baghdad .
- [3] AL-Bahraany B.H. ,(2000), Modules with the pure intersection property , Ph.D.Thesis , College of Science , University of Baghdad.
- [4] Ali M.M. and Smith D.J. ,((2004), Pure submodules of Multiplication Modules, Contributions to Algebra and Geometry, Heldermann Verlag ,NO.1 , p.61-74 .
- [5] Anderson F.W., Fuller K.R., (1974), Rings and Categories of Modules, Springer -Verlag, Berlin, Heidelberg, Newyork,.
- [6] Atiyah M.F., Macdonald I.G., (1969), Introduction to commutative algebra, Addison Wesley, London.
- [7] Cheatham T.J. and Smith J.R., ((1976), Regular and Semisimple Modules, parific Journal Math, NO.66, p.315 - 323.
- [8] Desale G., Nicholson W.K., (1981), Endoprimitive rings, J. Algebra, NO.70, p.548 560.
- [9] Faith C. ,(1967), Lectures on injective Modules and quotient rings, Springer Verlag , Berlin, Heidelberg , Newvork .
- [10] Fieldhouse D.J., (1969), Pure theories, Math. Ann, NO.184, p.1-8.
- [11] Ghawi Th.Y. ,(2010), Some generalizations of Quasi Dedekind Modules , M.Sc.Thesis ,College of Education Ibn AL- Haitham ,University of Baghdad .
- [12] Kasch F. ,(1982), Modules and rings, Academic press, London .
- [13] Mijbass A .S.(1992) , Cancellation Modules, MS.c.Thesis, College of Science, University of Baghdad .
- [14] Mijbass A .S., (1997), Quasi-Dedekind Modules, Ph.D.Thesis, College of Science, University of Baghdad.
- [15] Mohamed Ali E. A. (2006), On Ikeda Nakayama Modules, Ph.D. Thesis, College of Education Ibn AL- Haitham, University of Baghdad.
- [16] Naoum A.G., (1990), On the ring of endomorphisms of a finitely generated multiplication Modules, Periodica Math, Hungarica, Vol.21(3), p. 249 - 255.
- [17] Naoum A.G., Hadi I. M A., (2002), SQI Submodules and SQD Modules, Iraqi J.Sci, Vol.43.D, NO. 2, P. 43 – 54.
- [18] Shihab B. N. ,(2004), Scalar Reflexive Modules, Ph.D.Thesis , College of Education Ibn AL-Haitham , University of Baghdad .
- [19] Smith P.F., (1988), Some remarks on Multiplication Modules, Arch. Math, NO.50, p. 223 235.
- [20] Storrer H. H., (1972), On Goldman's primary decomposition, Lecture notes in mathematics, Vol. 246, Springer-Verlag, Berlin, Heidelberg, Newyork.
- [21] Yaseen S.H., (1985), F Regular Modules, M.Sc. Thesis, University of Baghdad.
- [22] Zelmanowitz J. M., (1986), Representation of rings with faithful polyform Modules, Comm. In Algebra, 14 (6), p.1141 1169.

المقاسات شبه- ديديكاندية النقية و المقاسات الأولية النقية

ثائر يونس غاوي العراق \ جامعة القادستية كلية التربية - قسم الرّياضيات البريد الالكتروني :thaar_math83@yahoo.com

المستخلص: