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 Abstract . An R-submodule N of an R-module M is called pure if IN N IM= ∩  for every ideal I of 
R . In this paper we introduce the notion of purely quasi-invertible submodule and a purely quasi-
Dedekind module, where an R-submodule N of an R-module M is called purely quasi-invertible if, N is 
pure and ( , )RHom M N M = 0 . And an R-module M is called purely quasi-Dedekind if, every nonzero 
pure submodule N of M is quasi-invertible ; that is ( , )RHom M N M = 0

R

. Beside these, we also 
introduce the notion of purely prime module, where an R-module M is called purely prime module if 

 for all nonzero pure submodule N of M .We gave many properties related with this 
concepts. And we studied the relationships between these concepts and several other types of modules. 
In this paper R is a commutative ring with unity and  M is a unitary R-module . 

Rann M ann N=
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0. Introduction  
 
    Let R be a ring and M be a unital R-module. If N is a submodule of M, we write N M≤ and if N  
is an essential submodule of M then we write eN M≤ , also if N is a direct summand of M then we 
write . Recall an R-submodule N of an R-module M is called pure if IN  for every 
ideal I of R [5], [10], and N is called quasi-invertible if, 

N M⊕≤ N IM= ∩
( , )RHom M N M = 0

R

 [14] . And an R-module 
M is called quasi-Dedekind if, each nonzero submodule of M is quasi-invertible [14] . And  an        
R-module M is called prime module if Rann M ann N=  for all nonzero submodule N of M [8] . 
Ghawi Th.Y. in [11] introduced the concepts of essentially quasi-invertible submodules and 
essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-
Dedekind modules, where a submodule N of an R-module M is called essentially quasi-invertible if 

and N is quasi-invertible, and M is called essentially quasi-Dedekind if every essential 
submodule of M is quasi-invertible .  

eN M≤

 
    This paper has been organized on three sections. In section 1, we generalized the concept of quasi-
invertible submodule to a purely quasi-invertible submodule, where a submodule N of a module M is 
called purely quasi-invertible if N is a pure and quasi-invertible submodule. We give some basic 
properties of this class of submodules.  
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    In section 2, we introduce the concept of a purely quasi-Dedekind module as a generalization to 
concept a quasi-Dedekind module, where an R-module M is called purely quasi-Dedekind if, every 
nonzero pure submodule of M is quasi-invertible . We prove that if M a purely quasi-Dedekind 
module with M K is projective for all pure submodule K of M then M N is a purely quasi-
Dedekind module, for all . Also, we show by an example a direct sum of purely quasi-
Dedekind modules need not be a purely quasi-Dedekind module (see Ex  2.14) . On the other hand 
we give a condition under which the direct sum of purely quasi-Dedekind modules is a gain purely 
quasi-Dedekind ( see Prop 2.15) . 

N M≤

 
     Finally, in section 3, we introduce and study the concept purely prime module as  a generalization 
of prime module, where an R-module M is called a purely prime module if  for all 
nonzero pure submodule N of M . We see that every prime module is a purely prime module, but the 
converse is not true. Also we give some equivalent formulas and results of this concept .  

Rann M ann N= R

 
 
1. Purely Quasi-Invertible Submodules  
 
     Firstly, we recall that an R-submodule N of an R-module M is pure if,  for every 
ideal I of R [5], [10] . Mijbass A.S. in [14] introduced the following concept, an R-submodule N of 
an R-module M is called quasi-invertible if, 

IN N IM= ∩

( , )RHom M N M 0= . And an ideal J of a ring R is called 
quasi-invertible if J is a quasi-invertible R-submodule. In this section we introduce and study a 
generalization of the concept a quasi-invertible submodule namely " purely quasi-invertible " . 
 
Definition 1.1. An R-submodule N of an R-module M is called purely quasi-invertible if N  is pure 
and ( , )RHom M N M 0= . And an ideal I of a ring R is called purely quasi-invertible if  I is a purely 
quasi-invertible R-submodule . It is clear that every purely quasi-invertible submodule is a quasi-
invertible submodule . The following example shows that the converse is false . 
 
Example 1.2. Let R be an integral domain and let [ , ]R R x y=  be the polynomial ring of two 
independent variables x and y , then R  is also an integral domain . Let I = (x ,y) is the ideal of  R  
generated by x and y , so by [14, Ex 1.3(1), P.6] I is quasi-invertible. But I is not pure of R , thus I  is 
not purely quasi-invertible; To see this: Let R = Z , [ , ]R Z x y= , let I = (x ,y) = 1 2 1 2{ : , }xf yf f f R+ ∈ , 
thus by [14, Ex 1.3(1), P.6] I is quasi-invertible . Now, Let  { : ( , ) , 2J }f R f x y a a Z= ∈ = ∈  then  

1 2 1 2{ : , }≠JI axf ayf f f R= + ∈ {0} I J R= ∩ ;that is I not pure, hence I  is not purely quasi-invertible .  
 
Remarks and Examples 1.3. 
 
1)  In any nonzero module M. 0  is not purely quasi-invertible, but M is a purely quasi-invertible 
     submodule . 
 
2)  If N is a proper direct summand of an R-module M then N is pure by [21], but not quasi- 
     invertible, since there exists  such that  0 K M≠ ≤ M K N= ⊕  and     
     ( , ) ( , ) ( , )R R RHom M N M Hom K N N K N Hom K K N= ⊕ ⊕ = ⊕ 0≠ .       
 
      Recall that an R-module M is called semisimple if, every submodule of M is a direct summand of 
M [ 12, P.189] . 
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3)  If M is a semisimple module, then M is the only purely quasi-invertible submodule of M ;  
     since every proper submodule of  M is direct summand; that is pure not quasi-invertible  
     (see Rem.and.Ex 1.3(2)) .   
 
4)  Let 4M Z=  as Z-module , (2)N = is not a purely quasi-invertible submodule of 4Z  as             
     Z-module . In fact N  is not quasi-invertible , since 4 4 2( (2), ) 0ZHom Z Z Z≅ ≠ . Also, N  
     is not pure,  since 22 2.1 (2) 2( )Z= ∈ ∩  but 2 2(2)∉ .  
 
5)  If  N  is a purely quasi-invertible R-submodule of an R-module M, then  . R Rann M ann N=
     Proof.  Follows by [14, Prop 1.4, P.7] .     
 
     However, the converse of (Rem.and.Ex 1.3(5)) is not true as the following example shows:  
Consider Z-module 4Z Z⊕ , let , then 4 42N Z Z Z Z= ⊕ ≤ ⊕ 4 2( ) (2 )Z Zann Z Z ann Z Z 0⊕ = ⊕ =  
but  is not purely quasi-invertible of  42N Z Z= ⊕ 4Z Z⊕  as Z-module. In fact N is not pure,    
since 4 4(2, 2) 2(1,1) (2 ) 2( )Z Z Z Z= ∈ ⊕ ∩ ⊕  but 4(2,2) 2(2 )Z Z∉ ⊕ .  
 
6)  Let I  be an ideal of a ring R . If  I  is purely quasi-invertible then  .  ( ) 0Rann I =
     Proof. Obvious .     
 
  The converse of (Rem.and.Ex 1.3(6)) is not true in general, consider the following example: 
Let  R = Z, let I = 2Z  then  ( ) (2 ) 0Z Zann I ann Z= = , but I is not pure of Z, since J = 4Z be an ideal of   
Z and  (4 )(2 ) 8 4 (2 ) (4 )JI Z Z Z Z Z Z I J= = ≠ = ∩ = Z∩

2

, so it is not purely quasi-invertible ideal of Z.  
 
7)  If 1M M M= ⊕  is an R-module and let K be a purely quasi-invertible in iM for some  1, 2i =  ,    
then it is not necessarily that K is a purely quasi-invertible submodule of M ;  
For example: In the Z-module 2Z Z⊕ , 2K Z=  is a purely quasi-invertible submodule of 2Z  as 
Z-module , but 2 (0) 2Z Z≅ ⊕  which is not a purely quasi-invertible submodule of 2Z Z⊕ as  
Z-module, since 2 2 2 2( (0) , ) ( , )Z ZHom Z Z Z Z Z Hom Z Z Z⊕ ⊕ ⊕ = ⊕ ≠ 0 ; that is 2(0) Z⊕  not  
quasi-invertible .   
   
 
Remark 1.4. We do not whether the intersection of purely quasi-invertible submodules is purely 
quasi-invertible. 
 
    Recall that an R-module M has the pure intersection property (briefly PIP) if, the intersection of 
any two pure submodules is again pure [3, def 2.1, P.33] .  
 
    Now we can introduce the following result .  
 
Proposition 1.5. Let M  be an R-module has PIP. If  N1,N2  are purely quasi-invertible submodules 
of M  then  is  also . 1N N∩ 2

2

 
Proof. Since M  has PIP then  is pure in M. But it is easy to see that   1N N∩

),(),(),( 2121 MNMHomMNMHomMNNMHom +⊆∩  . Hence 0),( 21 =∩ MNNMHom   and  so 
that   is  a purely  quasi- invertible  submodule  of  M .      21 NN ∩
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    Recall that an R-module M is called multiplication if, for each submodule N of M,  N =IM          
for some ideal I of R . Equivalently, M is multiplication if, for each submodule N of M,  

, where [ :  [19] .  [ : ].N N M M= ] { : }N M r R rM N= ∈ ⊆
     
Corollary 1.6. Let M be a multiplication R-module. If N1,N2 are purely quasi-invertible submodules 
of  M  then  is also .  1N N∩ 2

 
Proof.  Follows by  [3, Prop 2.3, p.33] and (Prop 1.5) .     
 
    However, the following results (1.5) , (1.6) gives necessary conditions for make (Rem 1.4) is true . 
 
Remark 1.7. Let M be an R-module and let N be a purely quasi-invertible submodule of M. If 
K M≤ such that then it is not necessarily that K is a purely quasi-invertible submodule of 
M. We can give the following example show that .  

K N≅

 
Example 1.8. Let M = Z as Z-module, let N = Z be a submodule of M, then N is a purely quasi-
invertible submodule of M, but  is not a purely quasi-quasi-invertible submodule 
of M . In the fact  K = 2Z is not pure in M .  

2K Z Z N= ≅ =

 
Remark 1.9. Let M1, M2 be R-modules and let 1: 2f M M⎯⎯→  be R-homomorphism . If N is        
a purely quasi-invertible submodule of  M1 then not necessary that the image  of N is a purely 
quasi-invertible submodule of M2 . For example :  Consider Z-modules 4 , 6Z Z . Let 6 4:f Z Z⎯⎯→  

be Z-homomorphism define by ( ) 2f x = x  for all 6x Z∈ . Let N = Z6 , it is well known that N is a 

purely quasi-invertible submodule of   Z6  as  Z-module, but 6( ) ( ) {0,2} (2)f N f Z= = =  is not 
purely quasi-invertible submodule of   Z4  as  Z-module (see Rem.and.Ex 1.3(4)) .  
 
     Recall that a nonzero R-module M is called a rational extension of the R-submodule N of M if, for 
all ,there exists an element 1 2 2, ,m m M m∈ 0≠ r R∈ such that 1rm N∈ and  [20] . And  
recall that an R-module M is regular if for all a

2 0rm ≠
M∈ and for all r R∈ , there exists x R∈ such that 

. Equivalently, every submodule of M is pure [7] .  rxra ra=
 
Proposition 1.10. Let M be a module over regular ring R and let . If  M is a rational   
extension of  N  then  N  is a purely quasi-invertible submodule of M .  

N M≤

 
Proof. Since M is a rational extension of N then by [14, Prop 3.3, P.14] N is a quasi-invertible    
submodule of M . On the other hand, since R is a regular ring then M is a regular R-module ; that is 
every submodule of M is pure, thus N is a purely quasi-invertible submodule of M .     
 
    Recall that an R-submodule N of an R-module M is called small ( briefly N≪M ) if, for all 
K M≤ with N+K = M  implies  K = M [ 12, P.106] . And recall that an R-submodule N of  R-

module M is called SQI-submodule if, for each ( ,R )f Hom M N M∈  then ( )Mf
N

is a small in M 

[17, p.44] .  
 
Remark 1.11. It is clear that every quasi-invertible submodule is SQI-submodule, hence every 
purely quasi-invertible submodule is SQI-submodule. But the converse is not true in general, the 
following example shows .  
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Example 1.12. Let M = Z4  as Z-module and  let (2)N = ≤ M

]

. Then N  is SQI-submodule of Z4, 
but it is known that N is not a purely quasi-invertible submodule of Z4 (See Rem.and.Ex 1.3(4)). 
 
     We end this section by the following theorem . 
 
Theorem 1.13. Let  M  be a faithful multiplication over integral domain R . If  N  is a pure 
submodule of  M  then [ :  is a purely quasi-invertible ideal of R .  N M
 
Proof. Assume that N is a pure submodule of M . Since M be a faithful multiplication R-module, so 
by [4, Coro 1.2, P.65] [ :  is a pure ideal of R. But R is an integral domain, hence by [14, Ex 
1.3(1), P.6] every nonzero ideal of R is quasi-invertible,thus [ :  is a quasi-invertible ideal of R. 
Hence [ :  is a purely quasi-invertible ideal of R .     

]N M
]N M

]N M
 
 
2. Purely Quasi-Dedekind Modules 
 
   Recall that an R-module M is called quasi-Dedekind if, every nonzero submodule of M is quasi-
invertible; that is ( , )RHom M N M = 0  for all nonzero submodule N of M [14, P.24] . In this section 
we give generalization of the concept a quasi-Dedekind module namely  " purely quasi-Dedekind 
module ". We list some basic properties of purely quasi-Dedekind modules. Also we give a 
characterization of this concept. We study the relationships between a purely quasi-Dedekind 
modules with other related modules .We begin with the following definition :  
 
Definition 2.1. An R-module M is said to be purely quasi-Dedekind if, every proper nonzero pure 
submodule of M is quasi-invertible. And a ring R is called purely quasi-Dedekind if R is a purely 
quasi-Dedekind R-module .  
 
     It is clear that every quasi-Dedekind R-module is a purely quasi-Dedekind R-module . But the 
converse may note be, as the following example shows :  
 
Example 2.2. Consider Z-module 4Z , it is clear that 4Z  is purely quasi-Dedekind , since 4Z  as Z-

module has no proper pure submodule. But it is not quasi-Dedekind , since 4(2) Z≤  and 

4 4 2( (2), ) 0ZHom Z Z Z≅ ≠ .  
 
Remarks and Examples 2.3.  
 
1)  Every simple R-module is a purely quasi-Dedekind R-module . 
 
2)  Every nonzero semisimple and (not simple) module is not a purely quasi-Dedekind module.    
     In particular 6Z  as Z-module is semisimple and (not simple) but it is not purely quasi-Dedekind . 
 
3)  Every integral domain R is a quasi-Dedekind R-module [14, Ex 1.4(1), P.24] , so it is a purely 
    quasi-Dedekind R-module. But the converse need not be in general; For example: Let 4M Z=  as  
     4Z -module, then 4Z  is purely quasi-Dedekind, but 4Z  is not an integral domain .  
     
4)  Z as Z-module is purely quasi-Dedekind . 0 , Z are the only pure submodules of Z .  
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5)  Let M be a regular R-module . Then M is purely quasi-Dedekind if and only if M is quasi- 
     Dedekind .  
     Proof. Clear .     
 
6)  Let M be a module over  regular ring R. Then M is purely quasi-Dedekind if and only if  
     M is quasi-Dedekind . 
    Proof.  Follows by (Rem.and.Ex 2.3(5)) and since every module over a regular ring is regular .   
 
7)  If  M  is a purely quasi-Dedekind R-module then R Rann N ann M=  for all nonzero pure    
     submodule N of M .  
    Proof.  Follows by ( Rem.and.Ex 1.3(5)) .       
 
 
Proposition 2.4.  Let M be an R-module with R R J= , where J  is an ideal of R such that 

. M is a purely quasi-Dedekind R-module if and only if  M is a purely quasi-Dedekind RJ ann M⊆

R -module .  
 
Proof.  We have by [12, P.51] ( , ) ( ,R RHom M N M Hom M N M= )  for all submodule N of M . 
Thus the result is obtained .       
 
 
Proposition 2.5. Let M be a uniform R-module with is a maximal ideal of R, then M is      
a purely quasi-Dedekind R-module .  

Rann M

 
Proof.  Follows by [11, Coro 1.2.10  and  (Rem.and.Ex 1.2.2(5))] .     
 
 

  Theorem 2.6. Let M be an R-module. If M is purely quasi-Dedekind then for  all ( )Rf End M∈  and      
  Kerf  is a pure submodule of M  implies  f = 0 .  

 
Proof. Let  ( )Rf End M∈  and Kerf  is a pure submodule of M . Suppose that 0f ≠ , define 

:g M Kerf M⎯⎯→ by    for all m( )g m Kerf f m+ = ( ) M∈ . It is easy to see that  g  is Well-
defined and  ( since 0g ≠ 0f ≠ ) . Hence ( , )RHom M Kerf M 0≠  which is a Contradiction.   
 
 
Proposition  2.7. Let M be an R-module such that for all pure submodule N of M, and for all  
K M≤ such that implies K is pure in M . If for all N K M≤ ≤ ( )Rf End M∈  , Kerf  is a pure 
submodule of M implies  f = 0 , then M is a purely quasi-Dedekind R-module .  
 
Proof.  Suppose that there exists 0 N M≠ ≤ , N is pure such that  ( , )RHom M N M 0≠ ; that is 
there exists  R-homomorphism :f M N M⎯⎯→ and  0f ≠ . Now, consider the following diagram : 

fM M N Mπ⎯⎯→ ⎯⎯→ , where π  is the canonical projection map. Let foφ π= , so ( )REnd Mφ ∈  , 
but N Kerφ⊆   and  N  is a nonzero pure submodule of M, thus Kerφ  is a nonzero pure submodule 
of M (by hypothesis) . On the other hand ( ) ( ) 0M f M Nφ = ≠  which is a contradiction .         
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  We will need the following lemma for the proof next proposition . 
  
Lemma 2.8. Let M1 , M2 be R-modules and let 1: 2f M M⎯⎯→  be R-epimorphism . If N is   a pure 
submodule of  M2  then  1( )f N−  is a pure submodule of  M1 .  
 
Proof. Assume that  I  is an ideal of R , then  1 1 1

2. ( ) ( ) ( )I f N f IN f N IM− − −= = ∩ =

1

   
1 1 1 1 1

2 2( ) ( ) ( ) . ( ) ( ) .f N f IM f N I f M f N I M− − − − −∩ = ∩ = ∩ , since f is epimorphism . Thus 1( )f N−  
is a pure submodule of  M1 .     
 
 
    Now, we can introduce the following proposition .  
 
Proposition 2.9. Let M1 , M2 be R-modules such that M1 is isomorphic to M2 . Then M1 is 
purely quasi-Dedekind  if and only if  M2  is purely quasi-Dedekind .  
 
Proof. Suppose that M1 is a purely quasi-Dedekind R-module. Since 1 2M M≅ , so there exists 

1: 2f M ⎯⎯→M
)

 be R-isomorphism. Let N  be a nonzero pure submodule of M2, thus   
by above lemma  1(f N−  is a nonzero pure submodule of M1, so 1

1 1( ( ), )RHom M f N M− 0= . 
But 1

2 2 1( , ) ( ( ( ),R RHom M N M Hom M f N M−≅ 1) 2, since 1M M≅ . Thus 2 2( , )RHom M N M 0=     
for all nonzero pure submodule N of M2 . Therefore M2  is purely quasi-Dedekind .  
The proof of the converse is similarly .      
 
 
Remark  2.10. Let M be a purely quasi-Dedekind R-module and N M≤ then not necessary that 
M N is a purely quasi-Dedekind R-module, as the following example shows .  
 
 
Example 2.11. It is know that Z as Z-module is purely quasi-Dedekind, let . But 6N Z Z= ≤

66Z Z Z≅  is not a purely quasi-Dedekind as Z-module ( see Rem.and.Ex 2.3(2)) .  
 
 
   Now, we shall give a necessary condition under which the (Rem 2.10) is true . 

Proposition 2.12. Let M be a purely quasi-Dedekind R-module with M
K

is projective for all pure 

submodule K of M, then M
N

 is  a purely quasi-Dedekind R-module for all .        N M≤

 

Proof. Let . If  N = 0,  then nothing to prove . Now, let 0N M≤ N M≠ ≤ . Suppose that U
N

  

is a pure submodule of M
N

, then by ( Lemma 2.8) 1( )U
N

π −   is a pure submodule of M , where π  is 

the canonical projection map, so U is a pure submodule of M, hence M
U

 is projective by hypothesis. 

Assume that M
N

is not purely quasi-Dedekind , thus there exists a nonzero   R-homomorphism  
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: M N Mf
U N N

⎯⎯→ . But ( , ) ( ,R R )M N M M MHom , so there exists R-homomorphism Hom
U N N U

≅
N

: Mg
U

⎯⎯→M  such that og fπ = .  

 
 
 
 
 
 
 

0g ≠  ( since 0f ≠ ) , thus  ( , )R
MHom M
U

0≠ , U is pure . Hence M is not a purely quasi-Dedekind 

R-module which is a contradiction . Therefore M
N

 must to be a purely quasi-Dedekind R-module .      

 
 
Remark 2.13. Let M be an R-module and N M≤ . If M N is a purely quasi-Dedekind   R-module 
then not necessary that M is a quasi-Dedekind R-module; For example: Consider Z-module 6Z , 

6(2)N = ≤ Z . Then 6 (2) 2Z Z≅ is a purely quasi-Dedekind as Z-module, but 6Z  is not a purely 
quasi-Dedekind as Z-module (see Rem.and.Ex 2.3 (1), (2)) .  
 
   The following example shows the direct sum of purely quasi-Dedekind modules is not necessary 
that a purely quasi-Dedekind module . 
 
Example 2.14. Each of Z2, Z3 as Z-module is purely quasi-Dedekind (see Rem.and.Ex 2.3(1)), but 

2 3 6Z Z Z⊕ ≅  is not a purely quasi-Dedekind as Z-module . 
 
   Now, we gives a condition under which the direct sum of purely quasi-Dedekind modules is also 
purely quasi-Dedekind in the next proposition . 
 
Proposition 2.15. Let M  and N be a purely quasi-Dedekind R-modules with an R Rn M ann N R+ =  
then M N⊕ is a purely quasi-Dedekind R-module .  
 
Proof. Assume that K is a pure submodule of M N⊕ . And since an then by 
same way of the proof of [1, Prop 4.2, Ch.1] 

R Rn M ann N R+ =

21K K K= ⊕ , where K1 M≤ and .But  2K N≤

1K K⊕≤ and 2K K⊕≤ then by [21] K1 , K2 are pure in K, but K is pure in M N⊕ by hypothesis, then 
K1 is pure in M and  K2 is pure in N; to show this : Assume that there exists be an ideal I of R such that  

1 1IK K IM≠ ∩ and ( 2 2IK K IN≠ ∩  or 2 2IK K IN= ∩ ) then  

1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )IK I K K IK IK K IM K IN K K I M N= ⊕ = ⊕ ≠ ∩ ⊕ ∩ = ⊕ ∩ ⊕ ( )K I M N= ∩ ⊕  
which is a contradiction . So 1( , )RHom M K M 0=  and 2( , )RHom N K N = 0 , since M and N is 
purely quasi-Dedekind . On the other hand we have ( ,RHom M N K M N )⊕ ⊕ =  

1 2 1 2( , ) ( , ) (R RHom M N K K M N Hom M K M Hom N K N⊕ ⊕ ⊕ ⊆ ∩ =, ) 0R . Hence  M N⊕ is 
a purely quasi-Dedekind R-module .     

M

 
U
M

 

0π 

g f 

N
M
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   Recall that an R-module M is scalar if, for all ( )Rf End M∈  then there exists such that r R∈
( )f x rx=  for all x M∈ [18, P.8] . 

 
 
   In  the following  proposition  we shall  study the endomorphism  ring of  purely quasi-Dedekind 
module .  
 
Proposition  2.16. Let M be a scalar R-module with is a prime ideal of R, then          
is a purely quasi-Dedekind ring .  

Rann M ( )REnd M

 
Proof. Since M be a scalar R-module, then by [15, Lemma 6.2, P.80] ( )R REnd M R ann M≅ , 
But is a prime, so  is an integral domain. Hence by (Rem.and.Ex 2.3(3))  Rann M ( )REnd M

(REnd M )  is a purely quasi-Dedekind ring .    
 
 
Corollary  2.17. If M is a scalar and prime R-module, then is a purely quasi-Dedekind ring .  ( )REnd M
 
Proof. It is clearly, since M is prime implies is a prime ideal, so the result is obtained by           
( Prop 2.16) .     

Rann M

 
Proposition  2.18.  Let M  be a scalar faithful R-module . is a purely quasi-Dedekind 
ring if and only if R is a purely quasi-Dedekind ring . 

( )REnd M

 
Proof. Suppose that  M is a scalar R-module, so ( )R REnd M R ann M≅  by [15,Lemma 6.2, P.80] ,          
but M  is a faithful, thus RR ann M R≅ , so ( )REnd M R≅ . Hence we have on the result .      
    
 
Corollary 2.19. Let M  be a finitely generated multiplication faithful R-module . is a 
purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring .  

( )REnd M

 
Proof. Since M is a finitely generated multiplication R-module, then by [16, The.3.2] M is scalar        
R-module; that is  M is a scalar faithful R-module, thus by (Prop 2.18)  the result is obtained .      
 
    Recall that an R-module M is called quasi-prime if is a prime ideal of R for each  Rann N
0 N M≠ ≤ [2, def 1.2.1] .   
 
 
Proposition  2.20.  Let M be a quasi-injective scalar and quasi-prime R-module then  is   
a purely quasi-Dedekind ring for all 0

( )REnd N
N M≠ ≤ .  

 
Proof. Assume that 0 N M≠ ≤ . Since M is a quasi-injective scalar R-module, then by  
[18, Prop 1.1.16] N is a scalar R-module, thus ( )REnd N R ann NR≅  by [15, Lemma 6.2, P.80]. 
But M is a quasi-prime R-module , so is a prime ideal of R; that is Rann N ( )R REnd N R ann N≅  
is an integral domain . Hence by (Rem.and.Ex 2.3(3)) is a purely quasi-Dedekind ring .     ( )REnd N
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    We end this section by the following two corollaries .  
 
Corollary  2.21.  If M is an injective scalar and quasi-prime R-module then   is a purely 
quasi-Dedekind ring for all 0 . 

( )REnd N
N M≠ ≤

  
Proof. Obvious .      
 
Corollary 2.22. Let M  be a quasi-injective scalar R-module and let 0 N M≠ ≤ be a faithful R-
module. Then is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring 
. 

( )REnd N

 
Proof.  Follows by [18 , Prop 1.1.16]  and  (Prop 2.18) .      
 
 
 
3. Purely Prime Modules 
 
    Recall that an R-module  M is called prime if, Rann M ann NR=  for all nonzero submodule   N of M 
[8] . In this section we see that if M is purely quasi-Dedekind then  for all nonzero 
pure submodule N of M (Prop 3.2). This leads us to introduce many of important statement to this 
concept with other concepts in this section . We start this section with the following definition :  

Rann M ann N= R

R

 
 
Definition 3.1. An R-module  M  is said to be purely prime if, Rann M ann N=  for all nonzero pure 
submodule N of M . 
 
   It is clear that every prime module is a purely prime module, but the converse need not be in general;  
for example : 4Z  as  Z-module is purely prime . In fact 4Z  has no proper nonzero pure submodule as      

Z-module, but it is not prime as Z-module,  since 4(2) Z≤ , 4(2) 2 4 ( )Z Zann Z Z ann Z= ≠ = .      
 
Proposition  3.2. Every purely quasi-Dedekind module is a purely prime module . 
 
Proof.  Follows by (Rem.and.Ex 2.3(7)) .     
 
 
Proposition  3.3.  Let M be an R-module. Then M is a purely prime R-module if and only if M is     
a purely prime R -module, where RR R ann M= .  
 
Proof.  Suppose that N is a nonzero pure )⇒ R -submodule of M . It is easy to see that  N  is            
a nonzero pure R-submodule of  M . Let  I  be an ideal of  R , so it is also ideal of R, thus  
IN N IM= ∩ hence N is a pure R-submodule of M, so that  Rann M ann NR= . Now, it is clear that 

Rann M ann N⊆ R , beside let Rr ann M ann N+ ∈ R  then  rN = 0 ; that is ,  R Rr ann N ann M∈ =

hence R Rr ann M ann M+ ∈ , therefore R Rann M ann N= . 
 

)⇐  The proof is similarly .     
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Proposition  3.4. Let  M  be a uniform regular R-module. Then the following statements are  
equivalent :  
1)  M  is a prime R-module .  
2)  M  is a purely prime R-module . 
3)  M  is a purely quasi-Dedekind R-module . 
4)  M  is a quasi-Dedekind R-module . 
Proof.  
(1) (2)⇔ : Clear . 
(3) (2)⇒ : Follows by (Prop 3.2) . 
(2) (3)⇐ : Suppose that M is purely prime, and since M is regular , so M is prime; that is M is prime   
uniform, thus by [14, The 3.11, P.37] M is quasi-Dedekind and hence M is purely quasi- 
Dedekind .  
(3) (4)⇔ : Follows by (Rem.and.Ex 2.3(5)) .     
 
Corollary  3.5.  Let  M  be a multiplication  uniform regular R-module. Then  
(1) (2) (3) (4) (5) (6) (7)⇔ ⇔ ⇔ ⇔ ⇔ ⇒  
1)  M  is a prime R-module .  
2)  M  is a purely prime R-module . 
3)  M  is a purely quasi-Dedekind R-module . 
4)  M  is a quasi-Dedekind R-module . 
5)  is an integral domain .   ( )REnd M
6)  is a quasi-Dedekind ring . ( )REnd M
7)  is a purely quasi-Dedekind ring . ( )REnd M
 
Proof.  
(1) (2) (3) (4⇔ ⇔ ⇔ ) : Follows by (Prop 3.4) . 
(4) (5)⇔ : Follows by [11, Prop 2.1.27] .  
(5) (6)⇔ : Follows by [11, Rem.and.Ex 1.1.2(7)] 
(6) (7)⇒ : Clear .     
 
   Recall that an R-module M is monoform if for each N M≤ and for each ( , )Rf Hom N M∈ , 

0f ≠  implies  Kerf = 0  [22] . 
 
Remark 3.6. Every monoform module is a purely quasi-Dedekind module and hence it is  a purely 
prime module .  
 
   The converse of above remark is not true in general; for example : Consider Z-module Z Z⊕   
then it is known that is purely prime, since it is prime. But Z Z⊕ is not monoform as Z-module.  
 
Proposition 3.7. Let M be a uniform regular ring. Then the following statements are equivalent :  
1)  R  is a monoform ring . 
2)  R  is an integral domain . 
3)  R  is a quasi-Dedekind ring . 
4)  R  is a purely quasi-Dedekind ring . 
5)  R  is a purely prime ring . 
6)  R  is a prime ring .  
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Proof.  
(1) (2) (3)⇔ ⇔ : Follows by [11, Coro 2.3.20] . 
(3) (4)⇔ : Clear .  
(4) (5)⇒ : Clear .  
(5) (4)⇒ : Assume that R is purely prime , and since R is regular, then R is prime. But R is uniform, 
so by [14, The 3.11, P.37] R is quasi-Dedekind, hence R is a purely quasi-Dedekind ring .    
(5) (6)⇔ : Clear .     
 
Proposition 3.8. Let  M  be an R-module. If M is embedded in each of its nonzero pure submodule 
then  M  is a purely prime R-module .  
 
Proof. Suppose that N is a nonzero pure submodule of M . It is known that . R Rann M ann N⊆
On the other hand, let then  rN = 0. But M is embedded in N (by hypothesis), so  there 
exists a monomorphism 

Rr ann N∈
:f M ⎯⎯→N , thus ( ) ( ) 0f rM rf M rN= ⊆ =  implies  (since f  is 

monomorphism ), so 
0rM =

Rr ann M∈ and  Rann M ann NR= . Hence M is a purely prime  
R-module .          
 
Corollary 3.9. Let M be a uniform regular R-module such that M is embedded in each of its nonzero 
pure submodule then M is a quasi-Dedekind R-module and hence it is a purely quasi-Dedekind R-
module . 
 
Proof. Follows by (Prop 3.8) and (Prop 3.4) .       
  
    Recall that an R-module M is said to be weak cancellation if, for any two ideals A , B of R with 
AM = BM implies that . And recall that an R-module M is cancellation if 
M  is weak cancellation and faithful [6] .  

RA ann M B ann M+ = + R

 
    Mijbass A.S. in [13, P.62 , P.63] introduce the following two results : 
 
Theorem 3.10. Let M be an R-module and  let N be a pure in M with . If N is        
a weak cancellation R-module then M is a weak cancellation R-module .  

R Rann N ann M=

 
Corollary 3.11. Let M be an R-module and  let N  be a pure in M with . If N is       
a cancellation R-module then M is a cancellation R-module .  

R Rann N ann M=

 
    We end this section by the following two corollaries . 

 
Corollary 3.12. Let  M  be a purely prime R-module and  let N be a pure in M. If N  is a weak 
cancellation R-module then  M is a weak cancellation R-module .  
  
Proof. Follows by (Th 3.10) .    
 
Corollary 3.13. Let M be a purely prime R-module and let N be a pure in M. If N is a cancellation 
R-module then  M  is a cancellation R-module .  
 
Proof. Follows by (Coro 3.11) .        
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    : المستخلص
يّ يسم                  R ى المقاس الجزئ Nاس ة M  من المق ى الحلق RIN عل N IM= ∩ ان  ي النقي أذا ك اس الجزئ  لكل  بالمق

ي ،  معكوس النقي-منا المقاس الجزئي شبهّفي بحثنا ھذا قد . Rمثالي  اس الجزئ Mحيث أن المق N I اس سمى R  من الحلقة  من المق  ي
M  كان معكوس نقي أذا-شبه Nي شبه )وس أي  معك- مقاس جزئي نقي ومقاس جزئ ,Rm M N M ) 0Ho سم . = اس ّي  ى المق

Mنقي  ديديكاندي نقي أذا كان كل مقاس جزئي غير صفري -بأنه مقاس شبه N من جانب أخر نحن  . معكوس -ھو مقاس شبه  من
ّأيضا قد ان R على الحلقة Mى المقاس ّث يسمحي،  النقيالأوليى المقاس ّمنا مفھوم أخر من المقاسات يسمً ي أذا ك  بأنه مقاس أولي نق

تالف 
R

M N N M صفري نقي  لكل مقاس جزئي غير من اھيم   .تالف  =  ذه المف .  لقد أعطينا العديد من الخواص الأساسية المتعلقة بھ
Mلقة في ھذا البحث الح. كذلك درسنا العلاقات بين ھذه المفاھيم وأنواع عديدة أخرى من المقاسات  RR د ة بمحاي ا و   ھي أبدالي ً  مقاس

R.     R على ًأحاديا
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