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Abstract . An R-submodule N of an R-module M is called pure if IN =N nIM for every ideal I of
R . In this paper we introduce the notion of purely quasi-invertible submodule and a purely quasi-
Dedekind module, where an R-submodule N of an R-module M is called purely quasi-invertible if, NV is
pure and Hom ,(M /N ,M )=0. And an R-module M is called purely quasi-Dedekind if, every nonzero

pure submodule N of M is quasi-invertible ; that is Hom,(M /N ,M)=0. Beside these, we also
introduce the notion of purely prime module, where an R-module M is called purely prime module if
ann,M =ann,N for all nonzero pure submodule N of M .We gave many properties related with this

concepts. And we studied the relationships between these concepts and several other types of modules.
In this paper R is a commutative ring with unity and M is a unitary R-module .
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0. Introduction

Let R be a ring and M be a unital R-module. If N is a submodule of M, we write N <M and if N
is an essential submodule of M then we write N <, M , also if N is a direct summand of M then we

write N <® M . Recall an R-submodule N of an R-module M is called pure if IV =N ~IM for every
ideal 7 of R [5], [10], and N is called quasi-invertible if, Hom ,(M /N ,M )=0 [14] . And an R-module

M is called quasi-Dedekind if, each nonzero submodule of M is quasi-invertible [14] . And an
R-module M is called prime module if ann,M =ann,N for all nonzero submodule N of M [8] .

Ghawi Th.Y. in [11] introduced the concepts of essentially quasi-invertible submodules and
essentially quasi-Dedekind modules as a generalization of quasi-invertible submodules and quasi-
Dedekind modules, where a submodule N of an R-module M is called essentially quasi-invertible if
N £, M and N is quasi-invertible, and M is called essentially quasi-Dedekind if every essential

submodule of M is quasi-invertible .

This paper has been organized on three sections. In section 1, we generalized the concept of quasi-
invertible submodule to a purely quasi-invertible submodule, where a submodule N of a module M is
called purely quasi-invertible if N is a pure and quasi-invertible submodule. We give some basic
properties of this class of submodules.
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In section 2, we introduce the concept of a purely quasi-Dedekind module as a generalization to
concept a quasi-Dedekind module, where an R-module M is called purely quasi-Dedekind if, every
nonzero pure submodule of M is quasi-invertible . We prove that if M a purely quasi-Dedekind
module with M /K is projective for all pure submodule K of M then M /N is a purely quasi-

Dedekind module, for all N <M . Also, we show by an example a direct sum of purely quasi-
Dedekind modules need not be a purely quasi-Dedekind module (see Ex 2.14) . On the other hand
we give a condition under which the direct sum of purely quasi-Dedekind modules is a gain purely
quasi-Dedekind ( see Prop 2.15) .

Finally, in section 3, we introduce and study the concept purely prime module as a generalization
of prime module, where an R-module M is called a purely prime module if ann,M =ann,N for all

nonzero pure submodule N of M . We see that every prime module is a purely prime module, but the
converse is not true. Also we give some equivalent formulas and results of this concept .

1. Purely Quasi-Invertible Submodules

Firstly, we recall that an R-submodule N of an R-module M is pure if, IN =N nIM for every
ideal 7 of R [5], [10] . Mijbass A.S. in [14] introduced the following concept, an R-submodule N of
an R-module M is called quasi-invertible if, Hom,(M /N ,M )=0. And an ideal J of a ring R is called

quasi-invertible if J is a quasi-invertible R-submodule. In this section we introduce and study a
generalization of the concept a quasi-invertible submodule namely " purely quasi-invertible " .

Definition 1.1. An R-submodule N of an R-module M is called purely quasi-invertible if N is pure
and Hom,(M /N ,M )=0. And an ideal / of a ring R is called purely quasi-invertible if [/ is a purely

quasi-invertible R-submodule . It is clear that every purely quasi-invertible submodule is a quasi-
invertible submodule . The following example shows that the converse is false .

Example 1.2. Let R be an integral domain and let R =R|[x, v ] be the polynomial ring of two
independent variables x and y , then R is also an integral domain . Let / = (x,y) is the ideal of R
generated by x and y , so by [14, Ex 1.3(1), P.6] / is quasi-invertible. But / is not pure of R , thus / is
not purely quasi-invertible; To see this: Let R =Z, R =z[x,y], let I = (x ,y) ={xf, +yf, :f\.f, €R},
thus by [14, Ex 1.3(1), P.6] I is quasi-invertible . Now, Let J ={/ eR:f (x,y)=a ,ae2Z} then

JI ={axf,+ayf, :f.f, R} = {0} =1 NJ R ;that is I not pure, hence / is not purely quasi-invertible .

Remarks and Examples 1.3.

1) In any nonzero module M. 0 is not purely quasi-invertible, but M is a purely quasi-invertible
submodule .

2) If Nis a proper direct summand of an R-module M then N is pure by [21], but not quasi-
invertible, since there exists 0K <M suchthat M =K ®N and
Hom (M /N ,M )=Hom (K ®N /N ,K ®N)=Hom,(K,K ®N)#0.

Recall that an R-module M is called semisimple if, every submodule of M is a direct summand of
M 12,P.189].



3) If M is a semisimple module, then M is the only purely quasi-invertible submodule of M ;
since every proper submodule of M is direct summand; that is pure not quasi-invertible
(see Rem.and.Ex 1.3(2)) .

4) Let M =Z, as Z-module , N =(2)is not a purely quasi-invertible submodule of Z, as
Z-module . In fact N is not quasi-invertible , since Hom,(Z,/(2),Z,)=Z,#0. Also, N
is not pure, since 2=21e(2)n2(Z,) but 2¢2(2).

5) If N is a purely quasi-invertible R-submodule of an R-module M, then ann,M =ann,N .
Proof. Follows by [14, Prop 1.4, P.7]. [

However, the converse of (Rem.and.Ex 1.3(5)) is not true as the following example shows:
Consider Z-moduleZ ®Z,,let N =2Z ®Z,<Z ®Z,, then ann,(Z ®Z,)=ann,(2Z ®Z,)=0

but N =27 @ Z, is not purely quasi-invertible of Z @ Z, as Z-module. In fact N is not pure,
since (2,2)=2(1,1)e 2QZ ®Z,)n2(Z ®Z,) but (2,2)g22Z ®Z,).

6) Let/ be anideal of aring R . If 7 is purely quasi-invertible then ann, (/)=0 .
Proof. Obvious . [

The converse of (Rem.and.Ex 1.3(6)) is not true in general, consider the following example:
Let R=2Z,let]=2Z then ann,(I)=ann,(2Z)=0, but/is not pure of Z, since J = 4Z be an ideal of

Zand JI =(4Z)(2Z)=8Z #4Z =(2Z)n(4Z)=1 nJZ , so it is not purely quasi-invertible ideal of Z.

7 If M =M, ®M, is an R-module and let K be a purely quasi-invertible in M, for some ; -1 ,

then it is not necessarily that K is a purely quasi-invertible submodule of M ;
For example: In the Z-moduleZ ® Z,, K =Z, is a purely quasi-invertible submodule of Z, as

Z-module , but Z, = (0)® Z, which is not a purely quasi-invertible submodule of Z @ Z, as
Z-module, since Hom ,(Z ®Z,/(0)®Z,,Z ®Z,)=Hom,(Z,Z ®Z,)#0;thatis (0)®Z, not
quasi-invertible .

Remark 1.4. We do not whether the intersection of purely quasi-invertible submodules is purely
quasi-invertible.

Recall that an R-module M has the pure intersection property (briefly PIP) if, the intersection of
any two pure submodules is again pure [3, def 2.1, P.33] .

Now we can introduce the following result .

Proposition 1.5. Let M be an R-module has PIP. If N, N, are purely quasi-invertible submodules
of M then N,N, is also.

Proof. Since M has PIP then N, "N, is pure in M. But it is easy to see that
Hom(M/N, "N,,M) c Hom(M/N,,M)+ Hom(M/N,,M) . Hence Hom(M /N, "N,,M)=0 and so
that N, NN, is apurely quasi- invertible submodule of M. [



Recall that an R-module M is called multiplication if, for each submodule N of M, N =IM
for some ideal / of R . Equivalently, M is multiplication if, for each submodule N of M,
N =[N :M M ,where [N :M ]|={reR:rM < N} [19].

Corollary 1.6. Let M be a multiplication R-module. If N;,N; are purely quasi-invertible submodules
of M then N, "N, isalso.

Proof. Follows by [3, Prop 2.3, p.33] and (Prop 1.5). [
However, the following results (1.5) , (1.6) gives necessary conditions for make (Rem 1.4) is true .

Remark 1.7. Let M be an R-module and let N be a purely quasi-invertible submodule of M. If
K <M such that K = N then it is not necessarily that K is a purely quasi-invertible submodule of
M. We can give the following example show that .

Example 1.8. Let M = Z as Z-module, let N = Z be a submodule of M, then N is a purely quasi-
invertible submodule of M, but K =2Z =7 =N 1is not a purely quasi-quasi-invertible submodule
of M . In the fact K = 2Z is not pure in M .

Remark 1.9. Let M,;, M, be R-modules and let f :M,—— M, be R-homomorphism . If N is
a purely quasi-invertible submodule of M, then not necessary that the image of N is a purely
quasi-invertible submodule of M; . For example : Consider Z-modules Z,,Z . Let f : Z,—— Z,
be Z-homomorphism define by f (; )= 2x forall x €Z - Let N = Zg , it is well known that Nis a

purely quasi-invertible submodule of Zs as Z-module, but /(N )=f (Z,)= {6,5} = (E) is not
purely quasi-invertible submodule of Z, as Z-module (see Rem.and.Ex 1.3(4)) .

Recall that a nonzero R-module M is called a rational extension of the R-submodule N of M if, for
all m,m,eM ,m, #0 there exists an element » € R such that rm, e N and mm, #0 [20] . And

recall that an R-module M is regular if for all a € M and for all » € R , there exists x € R such that
rxra = ra . Equivalently, every submodule of M is pure [7] .

Proposition 1.10. Let M be a module over regular ring R and let N <M . If M is a rational
extension of N then N is a purely quasi-invertible submodule of M .

Proof. Since M is a rational extension of N then by [14, Prop 3.3, P.14] N is a quasi-invertible
submodule of M . On the other hand, since R is a regular ring then M is a regular R-module ; that is
every submodule of M is pure, thus N is a purely quasi-invertible submodule of M. [

Recall that an R-submodule N of an R-module M is called small ( briefly N <M ) if, for all
K <M with N+K = M implies K = M [ 12, P.106] . And recall that an R-submodule N of R-
module M is called SQI-submodule if, for each /' € Hom (M /N ,M ) then f (%) is a small in M
[17, p.44] .

Remark 1.11. It is clear that every quasi-invertible submodule is SQI-submodule, hence every

purely quasi-invertible submodule is SQI-submodule. But the converse is not true in general, the
following example shows .



Example 1.12. Let M = Z, as Z-module and let N = (E) <M . Then N is SQI-submodule of Z,,
but it is known that NV is not a purely quasi-invertible submodule of Z, (See Rem.and.Ex 1.3(4)).

We end this section by the following theorem .

Theorem 1.13. Let M be a faithful multiplication over integral domain R . If N is a pure
submodule of M then [N : M ] is a purely quasi-invertible ideal of R .

Proof. Assume that N is a pure submodule of M . Since M be a faithful multiplication R-module, so
by [4, Coro 1.2, P.65] [N :M ] is a pure ideal of R. But R is an integral domain, hence by [14, Ex

1.3(1), P.6] every nonzero ideal of R is quasi-invertible,thus [N : M ] is a quasi-invertible ideal of R.
Hence [N : M ] is a purely quasi-invertible ideal of R . [

2. Purely Quasi-Dedekind Modules

Recall that an R-module M is called quasi-Dedekind if, every nonzero submodule of M is quasi-
invertible; that is Hom , (M /N ,M )=0 for all nonzero submodule N of M [14, P.24] . In this section

we give generalization of the concept a quasi-Dedekind module namely " purely quasi-Dedekind
module ". We list some basic properties of purely quasi-Dedekind modules. Also we give a
characterization of this concept. We study the relationships between a purely quasi-Dedekind
modules with other related modules .We begin with the following definition :

Definition 2.1. An R-module M is said to be purely quasi-Dedekind if, every proper nonzero pure
submodule of M is quasi-invertible. And a ring R is called purely quasi-Dedekind if R is a purely
quasi-Dedekind R-module .

It is clear that every quasi-Dedekind R-module is a purely quasi-Dedekind R-module . But the
converse may note be, as the following example shows :

Example 2.2. Consider Z-module Z,, it is clear that Z, is purely quasi-Dedekind , since Z, as Z-

module has no proper pure submodule. But it is not quasi-Dedekind , since (E) <Z, and
Hom,(Z,/(2).Z,)=Z, #0.

Remarks and Examples 2.3.
1) Every simple R-module is a purely quasi-Dedekind R-module .

2) Every nonzero semisimple and (not simple) module is not a purely quasi-Dedekind module.
In particular Z, as Z-module is semisimple and (not simple) but it is not purely quasi-Dedekind .

3) Every integral domain R is a quasi-Dedekind R-module [14, Ex 1.4(1), P.24], so it is a purely
quasi-Dedekind R-module. But the converse need not be in general; For example: Let M =Z, as

Z ,-module, then Z, is purely quasi-Dedekind, but Z, is not an integral domain .

4) Z as Z-module is purely quasi-Dedekind . 0, Z are the only pure submodules of Z .



5) Let M be a regular R-module . Then M is purely quasi-Dedekind if and only if M is quasi-
Dedekind .
Proof. Clear. [J

6) Let M be a module over regular ring R. Then M is purely quasi-Dedekind if and only if
M is quasi-Dedekind .
Proof. Follows by (Rem.and.Ex 2.3(5)) and since every module over a regular ring is regular . []

7) If M is a purely quasi-Dedekind R-module then ann,N =ann,M for all nonzero pure

submodule N of M .
Proof. Follows by ( Rem.and.Ex 1.3(5)). [

Proposition 2.4. Let M be an R-module with R =R /J , where J is an ideal of R such that
J cann,M . M is a purely quasi-Dedekind R-module if and only if M is a purely quasi-Dedekind

R -module .

Proof. We have by [12, P.51] Hom (M /N ,M )= Hom_(M /N ,M ) for all submodule N of M .
Thus the result is obtained . [

Proposition 2.5. Let M be a uniform R-module with ann,M is a maximal ideal of R, then M is
a purely quasi-Dedekind R-module .

Proof. Follows by [11, Coro 1.2.10 and (Rem.and.Ex 1.2.2(5))]. [l

Theorem 2.6. Let M be an R-module. If M is purely quasi-Dedekind then for allf' € End, (M ) and
Kerf is a pure submodule of M implies f=0.

Proof. Let f € End, (M) and Kerf is a pure submodule of M . Suppose that f* # 0, define

g :M/Kezf ——>M by g(m+Kerf)=f (m) forall m e M . Itis easy to see that g is Well-
defined and g # 0 (since f #0) . Hence Hom (M /Kerf ,M )# 0 which is a Contradiction. [

Proposition 2.7. Let M be an R-module such that for all pure submodule N of M, and for all
K <M suchthat N <K <M implies K is pure in M . If for all f € End,(M ) , Kerf is a pure

submodule of M implies = 0, then M is a purely quasi-Dedekind R-module .

Proof. Suppose that there exists 0#N <M , N is pure such that Hom,(M /N ,M)=0; that is
there exists R-homomorphism f :M /N —— M and f # 0. Now, consider the following diagram :
M —=>M /N —— M , where 7 is the canonical projection map. Let ¢=for ,s0 ¢pe End, (M) ,
but N < Ker¢g and N is a nonzero pure submodule of M, thus Ker¢ is a nonzero pure submodule
of M (by hypothesis) . On the other hand ¢(M )=f (M /N) =0 which is a contradiction . [}



We will need the following lemma for the proof next proposition .

Lemma 2.8. Let M;, M, be R-modules and let /' : M, ——> M , be R-epimorphism . If Nis a pure
submodule of M, then f ~'(N) is a pure submodule of A .

Proof. Assume that 7 is anideal of R, then I.f '(N)=f "'(IN)=f"'(N nIM ,) =
NN UM ) =f "(NYnTf ' (M) =f "' (N)nI.M,, since f'is epimorphism . Thus /' ~'(N)
is a pure submodule of AM;. []

Now, we can introduce the following proposition .

Proposition 2.9. Let M; , M, be R-modules such that M, is isomorphic to M, . Then M, is
purely quasi-Dedekind if and only if M, is purely quasi-Dedekind .

Proof. Suppose that M, is a purely quasi-Dedekind R-module. Since M, =M ,, so there exists
f :M,——> M, be R-isomorphism. Let N be a nonzero pure submodule of M, thus

by above lemma f ~'(N) is a nonzero pure submodule of M}, s0 Hom (M, /f "'(N ),M,)=0.

But Hom , (M ,/N ,M,)=(Hom,(M,/f (N ),M,),since M, =M ,. Thus Hom,(M,/N ,M,)=0

for all nonzero pure submodule N of M, . Therefore M, is purely quasi-Dedekind .
The proof of the converse is similarly . [

Remark 2.10. Let M be a purely quasi-Dedekind R-module and N <M then not necessary that
M /N is a purely quasi-Dedekind R-module, as the following example shows .

Example 2.11. It is know that Z as Z-module is purely quasi-Dedekind, let N =6Z <Z . But
Z /67 = 7, is not a purely quasi-Dedekind as Z-module ( see Rem.and.Ex 2.3(2)) .

Now, we shall give a necessary condition under which the (Rem 2.10) is true .

Proposition 2.12. Let M be a purely quasi-Dedekind R-module with %is projective for all pure

submodule K of M, then % is a purely quasi-Dedekind R-module forall N <M .

Proof. Let N <M .If N =0, then nothing to prove . Now, let 0 # N <M . Suppose that %

. M 4, U . .
is a pure submodule of vk then by ( Lemma 2.8) 7 (V) is a pure submodule of M , where 7 is
the canonical projection map, so U is a pure submodule of M, hence % is projective by hypothesis.

Assume that VIS not purely quasi-Dedekind , thus there exists a nonzero R-homomorphism



f M—>ﬂ . But Hom, (M,ﬂ =~ Hom,, (K,M) , so there exists R-homomorphism
U/N N U/N N U’'N
M
g :———>M suchthat 7og =f . M
U -
U
g.” Jf
» M
M >— >()
T N

g #0 (since f #0), thus Hom, (%,M )% 0, Uis pure . Hence M is not a purely quasi-Dedekind

L - M : .
R-module which is a contradiction . Therefore i must to be a purely quasi-Dedekind R-module . []

Remark 2.13. Let M be an R-module and N <M . If M /N is a purely quasi-Dedekind R-module
then not necessary that M is a quasi-Dedekind R-module; For example: Consider Z-module Z,
N = (E) <Z,. Then Z, / (E) = 7, is a purely quasi-Dedekind as Z-module, but Z, is not a purely
quasi-Dedekind as Z-module (see Rem.and.Ex 2.3 (1), (2)) .

The following example shows the direct sum of purely quasi-Dedekind modules is not necessary
that a purely quasi-Dedekind module .

Example 2.14. Each of Z,, Z; as Z-module is purely quasi-Dedekind (see Rem.and.Ex 2.3(1)), but
Z,®Z, =7, isnot a purely quasi-Dedekind as Z-module .

Now, we gives a condition under which the direct sum of purely quasi-Dedekind modules is also
purely quasi-Dedekind in the next proposition .

Proposition 2.15. Let M and N be a purely quasi-Dedekind R-modules with ann,M +ann,N =R
then M @ N is a purely quasi-Dedekind R-module .

Proof. Assume that K is a pure submodule of M @N . And since ann,M +ann,N =R then by
same way of the proof of [1, Prop 4.2, Ch.1] K =K, ®K,, where K, <M and K, <N .But
K, <® K and K, <® K then by [21] K;, K> are pure in K, but K is pure in M @ N by hypothesis, then

K; is pure in M and K is pure in N; to show this : Assume that there exists be an ideal / of R such that
IK,#K NIM and (IK,#K,NIN or IK, =K, "IN )then

IK =I(K,®K,)=IK,®IK, #(K, "\IM)® (K, NIN)=(K,®K,)"I(M ®N)=K "I (M ®N)
which is a contradiction . So Hom (M /K ,,M )=0 and Hom,(N /K,,N)=0, since M and N is
purely quasi-Dedekind . On the other hand we have Hom ,(M ®N /K ,M ®N )=

Hom,(M ®N /K, ®K,,M ®N)c Hom (M /K,,M Y~Hom,(N /K,,N)=0.Hence M @N is
a purely quasi-Dedekind R-module . [



Recall that an R-module M is scalar if, for all /' € End , (M ) then there exists » € R such that
f(x)=m forall x e M [18,P.8].

In the following proposition we shall study the endomorphism ring of purely quasi-Dedekind
module .

Proposition 2.16. Let M be a scalar R-module with ann, M is a prime ideal of R, then End , (M )
is a purely quasi-Dedekind ring .

Proof. Since M be a scalar R-module, then by [15, Lemma 6.2, P.80] End, (M )=R /ann,M ,
But ann, M is a prime, so End , (M) is an integral domain. Hence by (Rem.and.Ex 2.3(3))
End , (M) is a purely quasi-Dedekind ring . [

Corollary 2.17.1f M is a scalar and prime R-module, then End , (M )is a purely quasi-Dedekind ring .

Proof. It is clearly, since M is prime implies ann, M is a prime ideal, so the result is obtained by
( Prop 2.16) . [

Proposition 2.18. Let M be a scalar faithful R-module . End , (M )is a purely quasi-Dedekind
ring if and only if R is a purely quasi-Dedekind ring .

Proof. Suppose that M is a scalar R-module, so End,(M )= R/ann,M by [15,Lemma 6.2, P.80],
but M is a faithful, thus R /ann,M =R, s0 End,(M)=R . Hence we have on the result . [

Corollary 2.19. Let M be a finitely generated multiplication faithful R-module . End , (M )is a
purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring .

Proof. Since M is a finitely generated multiplication R-module, then by [16, The.3.2] M is scalar
R-module; that is M is a scalar faithful R-module, thus by (Prop 2.18) the result is obtained . [

Recall that an R-module M is called quasi-prime if ann,N is a prime ideal of R for each
0N <M [2,def 1.2.1].

Proposition 2.20. Let M be a quasi-injective scalar and quasi-prime R-module then End, (N ) is
a purely quasi-Dedekind ring forall 0 #N <M .

Proof. Assume that 0# N <M . Since M is a quasi-injective scalar R-module, then by
[18, Prop 1.1.16] N is a scalar R-module, thus End, (N )= R Jann,N by [15, Lemma 6.2, P.80].

But M is a quasi-prime R-module , so ann, N is a prime ideal of R; that is End, (N )= R [ann,N
is an integral domain . Hence by (Rem.and.Ex 2.3(3)) End, (N )is a purely quasi-Dedekind ring . [



We end this section by the following two corollaries .

Corollary 2.21. If M is an injective scalar and quasi-prime R-module then End ,(N) is a purely
quasi-Dedekind ring forall 0N <M .

Proof. Obvious . [

Corollary 2.22. Let M be a quasi-injective scalar R-module and let 0 # N <M be a faithful R-
module. Then End , (N )is a purely quasi-Dedekind ring if and only if R is a purely quasi-Dedekind ring

Proof. Follows by [18, Prop 1.1.16] and (Prop 2.18). [

3. Purely Prime Modules

Recall that an R-module M is called prime if, ann,M =ann,N for all nonzero submodule N of M
[8] . In this section we see that if M is purely quasi-Dedekind then ann,M =ann,N for all nonzero

pure submodule N of M (Prop 3.2). This leads us to introduce many of important statement to this
concept with other concepts in this section . We start this section with the following definition :

Definition 3.1. An R-module M is said to be purely prime if, ann,M =ann,N for all nonzero pure
submodule N of M .

It is clear that every prime module is a purely prime module, but the converse need not be in general;
for example : Z, as Z-module is purely prime . In fact Z, has no proper nonzero pure submodule as

Z-module, but it is not prime as Z-module, since (2)< Z 4> anny (2)=27Z #4Z =ann,(Z,).

Proposition 3.2. Every purely quasi-Dedekind module is a purely prime module .

Proof. Follows by (Rem.and.Ex 2.3(7)). [

Proposition 3.3. Let M be an R-module. Then M is a purely prime R-module if and only if M is
a purely prime R -module, where R =R Jann, M .

Proof. =) Suppose that N is a nonzero pure R -submodule of M . It is easy to see that N is

a nonzero pure R-submodule of M . Let I be an ideal of E, so it is also ideal of R, thus
IN =N NIM hence N is a pure R-submodule of M, so that ann,M =ann,N . Now, it is clear that

annzM cann_N , beside let r +ann-M € ann N then rN = 0;thatis r eann,N =ann,M ,

hence r +ann M eann M , therefore ann, M =ann,N .

<) The proof is similarly . [

10



Proposition 3.4. Let M be a uniform regular R-module. Then the following statements are
equivalent :

1) M is a prime R-module .

2) M is a purely prime R-module .

3) M is a purely quasi-Dedekind R-module .

4) M is a quasi-Dedekind R-module .

Proof.

(1)< (2): Clear.

(3) = (2): Follows by (Prop 3.2) .

(2) = (3) : Suppose that M is purely prime, and since M is regular , so M is prime; that is M is prime
uniform, thus by [14, The 3.11, P.37] M is quasi-Dedekind and hence M is purely quasi-
Dedekind .

(3) & (4) : Follows by (Rem.and.Ex 2.3(5)). [

Corollary 3.5. Let M be a multiplication uniform regular R-module. Then
De@e@)eo@=G)=0)=()

1) M is a prime R-module .

2) M is a purely prime R-module .

3) M is a purely quasi-Dedekind R-module .

4) M is a quasi-Dedekind R-module .

5) End (M) is an integral domain .

6) End, (M) is a quasi-Dedekind ring .

7) End , (M) is a purely quasi-Dedekind ring .

Proof.

1)< (2) < (3) < (4): Follows by (Prop 3.4) .
(4) < (5) : Follows by [11, Prop 2.1.27] .

(5) < (6) : Follows by [11, Rem.and.Ex 1.1.2(7)]
(6)=(7): Clear. [I

Recall that an R-module M is monoform if for each N <M and for each /' € Hom ,(N ,M ),
f #0 implies Kerf=0 [22].

Remark 3.6. Every monoform module is a purely quasi-Dedekind module and hence it is a purely
prime module .

The converse of above remark is not true in general; for example : Consider Z-module Z © Z
then it is known that is purely prime, since it is prime. ButZ @ Z is not monoform as Z-module.

Proposition 3.7. Let M be a uniform regular ring. Then the following statements are equivalent :
1) R is a monoform ring .

2) R is an integral domain .

3) R is a quasi-Dedekind ring .

4) R is apurely quasi-Dedekind ring .

5) R is apurely prime ring .

6) R is a prime ring .

11



Proof.

(1)< (2) < (3): Follows by [11, Coro 2.3.20] .

3) < (4): Clear .

(4)=(5) : Clear .

(5) = (4) : Assume that R is purely prime , and since R is regular, then R is prime. But R is uniform,
so by [14, The 3.11, P.37] R is quasi-Dedekind, hence R is a purely quasi-Dedekind ring .

(5) < (6): Clear. [

Proposition 3.8. Let M be an R-module. If M is embedded in each of its nonzero pure submodule
then M is a purely prime R-module .

Proof. Suppose that N is a nonzero pure submodule of M . It is known thatann ,M cann,N .

On the other hand, let » eann,N then rN = 0. But M is embedded in N (by hypothesis), so there
exists a monomorphism f :M ——>N , thus f (oM )=1 (M )crN =0 implies ¥M =0 (since [ is
monomorphism ), so » eann, M and ann,M =ann,N . Hence M is a purely prime

R-module . [

Corollary 3.9. Let M be a uniform regular R-module such that M is embedded in each of its nonzero

pure submodule then M is a quasi-Dedekind R-module and hence it is a purely quasi-Dedekind R-
module .

Proof. Follows by (Prop 3.8) and (Prop 3.4) . []

Recall that an R-module M is said to be weak cancellation if, for any two ideals 4 , B of R with
AM = BM implies that 4 +ann,M =B +ann,M . And recall that an R-module M is cancellation if

M is weak cancellation and faithful [6] .
Mijbass A.S. in [13, P.62 , P.63] introduce the following two results :

Theorem 3.10. Let M be an R-module and let N be a pure in M with ann,N =ann,M . If N is
a weak cancellation R-module then M is a weak cancellation R-module .

Corollary 3.11. Let M be an R-module and let N be a pure in M with ann,N =ann, M . If N is

a cancellation R-module then M is a cancellation R-module .
We end this section by the following two corollaries .

Corollary 3.12. Let M be a purely prime R-module and let N be a pure in M. If N is a weak
cancellation R-module then M is a weak cancellation R-module .

Proof. Follows by (Th 3.10).

Corollary 3.13. Let M be a purely prime R-module and let N be a pure in M. If N is a cancellation
R-module then M is a cancellation R-module .

Proof. Follows by (Coro 3.11) . [
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