2006 (1) (11)

Principally Pseudo-Injective Modules

By

Akeel Ramadan Mehdi Al-Yassiri College of Education / Al-Qadisiyah University Email: akeel_math@yahoo.com

Abstract

The concepts of pseudo-injective modules and principally quasi-injective modules are generalized in this paper to principally pseudo-injective modules . Many characterizations and properties of principally pseudo-injective modules are obtained. Relationships between principally pseudo-injective modules and other classes of modules are given for example we proved that for each integer $n \ge 2$, then M^n is principally pseudo-injective R-module if and only if M is principally quasi-injective R-module. New characterizations of semi-simple Artinian ring in terms of principally pseudo-injective modules are introduced. Endomorphisms ring of principally pseudo-injective modules are studied.

§0:- Introduction

Throughout this paper, R will denote an associative, commutative ring with identity, and all R-modules are unitary (left) R-modules. Given two R-modules M and N. M is called pseudo-N-injective if for any R-submodule A of N and every R-monomorphism from A into M can be extended to an R-homomorphism from N into M [16] . An R-module M is called pseudo-injective if M is pseudo-M-injective[19]. An R-module M is called principally N-injective if for any cyclic R-submodule A of N and every R-homomorphism from A into M can be extended to an R-homomorphism from N into M. An R-module M is called principally quasi-injective (or semi-fully stable[2]) if M is principally M-injective[14]. An R-module M is called p-injective if for each R-injective[13]. An R-module M is called pointwise injective if for each R-homomorphism fr.A \rightarrow B (where A and B are two R-modules), each R-homomorphism g:A \rightarrow M and for each a \in A , there exists an R-homomorphism ha:B \rightarrow M (ha may depend on a) such that (ha \circ f)(a)=g(a) [8].An R-module M is

1

2006	(1)	(11)
------	-----	------

pointwise injective if and only if M is principally N-injective for every R-module N [8].An R-module M is called pointwise ker-injective if for each R-monomorphism $f:A \rightarrow B$ (where A and B are R-modules), each R-homomorphism g:A \rightarrow M and for each a \in A, there exist an R-monomorphism α :M \rightarrow M and R-homomorphism $\beta_a: B \to M$ (β_a may depend on a) such that ($\beta_a \circ f$)(a)=($\alpha \circ g$)(a) [12]. An R-monomorphism f:N \rightarrow M is called p-split if for each a \in N, there exists an R-homomorphism $g_a: M \rightarrow N$ (g_a may depend on a) such that $(g_a \circ f)(a) = a$ [8]. An R-monomorphism f:N \rightarrow M is called pointwise ker-split if for each a \in N, there exist an R-monomorphism $\alpha: N \rightarrow N$ and an R-homomorphism $g_a: M \rightarrow N$ (g_a may depend on a) such that $(g_a \circ f)(a) = \alpha(a)$ [12]. Recall that an R-module M is fully stable (fully p-stable) if for each R-submodule N of M and each R-homomorphism (resp. R-monomorphism) f:N \rightarrow M, then f(N) \subseteq N [1].A ring R is called Von Neumann regular(in short, regular) if for each $a \in R$, there exsits $b \in R$ such that a=aba. For an R-module M, J(M), E(M) and $S=End_R(M)$ will respectively stand for the Jacobson radical of M the injective envelope of M and the endomorphism ring of M. Hom_R(N,M) denoted to the set of all R-homomorphism from R-module N into R-module M . For a submodule N of an R-module M and $a \in M$, $[N:a]_R = \{r \in R \mid ra \in N\}$. For an R-module M and $a \in M$, then $ann_R(a)$ denoted to the set $[(0):a]_R$. A submodule N of an R-module M is called essential and denoted by $N \subset^{e} M$. if every non zero submodule of M has non zero intersection with N. An R-module M is called uniform if every non zero R-submodule of M is essential.

§1:- Principally pseudo-N-injectivity

In this section we introduced the concept of principally pseudo-N-injective modules as generalization of both pseudo-N-injective modules and principally N-injective modules.

Definition(1.1):- Let M and N be two R-modules. M is said to be principally pseudo-N-injective (in short, p-pseudo-N-injective) if for any cyclic R-submodule A of N and any R-monomorphism f: $A \rightarrow M$ can be extended to an R-homomorphism form N to M . An R-module M is called principally pseudo-injective (in short , p-pseudo-injective) if M is principally pseudo-M-injective . A ring R is called principally pseudo-injective R-module .

2006 (1)	(11)
----------	------

Examples and remarks(1.2):-

(1) All principally quasi-injective modules (also,pseudo-injective modules) are trivial examples of p-pseudo-injective modules.

(2) The concept of p-pseudo-injective modules is a proper generalization of both pseudo-injective modules and principally quasi-injective modules ; for examples :-

i-) Let $R=Z_2[x,y]/(x^2,y^2)$ be the polynomial ring in two indeterminates x,y over Z_2 modulo the ideal (x^2,y^2) . Since R is a principally quasi-injective ring [1] thus by (1) above we have R is p-pseudo-injective. Assume that R is a self pseudo-injective ring. Since R is a Noetherian ring, thus by [5] R is a self-injective ring and this contradiction since R is not self-injective ring [4]. Therefore R is p-pseudo-injective ring is not self-pseudo-injective.

ii-) Let R be an algebra over Z_2 having basis $e_1, e_2, e_3, n_1, n_2, n_3, n_4$ with the following multiplication table :-

	e ₁	e ₂	e ₃	n ₁	n ₂	n ₃	n ₄
e ₁	e_1	0	0	n_1	n ₂	0	0
e ₂	0	e_2	0	0	0	0	0
e ₃	0	0	e ₃	0	0	n ₃	n ₄
n ₁	0	n_1	0	0	0	0	0
n ₂	0	0	n ₂	0	0	0	0
n ₃	n ₃	0	0	0	0	0	0
n ₄	0	n ₄	0	0	0	0	0

Let $M = Re_2$, then by [9] we have that M is pseudo-injective R-module is not quasi-injective R-module. By (1) above we have M is p-pseudo-injective R-module. Since every R-submodule of M is cyclic[3], thus M is not principally quasi-injective R-module. Therefore M is p-pseudo-injective R-module is not principally quasi-injective.

(3) The examples (**i**) and (**ii**) in (2) are showed that the concept of p-pseudo-N-injective modules is a proper generalization of both pseudo-N-injective modules and principally N-injective modules, respectively.

(4) Every pointwise injective R-module is p-pseudo-N-injective, for all R-module N and so every pointwise injective R-module is p-pseudo- injective.

(5) Every p-injective R-module is p-pseudo-R-injective.

(6) Isomorphic R-module to p-pseudo-N-injective R-module is p-pseudo-N-injective, for any R-module N.

(7) If N_1 and N_2 are isomorphic R-modules and M is a p-pseudo- N_1 -injective R-module , then M is p-pseudo- N_2 -injective R-module .

In the following theorem we give many characterizations of p-pseudo-N-injective modules.

Theorem(1.3):- Let M and N be two R-modules and S=End_R(M). Then the following statements are equivalent :-

(1) M is p-pseudo-N-injective.

(2) For each $m \in M$, $n \in N$ such that $ann_R(n)=ann_R(m)$, there exists an R-homomorphism g:N \rightarrow M such that g(n)=m.

(3) For each $m \in M$, $n \in N$ such that $ann_R(n) = ann_R(m)$, we have $Sm \subseteq Hom_R(N,M)n$.

(4) For each R-monomorphism $f:A \rightarrow M$ (where A be any R-submodule of N) and each $a \in A$, there exists an R-homomorphism $g:N \rightarrow M$ such that g(a)=f(a).

Proof:- (1) \Rightarrow (2)Let M be a p-pseudo-N-injective R-module. Let $m \in M$, $n \in N$ such that $ann_R(n)=ann_R(m)$. Define f:Rn \rightarrow M by f(rn)=rm, for all $r \in R$. It is clear that f is a well-defined R-monomorphism. Since M is p-pseudo-N-injective R-module, thus there exists an R-homomorphism g:N \rightarrow M such that g(x)=f(x) for all $x \in Rn$. Therefore g(n)=f(n)=m.

(3)⇒(4)Let f:A→M be any R-monomorphism where A be any R-submodule of N, and let a∈A. Put m=f(a), since m∈M and ann_R(m)=ann_R(a), thus by hypothesis we have Sm⊆Hom_R(N,M)a. Let I_M:M→M be the identity R-homomorphism. Since I_M∈S, thus there exists an R-homomorphism g∈Hom_R(N,M) such that I_M(m)=g(a). Thus g(a)=m=f(a).

(4)⇒(1)Let A=Ra be any cyclic R-submodule of N and f:A→M be any R-monomorphism. Since $a \in A$, thus by hypothesis there exists an R-homomorphism g:N→M such that g(a)=f(a). For each $x \in A$, x=ra for some $r \in R$, we have that g(x)=g(ra)=rg(a)=rf(a)=f(ra)=f(x). Therefore M is p-pseudo-N-injective R-module. □

|--|--|

As an immediate consequence of Theorem(1.3) we have the following corollary in which we get many characterizations of p-pseudo-injective modules.

Corollary(1.4):- The following statements are equivalent for an R-module M :-

(1) M is p-pseudo-injective.

(2) For each $n,m \in M$ such that $ann_R(n)=ann_R(m)$, there exists an R-homomorphism g:M \rightarrow M such that g(n)=m.

(3) For each $n,m \in M$ such that $ann_R(n)=ann_R(m)$, we have $Sn \subseteq Sm$ where $S = End_R(M)$.

(4) For each R-monomorphism $f:A \rightarrow M$ (where A be any R-submodule of M) and each $a \in A$, there exists an R-homomorphism $g:M \rightarrow M$ such that g(a)=f(a).

Proposition(1.5):-Let M and N be two R-modules. If M is p-pseudo-N-injective, then every R-monomorphism α :M \rightarrow N is p-split.

Proof:-Let $\alpha: M \to N$ be any R-monomorphism and $a \in M$. Define $\beta:\alpha(M) \to M$ by $\beta(\alpha(m))=m$ for all $m \in M$. β is a well-defined R-monomorphism. Since M is ppseudo-N-injective R-module and $\alpha(a) \in \alpha(M)$, thus by Theorem(1.3) there exists an R-homomorphism $h:N \to M$ such that $h(\alpha(a))=\beta(\alpha(a))$.Put $h_a=h$ and since $\beta(\alpha(a))=a$, thus $(h_a \circ \alpha)(a)=a$. Therefore α is p-split R-homomorphism. \Box

Corollary(1.6):-If M is p-pseudo-injective R-module , then every R-monomorphism α : M \rightarrow M is p-split.

It is easy to prove the following lemma by using [8, Theorem(1.2.4)].

Lemma(1.7):- An R-module M is pointwise injective if and only if every R-monomorphism $\alpha: M \rightarrow E(M)$ is p-split.

In the following proposition we get a new characterization of pointwise injective modules.

Proposition(1.8):-An R-module M is pointwise injective if and only if M is p-pseudo-E(M)-injective.

Proof:- Let M be a pointwise injective R-module. By remark(1.2(4)), then M is p-pseudo-N-injective for all R-module N. Thus M is p-pseudo-E(M)-injective R-module. Conversely, let M be a p-pseudo-E(M)-injective R-module. By proposition(1.5), every R-monomorphism α :M \rightarrow E(M) is p-split and hence by lemma(1.7), then M is pointwise injective R-module. \Box

By proposition(1.8) and [8,Proposition(2.1.1)] we have the following corollary. **Corollary(1.9) :-** Let M be a cyclic R-module. Then M is injective if and only if M is p-pseudo-E(M)-injective. In particular, a ring R is self-injective if and only if R is p-pseudo-E(R)-injective R-module.

By proposition(1.8) and [8,Corollary(2.1.5)] we have the following corollary. **Corollary(1.10):-**Let R be a principal ideal ring . Then any R-module M is injective if and only if M is p-pseudo-E(M)-injective.

Proposition(1.11):- Let N be a cyclic submodule of an R-module M. If N is p-pseudo-M-injective, then N is a direct summand of M.

Proof: Let $I_N:N \to N$ be the identity R-homomorphism . Since N is p-pseudo-M-injective R-module, thus there exists an R-homomorphism $\alpha:M \to N$ such that $\alpha(a)=I_N(a)$ for all $a \in N$. Hence $(\alpha \circ i)(a)=a$ for all $a \in N$, where i is the inclusion R-homomorphism from N into M. Thus $i:N \to M$ is split R-homomorphism and hence N is a direct summand of M [11]. \Box

An R-module M is called regular if every cyclic R-submodule of M is direct summand of M [11]. Then by proposition(1.11) we have the following corollary.

Corollary(1.12):- If every cyclic R-submodule of an R-module M is p-pseudo-M-injective, then M is a regular R-module.

R.Yue Chi Ming in [13] proved that a ring R is regular if and only if every R-module is p-injective. The following proposition is a generalization of this result.

Proposition(1.13):- The following statements are equivalent for a ring R.

(1) R is a regular ring.

(2) Every R-module is p-pseudo-R-injective,

|--|

(3) Every ideal of R is p-pseudo-R-injective R-module.

(4) Every cyclic ideal of R is p-pseudo-R-injective R-module.

Proof:-(1) \Rightarrow (2) Let R be a regular ring and M be any R-module. Let f:Ra \rightarrow M be any R-monomorphism where Ra be any cyclic ideal of R. Since R is a regular ring and a \in R, thus there exists b \in R such that a=aba. Put m=f(ba) and defined g:R \rightarrow M by g(x)=xm for all x \in R. It is clear g is an R-homomorphism. For each y \in Ra, y=ra for some r \in R , then g(y)=g(ra)=rg(a)=r(am)=raf(ba)=rf(ab)=rf(a)=f(ra)=f(y). Therefore M is p-pseudo-R-injective. (2) \Rightarrow (3) and (3) \Rightarrow (4) are obvious. (4) \Rightarrow (1) by Corollary(1.12). \Box

Proposition(1.14):- Let M and N be two R-modules. If M is p-pseudo-N-injective, then M is p-pseudo-A-injective for each R-submodule A of N.

Proof:- Let A be any R-submodule of N, B be any cyclic R-submodule of A and f:B \rightarrow M be any R-monomorphism. Let \mathbf{i}_B be the inclusion R-homomorphism from B into A and \mathbf{i}_A be the inclusion R-homomorphism from A into N. Since B is a cyclic R-submodule of N and M is p-pseudo-N-injective, thus there exists an R-homomorphism h:N \rightarrow M such that $(h \circ \mathbf{i}_A \circ \mathbf{i}_B)(b)=f(b)$, for all $b \in B$. put $g=h \circ \mathbf{i}_A: A \rightarrow M$. For each $b \in B$, then $g(b)=(h \circ \mathbf{i}_A)(b)=(h \circ \mathbf{i}_A \circ \mathbf{i}_B)(b)=f(b)$. Therefore M is p-pseudo-A-injective R-module. \Box

As an immediate consequence of proposition(1.14) we have the following corollary.

Corollary(1.15):- Let N be any submodule of an R-module M. If N is p-pseudo-M-injective, then N is p-pseudo-injective.

Proposition(1.16):- Any direct summand of p-pseudo-N-injective R-module is p-pseudo-N-injective.

Proof:- Let M be any p-pseudo-N-injective R-module and A be any direct summand R-submodule of M. Thus there exists an R-submodule A_1 of M such that $M=A \oplus A_1$. let B be any cyclic R-submodule of N and f:B \rightarrow A be any R-monomorphism. Define g:B \rightarrow M=A \oplus A₁ by g(b)=(f(b),0), for all b \in B. It is clear that g is an

R-monomorphism and since M is p-pseudo-N-injective R-module, thus there exists an R-homomorphism h:N \rightarrow M such that h(b)=g(b) for all b \in B. Let π_A be the natural projection R-homomorphism of M=A \oplus A₁ into A . Put h₁= $\pi_A \circ$ h:N \rightarrow A .Thus h₁ is an R-homomorphism and for each b \in B, then h₁(b)=($\pi_A \circ$ h)(b)= $\pi_A(g(b))=\pi_A((f(b),0))=f(b)$. Therefore A is p-pseudo-N-injective R-module. \Box

By proposition (1.16) and Corollary (1.15) we have the following corollary.

Corollary(1.17):- Any direct summand of p-pseudo-injective R-module is also p-pseudo-injective.

An R-module M satisfies (PC_2), if each cyclic submodule of M which is isomorphic to a direct summand of M is a direct summand of M [17]. The following proposition is a generalization of [10,Theorem(2.7)].

Proposition(1.18):- Any p-pseudo-injective R-module satisfies (PC₂).

Proof:- Let M be a p-pseudo-injective R-module. Let A be any cyclic R-submodule of M which is isomorphic to a direct summand submodule B of M. Since M is p-pseudo-injective, thus M is p-pseudo-M-injective. Since B is a direct summand of M, thus by proposition(1.16) B is p-pseudo-M-injective R-module. Since A is isomorphic to B, thus by remark((1,2),6) A is p-pseudo-M-injective. Since A is a cyclic R-submodule of M, thus by proposition(1.11) A is a direct summand of M. Therefore M satisfies (PC₂). \Box

§2:- Relationships between p-pseudo-injective modules and other classes of modules

Theorem(2.1):-If $M_1 \oplus M_2$ is p-pseudo-injective R-module, then M_i is principally M_j -injective for each i,j=1,2, $i\neq j$.

Proof:- Let $M_1 \oplus M_2$ be a p-pseudo-injective R-module, we show M_1 is principally M_2 -injective. Let A be any cyclic R-submodule of M_2 and $f:A \rightarrow M_1$ be any R-homomorphism. Define $g:A \rightarrow M_1 \oplus M_2$ by g(a)=(f(a),a) for all $a \in A$, then g is an

|--|--|

R-monomorphism. Since $M_1 \oplus M_2$ is p-pseudo- $M_1 \oplus M_2$ -injective R-module and $(0) \oplus M_2$ is an R-submodule of $M_1 \oplus M_2$, thus by proposition(1.14) $M_1 \oplus M_2$ is p-pseudo- $(0) \oplus M_2$ -injective R-module. Since M_2 isomorphic to $(0) \oplus M_2$, thus by remark((1.2),7) $M_1 \oplus M_2$ is p-pseudo- M_2 -injective R-module. Thus there exists an R-homomorphism $h:M_2 \rightarrow M_1 \oplus M_2$ such that h(a)=g(a) for all $a \in A$. Let $\pi_1:M_1 \oplus M_2 \rightarrow M_1$ be the natural projection R-homomorphism of $M_1 \oplus M_2$ to M_1 , put $h_1=\pi_1 \circ h:M_2 \rightarrow M_1$. Thus for each $a \in A$ we have that $h_1(a)=(\pi_1 \circ h)(a)=\pi_1(g(a))=\pi_1((f(a),a))=f(a)$. Therefore M_1 is principally M_2 -injective R-module. Consequently, M_2 is principally M_1 -injective.

The following corollary is immediately from Theorem(2.1).

Corollary(2.2):- If $\bigoplus_{i \in \Gamma} M_i$ is p-pseudo-injective R-module, then M_j is principally M_k -injective for all distinct $j,k \in \Gamma$.

Corollary(2.3):-For any integer $n \ge 2$, M^n is p-pseudo-injective R-module if and only if M is principally quasi-injective.

Proof:- Let M^n be a p-pseudo-injective R-module. Then by Corollary(2.2) M is principally M-injective and hence M is a principally quasi-injective R-module. Conversely, let M be a principally quasi-injective R-module. Then M^n is principally quasi-injective R-module [2] and hence M^n is p-pseudo-injective R-module .

In the following theorem we give a new characterization of pointwise injective modules.

Theorem(2.4):- The following statements are equivalent for an R-module M :

(1) M is pointwise injective.

(2) $M \oplus E(M)$ is principally quasi-injective R-module .

(3) $M \oplus E(M)$ is p-pseudo-injective R-module.

proof:-(1) \Rightarrow (2)Let M be a pointwise injective R-module. Since E(M) is pointwise injective R-module , thus $M \oplus E(M)$ is pointwise injective [8] and hence $M \oplus E(M)$ is principally quasi-injective R-module. (2) \Rightarrow (3)It is clear.

(3) ⇒ (1) Let $M \oplus E(M)$ be a p-pseudo-injective R-module. Thus by Theorem(2.1) M is principally E(M)-injective and hence M is p-pseudo-E(M)-injective R-module. Therefore by proposition(1.8) we have that M is pointwise injective R-module. □

By Theorem(2.4) and [8, Proposition(2.1.1)] we have the following corollary.

Corollary(2.5):-Let M be a cyclic R-module. Then M is injective if and only if $M \oplus E(M)$ is p-pseudo-injective R-module.

By Theorem(2.4) and [8, Corollary<math>(2.1.5)] we have the following corollary.

Corollary(2.6):-Let R be a principal ideal ring. Then any R-module M is injective if and only if $M \oplus E(M)$ is p-pseudo-injective R-module.

Since any finitely generated Z-module is not injective[18], thus by Corollary(2.6) we have the following corollary.

Corollary(2.7):-For any finitely generated Z-module M, then $M \oplus E(M)$ is not p-pseudo-injective Z-module.

The following theorem gives a relation between p-pseudo-injective modules and other classes of modules.

Theorem(2.8):- The following statements are equivalent for an R-module M:-

- 1) M is pointwise injective R-module.
- 2) M is principally quasi-injective and pointwise ker-injective R-module.

3) M is p-pseudo-injective and pointwise ker-injective R-module.

Proof:-(1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious. (3) \Rightarrow (1) Let M be a p-pseudo-injective and pointwise ker-injective R-module. Let $\alpha : M \rightarrow E(M)$ be any R-monomorphism. Since M is pointwise ker-injective, thus α is pointwise ker-split [12]. Hence for each $a \in M$ there exist an R-monomorphism f:M $\rightarrow M$ and an R-homomorphism

 $\beta_a: E(M) \rightarrow M$ such that $(\beta_a \circ \alpha)(a) = f(a)$. Since M is p-pseudo-injective R-module and f:M $\rightarrow M$ is an R-monomorphism, thus by Corollary(1.6) f is p-split. Thus for each $a \in M$ there exists an R-homomorphism $g_a: M \rightarrow M$ such that $(g_a \circ f)(a) = a$. For each $a \in M$, put $h_a = g_a \circ \beta_a: E(M) \rightarrow M$, hence $(h_a \circ \alpha)(a) = ((g_a \circ \beta_a) \circ \alpha)(a) = (g_a \circ (\beta_a \circ \alpha))(a) =$ $g_a((\beta_a \circ \alpha)(a)) = (g_a \circ f)(a) = a$. Then for each $a \in M$, there exists an R-homomorphism $h_a: E(M) \rightarrow M$ such that $(h_a \circ \alpha)(a) = a$. Thus each R-monomorphism $\alpha: M \rightarrow E(M)$ is psplit and hence by lemma(1.7) M is pointwise injective R-module. \Box

Since every semi-simple R-module is p-pseudo-injective, thus by Theorem(2.8) we have the following corollary.

Corollary(2.9):-Every sime-simple pointwise ker-injective R-module is pointwise injective.

By Theorem(2.4) and Theorem(2.8) we get the following corollary.

Corollary(2.10):- The following statements are equivalent for an R-module M.

(1) $M \oplus E(M)$ is p-pseudo-injective R-module.

(2) M is p-pseudo-injective and pointwise ker-injective R-module.

The following proposition gives a condition on which p-pseudo-injective module is principally quasi-injective.

Proposition(2.11):-Any uniform p-pseudo-injective R-module is principally quasi-injective.

Proof:-Let M be any uniform p-pseudo-injective R-module. Let $f:N \rightarrow M$ be any R-homomorphism where N be any cyclic R-submodule of M. If ker(f)=(0), thus f is R-monomorphism. Since M is p-pseudo-injective, thus there exists an R-homomorphism $f_1:M \rightarrow M$ such that $f_1(n)=f(n)$ for all $n \in N$. Thus M is principally quasi-injective R-module. If ker(f) \neq (0).Since ker(f) \cap ker(i_N+f)=(0) where i_N is the inclusion R-homomorphism from N into M and M is a uniform R-module, thus ker(i_N+f)=(0).Hence i_N+f is an R-monomorphism. Since M is p-pseudo-injective

R-module, thus there exists an R-homomorphism h:M→M such that $h(n)=(i_N+f)(n)$, for all $n \in N$. Put g=h-I_M:M→M. g is an R-homomorphism and for each $n \in N$ we have that $g(n)=(h-I_M)(n)=h(n)-I_M(n)=(i_N+f)(n)-i_N(n)=f(n)$. Therefore M is principally quasi-injective R-module. □

Remark(2.12):-Direct sum of two p-pseudo-injective R-modules need not be p-pseudo injective, for example ; let p be a prime number, then Z_p and $E(Z_p)$ are p-pseudo injective Z-modules but by Corollary(2.7) $Z_p \oplus E(Z_p)$ is not p-pseudo-injective Z-module.

The following proposition gives a condition on which direct sum of any two p-pseudo-injective R-modules is p-pseudo-injective.

Proposition(2.13):- The following statements are equivalent for a ring R:-

(1) Direct sum of any two p-pseudo-injective R-modules is p-pseudo-injective.

(2) Evrey p-pseudo-injective R-module is pointwise injective.

Proof:-(1) \Rightarrow (2)Let M be any p-pseudo-injective R-module. By hypothesis M \oplus E(M) is p-pseudo-injective R-module. Thus by Theorem(2.4) we have that M is pointwise injective R-module. (2) \Rightarrow (1)Let M₁ and M₂ be any two p-pseudo-injective R-modules. By hypothesis M₁ and M₂ are pointwise injective R-modules. Thus M₁ \oplus M₂ is pointwise injective [8]and hence M₁ \oplus M₂ is p-pseudo-injective R-modue.□

Faith and Utumi in [6] are proved that a ring R is a semi-simple Artinian if and only if every R-module is quasi-injective. In the following corollary we give a new characterization of semi-simple Artinian ring in terms of p-pseudo-injective R-modues which is a generalization of Faith's and Utumi's result.

Corollary(2.14):- The following statements are equivalent for a ring R:-

(1) R is a semi-simple Artinian ring.

(2) Every R-module is p-pseudo-injective.

(3)Every cyclic R-module is p-pseudo-injective and direct sum of any two p-pseudo-injective R-modules is p-pseudo-injective.

Proof:- (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious. (3) \Rightarrow (1)By using proposition(2.13) and [8,Theorem(1.2.12)]. \Box

	(11)	(1)	2006
--	------	-----	------

As an immediate consequence of proposition(2.13) we have the following corollary.

Corollary(2.15):-If the direct sum of any two p-pseudo-injective R-modules is p-pseudo-injective, then every principally quasi-injective R-module (so simple R-module) is pointwise injective.

Corollary(2.16):-If the direct sum of any two p-pseudo-injective R-modules is p-pseudo-injective, then R is a regular ring.

Proof:-Let M be any simple R-module , thus by Corollary(2.15) M is pointwise injective R-module .Since M is a cyclic , thus M is injective R-module[8] .Hence every simple R-module is injective and this implies that R is a regular ring [11]. \Box

In the following theorem we give a new characterization of semi-simple Artinian ring which is a generalization of Osofsky's result in [7,p.63].

Theorem(2.17):-The following statements are equivalent for a ring R :-

(1) R is a semi-simple Artinian ring.

(2) For each R-module M , if N_1 and N_2 are p-pseudo-injective R-submodules of M , then $N_1 \bigcap N_2$ is a p-pseudo-injective R-module .

(3) For each R-module M , if N_1 and N_2 are principally quasi-injective R-submodules of M, then $N_1 \cap N_2$ is a p-pseudo-injective R-module.

(4) For each R-module M , if N_1 and N_2 are quasi-injective R-submodules of M, then $N_1 \bigcap N_2$ is a p-pseudo-injective R-module.

(5) For each R-module M , if N_1 and N_2 are injective R-submodules of M, then $N_1 \bigcap N_2$ is a p-pseudo-injective R-module.

proof: (1)=>(2).It follows from corollary(2.14). (2)=>(3), (3)=>(4) and (4)=>(5) are obvious. (5)=>(1)Let M be any R-module and E=E(M) is the injective envelope of M ,let $Q = E \oplus E$, $K = \{(x,x) \in Q \mid x \in M\}$ and let $\overline{Q} = Q/K$. Also, put $M_1 = \{y + K \in \overline{Q} \mid y \in E \oplus (0)\}$ and $M_2 = \{y + K \in \overline{Q} \mid y \in (0) \oplus E\}$. It is clear that $\overline{Q} = M_1 + M_2$. Define $\alpha_1 : E \to M_1$ by $\alpha_1(y) = (y,0) + K$, for all $y \in E$ and $\alpha_2 : E \to M_2$

2006 (1) (11)

by $\alpha_2(y) = (0,y) + K$, for all $y \in E$. Since $(E \oplus (0)) \cap K = (0)$ and $((0) \oplus E) \cap K=(0)$, thus we have α_1 and α_2 are R-isomorphisms. Since E is an injective R-module , therefore M_i is injective R-submodule of \overline{Q} , for i=1,2 [7]. Thus by (5), we have $M_1 \cap M_2$ is a p-pseudo-injective R-module. Define $f: M \rightarrow M_1 \cap M_2$ by f(m) = (m, 0) + Kfor all m∈M. Since $M_1 \cap M_2 = \{y \in M \oplus (0)\}$, thus it is easy to prove that f is an R-isomorphism. Thus M is a p-pseudo-injective R-module, by remark ((1.2),6). Hence every R-module is p-pseudo-injective and this implies that R is a semi-simple Artinian ring, by Corollary(2.14). \Box

Proposition(2.18):- The following statements are equivalent for a ring R :-

(1) Every p-injective R-module is pointwise injective.

(2) Every p-injective R-module is principally quasi-injective.

(3) Every p-injective R-module is p-pseudo-injective.

Proof:- (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious. (3) \Rightarrow (1)Let M be any p-injective R-module and E(M) be the injective envelope of M. Then M \oplus E(M) is p-injective and hence by hypothesis M \oplus E(M) is p-pseudo-injective R-module. Therefore M is pointwise injective R-module, by Theorem(2.4). \Box

In the following theorem we give a new characterization of semi-simple Artinian ring.

Theorem(2.19):-The following statements are equivalent for a ring R :-

(1) R is a semi-simple Artinian ring .

(2)For each R-module M, M is p-injective if and only if M is p-pseudo-injective.

(3)For each R-module M, M is p-injective if and only if M is principally quasi-injective.

Proof: (1) \Rightarrow (2) It is obvious. (2) \Rightarrow (3)Let M be a p-injective R-module. By hypothesis M is p-pseudo-injective . Thus every p-injective R-module is p-pseudo-injective and hence by proposition(2.18) we have that every p-injective R-module is principally quasi-injective. Hence M is principally quasi-injective R-module .Conversely, is clear.

|--|

 $(3) \Rightarrow (1)$ Let M be any simple R-module, then M is principally quasi-injective. By hypothesis, M is p-injective. Thus every simple R-module is p-injective. Since R is a commutative ring, then R is a regular ring[13] and hence every R-module is p-injective[13]. Thus by hypothesis we have that every R-module is principally quasi-injective and hence every R-module is p-pseudo-injective. Therefore R is a semi-simple Artinian ring , by Corollary(2.14). \Box

§3:-Endomorphism rings of p-pseudo-injective modules

It is easy to prove the following lemma.

lemma(3.1):-Let M be an R-module, $S=End_R(M)$ and $W(S)= \alpha \in S|ker(\alpha) \subset^e M$, thus W(S) is a two sided ideal of S.

Theorem(3.2):-Let M be a p-pseudo-injective R-module , $S=End_R(M)$ and let W(S)= $\alpha \in S|ker(\alpha) \subset M$. Then

(1) S/W(S) is a regular ring.

(2) $J(S) \subseteq W(S)$.

proof(1):-Let λ +W(S) \in S/W(S) ; $\lambda \in$ S. Put K=ker(λ) and let L be the relative complement of K in M. Define $\theta:\lambda(L) \rightarrow M$ by $\theta(\lambda(x)) = x$, for all $x \in L$. It is easy to prove that θ is a well-defined R-monomorphism .Since M is a p-pseudo-injective R-module, thus by Corollary(1.4)have that for we each $a=\lambda(x)\in\lambda(L)$, $(x\in L)$, there exists an R-homomorphism $\alpha: M \to M$ such that α (a)= θ (a). If u=x+y\in L\oplus K (x \in L and y \in K), thus (λ - $\lambda \alpha \lambda$)(u) = λ (x)-($\lambda \alpha \lambda$)(x) = $\lambda(x)-\lambda(\alpha(\lambda(x)))=\lambda(x)-\lambda(\alpha(a))=\lambda(x)-\lambda(\theta(a))=\lambda(x)-\lambda(\theta(\lambda(x)))=\lambda(x)-\lambda(x)=0$, and this implies that $u \in \ker(\lambda - \lambda \alpha \lambda)$ and hence $L \oplus K \subseteq \ker(\lambda - \lambda \alpha \lambda)$. Since $L \oplus K$ is an essential R-submodule of M [7], thus ker(λ - $\lambda \alpha \lambda$) is an essential R-submodule of M [11], so $\lambda - \lambda \alpha \lambda \in W(S)$, in turn $\lambda + W(S) = (\lambda \alpha \lambda) + W(S)$. Therefore S/W(S) is a regular ring. **proof(2):-** Let $\alpha \in J(S)$. Since by (1) S/W(S) is a regular ring, thus there exists $\lambda \in S$ such that $\alpha - \alpha \lambda \alpha \in W(S)$. Put $\beta = \alpha - \alpha \lambda \alpha$. Since J(S) is a two sided ideal of S, thus $-\alpha \lambda \in J(S)$. Since J(S) is quasi-regular, then $(I_M - \alpha \lambda)^{-1}$ exists where I_M is the identity Hence $(I_M - \alpha \lambda)^{-1}(I_M - \alpha \lambda) = I_M$ R-homomorphism from М to M. .Since

2006 (1) (11)

 $(I_{M}-\alpha \lambda)^{-1}(\alpha - \alpha \lambda \alpha) = \alpha$, thus $(I_{M}-\alpha \lambda)^{-1}\beta = \alpha$. Since $\beta \in W(S)$, $(I_{M}-\alpha \lambda)^{-1} \in S$ and W(S) is a two sided ideal of S by lemma(3.1), thus $\alpha \in W(S)$. Therefore $J(S) \subseteq W(S)$. \Box

It is easy to prove the following corollary.

Corollary(3.3):- Let M be a p-pseudo-injective R-module, $S=End_R(M)$ and $W(S)= \alpha \in S \text{ ker}(\alpha) \subset^e M$. Then $H \cap K = HK + W(S) \cap (H \cap K)$, for each two-sided ideals H and K of S. In particular, $K=K^2 + W(S) \cap K$ for each two-sided ideal K of S.

The following proposition is a generalization of [10, proposition(2.5)].

Proposition(3.4):- If M is p-pseudo-injective R-module and $S=End_R(M)$, then SA=SB, for any isomorphic R-submodules A,B of M.

Proof:- Since A isomorphic to B, then there exists an R-isomorphism $\alpha : A \rightarrow B$.Let $b \in B$, since α is R-epimorphism, thus there exists an element $a \in A$ such that α (a)=b. It is clear that $ann_R(a)=ann_R(b)$. Since M is p-pseudo-injective R-module, then by corollary(1.4) Sb \subseteq Sa and so Sb \subseteq SA for all $b \in B$. then SB \subseteq SA. Similarly we can prove that SA \subseteq SB. Therefore SA=SB. \Box

As an immediate consequence of proposition(3.4) we have the following corollary. **Corollary(3.5):-**If R is p-pseudo-injective ring and A,B any two isomorphic ideals of R, then A=B.

A ring R is called terse if every two distinct ideals of R are not isomorphic[20].

Proposition(3.6):- The following statements are equivalent for a ring R :-

(1) R is p-pseudo-injective ring.

(2) R is terse ring.

(3) $ann_R(x)=ann_R(y)$ implies Rx=Ry for each x,y in R.

Proof:-(1) \Rightarrow (2)Let R be a p-pseudo-injective ring. Let A and B are any two distinct ideals of R, thus by Corollary(3.5) A and B are not isomorphic. Therefore R is a terse ring. (2) \Rightarrow (3)[1,Theorem(2.12)].

 $(3) \Rightarrow (1)$ Let $x, y \in \mathbb{R}$ such that $ann_{\mathbb{R}}(x) = ann_{\mathbb{R}}(y)$. By hypothesis we have $\mathbb{R}x = \mathbb{R}y$. We will prove that $Sx \subseteq Sy$. Let $a \in Sx$, thus there exists $f \in S$ such that a=f(x). Since

2006 (1) (11)	
---------------	--

 $x \in Rx=Ry$, thus there exists $r \in R$ such that x=ry. Define $g:R \to R$ by g(m)=rf(m) for all $m \in R$. Thus $g \in S$ and g(y)=rf(y)=f(ry)=f(x)=a. Since $g(y)\in Sy$, thus $a \in Sy$. Hence $Sx \subseteq Sy$ and thus by Corollary(1.4) we have that R is a p-pseudo-injective ring. \Box

As an immediate consequence of proposition(3.6) and [1,Theorem(2,12)] we have the following corollary.

Corollary(3.7):- The following statements are equivalent for a ring R :-

(1) R is p-pseudo-injective ring.

(2) R is fully p-stable ring.

(3) Distinct cyclic ideals of R are not isomorphic.

As an immediate consequence of [1, Theorem(2, 8)] and proposition(3.6) we have the following corollary.

Corollary(3.8):- The following statements are equivalent for a ring R :-

(1) R is fully stable ring.

(2) R is p-pseudo-injective ring and $Rx \cong Hom_R(Rx,R)$ for each $x \in R$.

References:-

[1] M.S.Abbas : On fully stable modules, Ph.D.thesis ,Univ. of Baghdad, 1990.

[2]M.S.Abbas:Semi-fully stable modules, AL-Mustansiriyah J.Sci., vol.7, 1996, (10-13).

[3] A.H.Abud : On m-semi-injective modules, M.Sc.thesis , AL-Mustansiriyah University ,1999.

[4] S.Alamelu : On commutativity of endomorphism rings of ideals II, proc.Amer.Math.Soc. ,55(1976)271-274.

[5] S.Alamelu : On quasi-injective modules over Noetherian rings, J.of the idian Math.Soc.,39(1975) 121-130.

[6] C.Faith ; Y.Utumi: Quasi-injective modules and their endomorphisms ring , Archiv .Math., 15(1964), 166-174.

[7] C.Faith: Lectures on injective modules and quotient rings, No.49, springer-verlag, Berlin, Heidelberg, New Yourk, 1967.

[8] S.A.Gataa : Pointwise injective modules, M.Sc.thesis , AL-Mustansiriyah University ,1999.

|--|

[9] R.R.Hallett : Injective modules and their generalization, Ph.D. thesis, Univ. of British Colombia, Van couver, Doc. 1971.

[10] M.A.Kamal ; O.A.Elmnophy : On P-extending modules, Acta Math. Univ. Comenianae Vol.Lxxiv,2(2005),279-286.

[11] F.Kasch: Modules and Rings, Academic press, London, New Yourk, 1982.

[12]A.R.Mehdi:Pointwise ker-injective modules ,J.Al-Qadisiah for pure sci., to appear.

[13]R.Yue Chi Ming : On Von Neumann regular rings, Proc. Edinburagh Math. Soc.,19(1974),89-91.

[14]W.K.Nicholson , J.K.Park and M.F.Yousif : Principally Quasi-injective Modules , Comm. Algebra. 27(4) (1999),1683-1693.

[15]B.L.Osofsky: Rings all whose finitely generated modules are injective, Pac. J.Math .14(1964),645-650.

[16] B.M.Pandeya ; S.P.Koirala : Pseudo M-injective modules, Algebra and its Application. Narosa publishing House (2001),201-207 .

[17] E.A.Shalal : Injectivity and continuity , M.Sc. thesis, AL-Mustansiriyah University ,2000.

[18] D.W.Sharpe; P.Vamos: Injective modules, Cambridge Univ. press, London, 1972.

[19] S.Singh ; S.K.Jain : On pseudo-injective modules and self pseudo-injective rings,J.Math.Sci.2(1967)23-31.

[20] W.D.Weakley : Modules whose distinct submodules are not isomorphic ,Comm.in Algebra,15(1987)1569-1587.

الموديولات الاغمارية الكاذبة رئيسيا

(11)

الخلاصة:-

 M^{n}

 $2 \le n$

М

•

.

R

•

.

•