

On D- Compact Topological Groups

Dheia G. AL – Khafajy^{1*} & Afraa R. Sadek²

¹Department Of Mathematics , College of Computer Science and Mathematics , University of Al - Qadissiya , Diwaniya , Iraq, ²Department Of Mathematics , College of Science , University of Baghdad, Baghdad , Iraq

Abstract

In the present paper, we have introduced some new definitions On Dcompact topological group and D-L. compact topological group for the compactification in topological spaces and groups, we obtain some results related to D- compact topological group and D-L. compact topological group.

Keywords: groups , cyclic groups , topological group , D- cover topological groups , isomorphism , direct product , D- compact topological group .

التراص من نوع D للزمر التبلوجية

ضياء غازى الخفاجى " و عفراء راضى صادق

أقسم الرياضيات ، كلية الحاسبات والرياضيات ، جامعة القادسية ، ديوانية ، العراق .
 ⁷
 قسم الرياضيات ، كلية العلوم ، جامعة بغداد ، بغداد ، العراق .

الخلاصة

في هذا البحث قدمنا بعض التعاريف الجديدة عن التراص من نوع D ونوع D–L للزمر التبلوجية كنوع من التراص للفضاءات التبلوجية والزمر . وقدمنا بعض النتائج المتعلقة بهذه الأنواع إضافة إلى النتائج التي تبين علاقتهم ببعض.

1. Introduction

A compact (topological , often understood) group $(G, *, \tau)$ is a topological group whose topology is compact, [1]. D.G. Salih in [2] gave the concept of D - cover groups as follows : For an index set I, a family G_i of proper subgroups of (G, *) is called D - Cover if $G = \bigcup_{i \in I} G i$. A group (G, *) is said to be D compact group if for every D - cover groups of (G, *) there is a finite sub D - cover groups of (G, *) see also [2]. In this paper we investigated

On D - compact, D-L.compact and weakly D- compact Topological group for the compactification in topolgical Spaces and groups. In Particular case we introduce weakly D - compact cyclic, D - compact cyclic and D-L. compact cyclic topological group. we obtain Some good result related these concepts above. **Note :** we mean throughout this paper a topological group is a just group as a set with topology

^{*} E mail : dheia.salih@yahoo.com

2. Definitions and Examples Definition 1

Let $(G, *, \tau)$ be a topological group and *I* be an indexed set , we say that;

- 1. The family $\{G_i \in \tau : (G_i, *) \text{ is a proper subgroup of } (G, *), \forall i \in I\}$, is a D cover topological groups of $(G, *, \tau)$ if $G = \bigcup_{i \in I} G_i$.
- The family {G_i∈ τ : (G_i,*) is a proper cyclic subgroup of (G,*), ∀i∈I}, is a D cover cyclic topological groups of (G,*,τ) if G = U_{i∈I}G_i.

Definition 2

Let $(G,\!\ast\,,\!\tau)\,$ be a topological group , we say that;

- 1. $(G, *, \tau)$ is weakly D- compact topological group if there exists a finite D – cover topological groups of $(G, *, \tau)$.
- (G,*,τ) is D- compact topological group if for any D – cover topological groups of (G,*,τ), there is a finite sub - D – cover topological groups of (G,*,τ).
- (G,*,τ) is weakly D-L. compact topological group if there exists a countable D – cover topological groups of (G,*,τ).
- 4. (G,*,τ) is D-L. compact topological group if for any D cover topological groups of (G,*,τ), there is a countable sub D cover topological groups of (G,*,τ).

Definition 3

Let $(G,\!\ast\,,\!\tau)\;$ be a topological group , we say that;

- (G,*,τ) is weakly D- compact cyclic topological group if there exists a finite D – cover cyclic topological groups of (G,*,τ).
- (G,*,τ) is D- compact cyclic topological group if for any D – cover cyclic topological groups of (G,*,τ), there is a finite sub - D – cover cyclic topological groups of (G,*,τ).
- (G,*,τ) is weakly D-L. compact cyclic topological group if there exists a countable D cover cyclic topological groups of (G,*,τ).
- (G,*,τ) is D-L. compact cyclic topological group if for any D cover cyclic topological groups of (G,*,τ),

there is a countable sub - D - cover cyclic topological groups of $(G, *, \tau)$.

Definition 4

Let $(G, *, \tau)$ be a topological group and (H, *) be a subgroup of (G, *). The topological subgroup $(H, * \tau_H)$ [$\tau_H = \tau \cap H$] is said to be :

- 1. Dcompact topological subgroup Dcompact topological (weakly subgroup, D-L. compact topological subgroup, weakly D-L. compact topological subgroup), if $(H, *, \tau_H)$ is a D-compact topological group (weakly D-compact topological group), respectively.
- 2. D- compact cyclic topological subgroup (weakly D- compact cyclic topological subgroup, D-L. compact cyclic topological subgroup, weakly D-L. compact cyclic topological subgroup), if (H,*, τ_H) is a D-compact cyclic topological group (weakly D – compact cyclic topological group), respectively.

Definition 5[3]

- 1. Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be two topological groups then,
- i. f : (G,*, τ) \rightarrow ($\overline{G},\overline{*},\overline{\tau}$) is a topological homomorphism if f : (G, τ) \rightarrow ($\overline{G},\overline{\tau}$) is continuous and f(x * y) = f(x) $\overline{*}$ f(y) $\forall x, y \in G$.
- ii. f : $(G, *, \tau) \rightarrow (\overline{G}, \overline{*}, \overline{\tau})$ is an isomorphism if it is a topological homeomorphism and $f(x * y) = f(x) \overline{*} f(y) \forall x, y \in G.$
- 2. Suppose \wedge is non empty set and $(G_{\lambda}, *_{\lambda}, \tau_{\lambda})$ is a topological group for each $\lambda \in \wedge$. Their product is $\prod_{\lambda \in \Lambda} G_{\lambda}$ equipped with the usual product topology $\tau_{\prod_{\lambda \in \Lambda} G_{\lambda}}$ and with multiplication given by $(x \otimes y) = x_{\lambda} *_{\lambda} y_{\lambda}$ for each $x_{\lambda}, y_{\lambda} \in G_{\lambda}$ and $\lambda \in \wedge$.
- 3. If $G_{\lambda} = G$ and $\tau_{\lambda} = \tau$, $\forall \lambda \in \land$, then we denoted that $G^{\land} = \prod_{\lambda \in \land} G_{\lambda}$ and $\tau^{\land} = \tau_{\prod_{\lambda \in \land} G_{\lambda}}$.

Example 1.

Let $(S_3, 0)$ be the symmetric groupof degree 3, and

 $T = \{\emptyset, \{e\}, \{e, (12)\}, \{e, (13)\}, \{e, (23)\}, \\ \{e, (123), (132)\}, \{e, (12), (13)\}, \{e, (12), (23)\}, \\ \{e, (13), (23)\}, \{e, (12), (123), (132)\}, \\ \{e, (13), (123), (132)\}, \{e, (23), (123), (132)\}, \{e, (23), (123), (132)\}, \\ \{e, (23), (23), (23), (23), (23), (23)\}, \{e, (23), (23), (23), (23)\}, \\ \{e, (23), (23), (23), (23), (23), (23), (23), (23)\}, \\ \{e, (23)$

(12),(13),(23) }, { e,(12),(13),(123),(132) }, $\{e,(13),(23),(123),(132)\}, \{e,(12),(23),(123),$ (132), S₃.

Where
$$(12) = \begin{pmatrix} 123 \\ 213 \end{pmatrix}$$
, $(13) = \begin{pmatrix} 123 \\ 321 \end{pmatrix}$, $(23) = \begin{pmatrix} 123 \\ 132 \end{pmatrix}$, $(123) = \begin{pmatrix} 123 \\ 231 \end{pmatrix}$ and $(132) = \begin{pmatrix} 123 \\ 312 \end{pmatrix}$.

The topological group (S_3, o, τ) is a Dcompact cyclic topological group, since {{e, (12), {e,(13)}, {e,(23)}, {e,(123),(132)}} is a D-cover cyclic topological groups of $(S_{3,0,\tau})$.

In general, the symmetric group (S_n, o) of degree $n \ge 4$, with suitable topology is D – compact topological group.

Example 2.

Let $G = \{0, 1, 2, \ldots\}$, defined a binary operation * as follows :

$$a * b = \begin{cases} \max\{a, b\} & a \neq b \\ 0 & a = b \end{cases}, \forall a, b \in G, and \tau$$

 $= \{\{0, 1, 2, \dots, n\}: n \in \mathbb{Z}^+ \} \cup \emptyset$, an actually topological i.e. the two operation $g: G \times G \rightarrow$ G, g(a,b) = a * b and $h : G \rightarrow G$, $h(a) = a^{-1}$ are continuous a, $b \in G$.

Now let $\{G_n : G_n \in \tau, n \in z^+\}$ be any family of subsets of τ , it is easy to show that $\{G_n\}_{n \in \mathbb{Z}^+}$ is a D- cover topological groups of $(G, *, \tau)$ which have a countable sub- D- cover topological group $\{G_n\}_{n\in\mathbb{Z}^+}$, such that G= $U_{n \in z+}G_n$ and $(G_n, *)$ is a group $\forall n \in \mathbb{Z}^+$. And hence $(G, *, \tau)$ D-L. compact topological group which is not D - compact topological group, Since there is no finite Sub - D - cover topological groups of $(G, *, \tau)$. Also $(G, *, \tau)$ is not weakly D - compact topological group.

3. main results

It is easy to prove direct from definitions the following lemmas,

Lemma 1.

- 1. Any D compact topological group is weakly D – compact topological group.
- 2. Any D compact topological group is D -L. compact topological group.

Lemma2.

- 1. Any D compact cyclic topological group is weakly D - compact cyclic topological group.
- 2. Any D compact cyclic topological group is D-L. compact cyclic topological group.

Lemma 3.

Any D -compact topological group is Dcompact cyclic topological group.

We can prove directly, by order the group and Lemma1, the following theorem.

Theorem 1.

Let $(G, *, \tau)$ be a topological group, such that G is a finite set. Then the following are equivalents:

- 1. $(G, *, \tau)$ is a D compact topological group.
- 2. $(G, *, \tau)$ is a D-L. compact topological group.

If we replace D-(D-L.) compact topological group with D-(D-L.) compact cyclic topological group, respectively, the result is true, too.

One can show easly by definition that Any cyclic group (finite or infinite) cannot be D-compact topological group. Thus we have the following theorem .

Theorem 2.

Any infinite group (not cyclic) can be a D-compact topological group.

Proof.

Let (G,*) be any infinite not cyclic group, I be a set (finite or infinite), defined $\tau =$ $\{A_{i\subseteq} G: A_i^c \text{ is a finite set }, (A_{i,*}) \text{ group }\}$ $\forall_i \in I \& A_{i_1} \subseteq A_{i_2} \text{ for } i_1 \leq i_2 \} \cup \emptyset .$

It is clear that $\tau \neq \emptyset$, since every finite group G, (O (G) \geq 4), has a nontrivial subgroups unless it is a cyclic of prime order, but G is an infinite so G has a nontrivial subgroups [4]. (G,τ) is a topological space since,

- 1) $\emptyset \in \tau$ and $G^c = \emptyset$ is a finite implies $G \in$ τ.
- 2) Let A_1 , $A_2 \in \tau$ so A_1^c, A_2^c are finite, but $(A_1 \cap A_2)^c = A_1^c \cup A_2^c$ which is clear finite hence $(A_1 \cap A_2)^{\circ}$ is finite and we know that $(A_1 \cap A_2, *)$ is a group implies $A_1 \cap A_2 \in \tau$.
- 3) Let $A_s \in \tau$, $\forall s \in S$ i.e. A_s^c is a finite $\forall s$ \in S hence $\bigcap_{s\in S} A_s^c$ is a finite on the other hand $(\bigcup_{s\in S} A_s)^c = \bigcap_{s\in S} A_s^c$, but $\bigcup_{s \in S} A_s = A_t \text{ for some t where } s \le t$ $\forall s \in S \text{ so } (\bigcup_{s \in S} A_s, *) \text{ is a group and}$ hence $\bigcup_{s \in S} A_i \in \tau$.

Therefore (G,τ) is a topological space, implies $(G, *, \tau)$ is a topological group. Now let $\{A_{\lambda}: A_{\lambda} \in \tau, \lambda \in \Lambda\}$, indexed by \wedge , be any D-

cover topological groups of $(G, *, \tau)$, that is $G = \bigcup_{\lambda \in \Lambda} A_{\lambda}$. If $A_{\circ} \in \{A_{\lambda}\}_{\lambda \in \Lambda} \Rightarrow (A_{\circ}, *)$ is a group and $A^{\mathcal{C}}$ is a finite set, i.e. $A^{\mathcal{C}} = \{a_1, a_2, \dots, a_n\}$, where $a_j \in G \quad \forall j \in J$. For each $j \in J$ there $A_{\lambda_j} \in \{A_{\lambda}\}_{\lambda \in \Lambda}$ such that $a_j \in A_{\lambda_j}$ implies $A^{\mathcal{C}} \subseteq \bigcup_{j \in J} A_{\lambda_j}$. But G = $A_{\circ} \bigcup A^{\mathcal{C}}_{\circ}$ implies $G \subseteq A_{\circ} \bigcup (\bigcup_{j \in J} A_{\lambda_j})$ which gives there is a finite sub – D- cover topological groups $\{A_{\circ}, A_{\lambda_1}, A_{\lambda_2}, \dots, A_{\lambda_n}\}$. Therefore $(G, *, \tau)$ is D- compact topological group.

The following corollary is direct from Lemma 1 and Theorem 2:

Corollary 1.

Any infinite group (not cyclic) can be a weakly D- (D-L.) compact topological group.

Theorem 3.

Let $(G, *, \tau)$ and $(\bar{G}, \bar{*}, \bar{\tau})$ be two topological groups, if (G, *) is a group and $(\bar{G}, \bar{*}, \bar{\tau})$ is a D- compact topological group. Then $(G \times \bar{G}, \otimes, \tau \times \bar{\tau})$ is a D- compact topological group.

Proof

Let $\{(G \times \overline{G}_i, \otimes) ; \overline{G}_i \in \overline{\tau} \text{ and } (\overline{G}_i, \overline{*}) \}$ group $\forall i \in I \}$ be any D-cover topological groups of $G \times \overline{G} \Rightarrow G \times \overline{G} =$ $\bigcup_{i \in I} (G \times \overline{G}_i) = G \times (\bigcup_{i \in I} \overline{G}_i) \Rightarrow \overline{G} = \bigcup_{i \in I} \overline{G}_i \}$ but $(\overline{G}, \overline{*}, \overline{\tau})$ is a D- compact topological group, so there is a finite subset $J \subseteq I$ such that $\overline{G} =$ $\bigcup_{j \in J} \overline{G}_i$ and $(\overline{G}_i, \overline{*})$ is a group for each $j \in J \Rightarrow$ $G \times \overline{G} = G \times (\bigcup_{i \in I} \overline{G}_i) = \bigcup_{j \in J} (G \times \overline{G}_i) , \text{ where}$ $G \times \overline{G}_i \in \tau \times \overline{\tau} \text{ and } (G \times \overline{G}_j, \otimes) \text{ is a group for each } j \in J.$

Therefore $(G \times \overline{G}, \otimes, \tau, \overline{\tau})$ is a D-compact topological group.

Theorem 4.

Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be two D- compact topological groups. Then $(G \times \overline{G}, \otimes, \tau \times \overline{\tau})$ is a D- compact topological group.

proof:

Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be any two D-compact topological groups.

Then there exists a D- cover topological groups $\{G_a\}_{a \in A}$ and $\{\overline{G}_b\}_{b \in B}$ of G and \overline{G} respectively, where $G \times \overline{G} =$ $= \bigcup_{a \in A, b \in B} (G_a \times \overline{G}_b) implies \{G_a \times \overline{G}_b\}_{a \in A, b \in B})$ is a D- cover topological groups of (G $\times \overline{\mathbf{G}}$, \otimes , $\tau \times \overline{\mathbf{\tau}}$).

Let $\{W_i\}_{i\in I}$ be any D – cover topological groups of $(G \times \overline{\overline{G}}, \otimes, \tau \times \overline{\tau})$, that means $G \times \overline{\overline{G}} = \bigcup_{i\in I} W_i$ such that $W_i = U_i \times V_i$ where $U_i \in \tau$ and $V_i \in \overline{\tau}, \forall i \in I$.

But $(G, *, \tau)$ is a D- compact topological group, so there is a finite subset $J \subseteq I$ such that $G = \bigcup_{j \in J} \bigcup_j$ and $(\bigcup_j, *)$ is a group for each $j \in J$.

Let $U_{j_1} \in \{\bigcup_j\}_{j \in J}$ implies $\{U_{j_1} \times V_i\}_{i \in I}$ is a D- cover topological groups of $(U_{j_1} \times \overline{G}, \varnothing)$ hence $U_{j_1} \times \overline{G} = U_{i \in I}$ $(U_{j_1} \times V_i)$, but $U_{j_1} \times \overline{G}$ is a D- compact topological group from Theorem 3 since $(U_{j_1}, *)$ is a group and $(\overline{G}, \overline{*}, \overline{\tau})$ is a D- compact topological group, so there is a finite set $S \subseteq I$ such that is a group $\forall s \in S$ and $\{U_{j_1} \times V_s\}_{s \in S} U_{j_1} \times \overline{G} = U_{s \in S} (U_{j_1} \times V_s)$ =

[see 5] hence
$$\mathbf{G} \times \overline{\mathbf{G}} = (U_{j \in J} U_j) \times (U_{s \in S} V_s)$$

 $= U_{j \in J, s \in S} (U_j \times V_s)$ where $(U_j \times V_s, \otimes)$ are
^{g1} $U_{j_1} \times (U_{s \in S} V_s)$ but $U_{j_1 \in J} (U_{j_1} \times (U_{s \in S} V_s))$
 $= (U_{j \in J} U_j) \times (U_{s \in S} V_s) = \mathbf{G} \times \overline{\mathbf{G}}$

Theorem 5.[1]

Let $\{G_i : i \in I\}$ be a family of topological group. Then the direct $G = \prod_{i \in I} G_i$, equipped with the product topology is a topological group.

From Theorem 4 and Theroem 5, respectively, and by induction we can prove the following theorem:

Theorem 6.

The product of any finite collection of Dcompact topological groups is a D- compact topological group.

If we replace D- compact topological group with D-L. compact topological group, the result is true.

Corollary 2.

If $(G, *, \tau)$ is a D- compact topological group. Then (G^n, \otimes, τ^n) is D- compact topological group, where $G^n = \frac{G \times G \times \ldots \times G}{n-time}$ and $\tau^n = \frac{\tau \times \tau \times \ldots \times \tau}{n-time}$.

Theorem 7.

Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be two topological groups, f: $(G, *, \tau) \rightarrow (\overline{G}, \overline{*}, \overline{\tau})$ be an isomorphism . Then

- 1. If S is a D- compact topological subgroup in $(G,\!\ast\,,\!\tau)$, then f(S) is a D- compact topological subgroup in $(\bar{G}, \bar{*}, \bar{\tau})$.
- 2. If T is a D- compact topological subgroup in $(G,\bar{*},\bar{\tau})$ and f is a open map then f⁻¹(T) is a D- compact topological subgroup in (G,**∗**,τ).

Proof:

- 1. Let $\{\overline{G}_i\}_{i \in I}$ be any D- cover topological groups of f(S) in $(\overline{G}, \overline{*}, \overline{\tau})$ that is f(S) = $U_{i \in I}\overline{G}_i$ implies $S = f^{-1} (U_{i \in I}\overline{G}_i) = U_{i \in I} f^{-1} (\overline{G}_i)$ [see 5]. It is clear that $f^{-1} (\overline{G}_i) \in \tau$, $\forall i \in I \text{ since } \overline{G}_i \in \overline{\tau}, \forall i \in I \text{ and } f \text{ is}$ continuous , but S is a D-compact topological subgroup in $(G, *, \tau)$, so there is a finite subset $J \subseteq I$ such that $S = U_{i \in I} f^{-1}$ (\overline{G}_i) and $(f^{-1}(\overline{G}_i),*)$ is a group $\forall j \in J$, hence $S = f^{-1}(U_{j \in J}\overline{G}_j) \Rightarrow f(S) = f(f^{-1})$ $^{1}(U_{i \in I}\bar{G}_{i})) = U_{i \in I}\bar{G}_{i}$ [see 5], where $(\bar{G}_{i},\bar{*})$ is a group $\forall j \in J$ since f is an isomorphism. Thus f (S) is a D- compact topological subgroup in $(G, \bar{*}, \bar{\tau})$.
- 2. Let $\{G_i\}_{i \in I}$ be any D- cover topological groups of $f^{-1}(T)$ in $(G, *, \tau)$ that is $f^{-1}(T) =$ $U_{i \in I} G_i$, $(G_i \in \tau, \forall i \in I)$ implies T = f $(U_{i \in I} G_i) = U_{i \in I} f(G_i)$, it is clear that f $(G_i) \in \overline{\tau}$, $\forall i \in I$ since f is an open map, but T is a D - compact topological subgroup $(G,\bar{*},\bar{\tau})$, so there is a finite subset $J \subseteq I$ such that $T = U_{j \in J} f(G_j)$ where $(f(G_j), \bar{*})$ is a group $\forall j \in J$ then $T = f(U_{j \in J} G_j)$ hence $f^{-1}(T) = U_{j \in J}G_j$, where $(G_j, *)$ is a group $\forall j \in J$ since f is an isomorphism and hence f^{-1} (T) is a D- compact topological subgroup in (G,*,τ).

Theorem 8.

Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be two topological groups, $f: (G, *, \tau) \to (G, \bar{*}, \bar{\tau})$ is an isomorphism . Then the following are equivalents :

- 1. $(G, *, \tau)$ is a D- compact topological group.
- 2. $(G,\bar{*},\bar{\tau})$ is a D- compact topological group.

Proof.

 (\Rightarrow) Suppose that $(G, *, \tau)$ is a D- compact topological group, let $\{G_i\}_{i \in I}$ be any D-cover topological group, let $(\overline{G}_i, \overline{\tau})$ that is $\overline{G} = U_{i \in I}\overline{G}_i$ gives $G = f^1$ $(\overline{G}) = f^{-1}(U_{i \in I}\overline{G}_i)$ = $U_{i \in I}f^{-1}(\overline{G}_i)$, but $(G, *, \tau)$ is a D- compact topological group , so there is a finite subset $J \in$ I such that $G = U_{j \in J} f^{-1}(\overline{G}_i)$ and $(f^{-1}(\overline{G}_i), *)$ is a group $\forall j \in J$ hence $G = f^{-1}(U_{j \in J}\overline{G}_j)$ and hence $\overline{G} = f(G) = f(f^{-1}(U_{j \in J}\overline{G}_j)) = U_{j \in J}\overline{G}_j$, where $(\overline{G}_j, \overline{*})$ is a group $\forall j \in J$. Therefore $(\overline{G}, \overline{*}, \overline{\tau})$ is a D – compact

Topological group.

(\Leftarrow) Suppose that $(\bar{G},\bar{*},\bar{\tau})$ is a D – compact Topological group, let $\{G_i\}_{i \in I}$ be any D - cover topological groups of $(G, *, \tau)$ i.e. $G = U_{i \in I} G_i$. Now $\overline{G} = f(G) = f(U_{i \in I} G_i)$ $= U_{i \in I} f(G_i)$, $but(\overline{G}, \overline{*}, \overline{\tau})$ is a D - compact topological group , so there is a finite subset $J \subseteq$ I such that $G = U_{j \in J} f(G_j)$ and $(f(G_j), \bar{*})$ is a group $\forall j \in J$ implies $\overline{G} = f(\bigcup_{j \in J} G_j)$ hence $G = f^{-1}(\overline{G}) = f^{-1}(f(\bigcup_{j \in J} G_j)) = \bigcup_{j \in J} G_j$ where $(G_j, *)$ is a group $\forall j \in J$.

Therefore $(G, *, \tau)$ is a D-compact topological group.

We can prove by the similar way the following theorem.

Theorem 9.

Let $(G, *, \tau)$ and $(\overline{G}, \overline{*}, \overline{\tau})$ be two topological groups and f : $(G, *, \tau) \rightarrow (G, \bar{*}, \bar{\tau})$ be an isomorphism. Then the following are equivalents:

- 1. $(G, *, \tau)$ is a D- compact cyclic topological group.
- 2. $(G,\bar{*},\bar{\tau})$ is a D- compact cyclic topological group.

References

- 1. Dikranjan, D. 17.05.2011. Introduction to Topological Groups, Cambridge University press. London.
- 2. Salih , D.G., X., 2012. On D- Compact Groups, American Journal of Scientific *Research*, 60, pp: 5-14.
- 3. Korner, T.W. 2008. Topological groups, Part III, Spring, P.5-9.
- 4. Milne, J.S. 2010. Group Theory, Version 3.10, September 24, P.61.
- 5. Schapira, P. 2010-2011. General Topological , Course at Paris VI University (v.3), P.8, P.43.