On D-Compact Smarandache Groupoids

Dheia Gaze Salih Al-Khafajy

Department of Mathematics, College of Computer Science and Mathematics University of Al-Qadisiya, Diwaniya, Iraq E-mail: <u>dheia.salih@yahoo.com</u>

Abstract

In the present paper , we have introduced some new definitions On D-compact M Smarandache groupoid , D-compact G Smarandache groupoid and D-compact cyclic G Smarandache groupoid , we obtain some results related to D-compact M Smarandache groupoid , D-compact G Smarandache groupoid and D-compact cyclic G Smarandache groupoid .

Keywords and Phrases; groupoids, monoids, groups, cyclic groups, Smarandache structures, cover, direct product, groupoid isomorphism. **AMS 2010**: 54A25, 45B05.

1. Introduction

The notion of groupoid was introduced by H. Brandt [Math. Ann., 96(1926), 360-366; MR 1512323]. A groupoid (G,*) is a set on which is defined a non associative binary operation which is closed on G, the groupoid (G,*) is a semigroup if the binary operation * is associative, the semigroup (G,*) with identity is called a monoid, the monoid which is every element is invertible is a group [3].

Vasantha Kandasamy [4], introduced details on a Smarandache structure on a set G means a weak structure W on G, where there exists a proper subset H of G embedded with a strong structure S. we investigated on D-compact M Smarandache groupoid, D-compact G Smarandache groupoid and D-compact cyclic G Smarandache groupoid, we obtain some good results related to these concepts above.

2. Definitions

¹Definition 1

- 1- A Smarandache G. groupoid (G,*) is a groupoid which has a proper subset $S \subset G$ such that (S,*) is a group (with respect to the same induced operation).
- 2- Let (G,*) be a Smarandache G. groupoid, if every proper subset $S \subset G$ which is a group is cyclic then we say (G,*) is a *Smarandache cyclic groupoid*.
- 3- Let (G,*) be a Smarandache G. groupoid, if there exists at least a proper subset $S \subset G$ which is a cyclic group (untrivial) then we say (G,*) is a *Smarandache weakly cyclic groupoid*.

¹ similar to definition Smarandache (weakly) cyclic semigroup [5].

Definition 2

Let (G,*) be a groupoid and I be an indexed (I is a finite or an infinite set), we say that;

- 1- { $(M_{i,*})$; $M_i \subset G$, $(M_{i,*})$ is a monoid, $\forall i \in I$ }, is a *D*-cover monoids of (G,*) if $G = \bigcup_{i \in I} M_i$.
- 2- { $(G_i,*)$; $G_i \subset G$, $(G_i,*)$ is a group, $\forall i \in I$ }, is a *D*-cover groups of (G,*) if $G = \bigcup_{i \in I} G_i$.
- 3- { $(G_i,*)$; $G_i \subset G$, $(G_i,*)$ is a cyclic group, $\forall i \in I$ }, is a *D*-cover cyclic groups of (G,*) if $G = \bigcup_{i \in I} G_i$.

Definition 3

Let (G,*) be a groupoid and $\{(M_i,*); M_i \subset G, (M_i,*) \text{ is a monoid}, \forall i \in I\}$, is a *D*-cover monoids of (G,*), we say that ;

- 1- (G,*) is a *D*-compact weakly *M* Smarandache groupoid (*D*-*CWMS groupoid*) if there is a finite *D*-cover monoids of (G,*).
- 2- (G,*) is a *D*-compact *M* Smarandache groupoid (*D*-CMS groupoid) if for every *D*-cover monoids of (G,*) there is a finite sub-*D*-cover monoids of (G,*).
- 3- (G,*) is a *D*-compact weakly Lindel ff M Smarandache groupoid (*D*-CWLMS groupoid) if there is a countable *D*-cover monoids of (G,*).
- 4- (G,*) is *D*-compact Lindelöff *M* Smarandache groupoid (*D*-CLMS groupoid) if for every *D*-cover monoids of (G,*) there is a countable sub-*D*-cover monoids of (G,*).
- 5- (G,*) is a *D*-locally compact *M* Smarandache groupoid (*D*-LCMS groupoid) if for every element x of G there is a subset G_x of G include x, such that $(G_x,*)$ is a monoid with respect to the same operation * on G.
- 6- (G,*) is a *D*-strong locally compact *M* Smarandache groupoid (*D*-SLCMS groupoid) if for every element x of G (except the unite element) there is a unique subset G_x of G include x, such that $(G_x,*)$ is a monoid with respect to the same operation * on G. **Definition 4**

Let (G,*) be a groupoid and $\{(G_i,*); G_i \subset G, (G_i,*) \text{ is a group }, \forall i \in I\}$, is a *D*-cover groups of (G,*), we say that ;

- 1- (G,*) is a *D*-compact weakly *G* Smarandache groupoid (*D*-*CWGS* groupoid) if there is a finite *D*-cover groups of (G,*).
- 2- (G,*) is a *D*-compact *G* Smarandache groupoid (*D*-*CGS* groupoid) if for every *D*-cover groups of (G,*) there is a finite sub-*D*-cover groups of (G,*).
- 3- (G,*) is a *D*-compact weakly Lindel ff G Smarandache groupoid (*D*-CWLGS groupoid) if there is a countable *D*-cover groups of (G,*).
- 4- (*G*,*) is *D*-compact Lindel *ff G Smarandache* groupoid (*D*-*CLGS groupoid*) if for every *D*-cover groups of (*G*,*) there is a countable *sub-D*-cover groups of (*G*,*).
- 5- (G,*) is a *D*-locally compact G Smarandache groupoid (*D*-LCGS groupoid) if for every element x of G there is a subset G_x of G include x, such that $(G_x,*)$ is a group with respect to the same operation * on G.
- 6- (G,*) is a *D*-strong locally compact G Smarandache groupoid (*D*-SLCGS groupoid) if for every element x of G (except the unite element) there is a unique subset G_x of G include x, such that $(G_x,*)$ is a group with respect to the same operation * on G. **Definition 5**

Let (G,*) be a groupoid and $\{(G_i,*); G_i \subset G, (G_i,*) \text{ is a cyclic group }, \forall i \in I\}$, is a *D*-cover cyclic groups of (G,*), we say that ;

- 1- (G,*) is a *D*-compact weakly cyclic *G* Smarandache groupoid (*D*-CWCGS groupoid) if there is a finite *D*-cover cyclic groups of (G,*).
- 2- (G,*) is a *D*-compact cyclic *G* Smarandache groupoid (*D*-CCGS groupoid) if for every *D*-cover cyclic groups of (G,*) there is a finite sub-*D*-cover cyclic groups of (G,*).
- 3- (*G*,*) is a *D*-compact weakly Lindeloff cyclic G Smarandache groupoid (*D*-CWLCGS groupoid) if there is a countable *D*-cover cyclic groups of (*G*,*).
- 4- (G,*) is *D*-compact Lindel ff cyclic G Smarandache groupoid (*D*-CLCGS groupoid) if for every *D*-cover cyclic groups of (G,*) there is a countable sub-*D*-cover cyclic groups of (G,*).
- 5- (G,*) is a *D*-locally compact cyclic G Smarandache groupoid (*D*-LCCGS groupoid) if for every element x of G there is a subset G_x of G include x, such that $(G_x,*)$ is a cyclic group with respect to the same operation * on G.
- 6- (G,*) is a *D* strong locally compact cyclic G Smarandache groupoid (*D*-SLCCGS groupoid) if for every element x of G (except the unite element) there is a unique subset G_x of G include x, such that $(G_x,*)$ is a cyclic group with respect to the same operation * on G. **Definition 6**

Let (G,*) be a groupoid and (H,*) be a subgroupoid of (G,*). Then we say that ;

- 1- (H,*) is a Smarandache G. subgroupoid (Smarandache cyclic subgroupoid, Smarandache weakly cyclic subgroupoid), if (H,*) is a Smarandache G. groupoid (Smarandache cyclic groupoid, Smarandache weakly cyclic groupoid), respectively.
- 2- (H,*) is a D-CMS subgroupoid (D-CWMS subgroupoid, D-CWLMS subgroupoid, D-CLMS subgroupoid, D-LCMS subgroupoid, D-SLCMS subgroupoid), if (H,*) is a D-CMS groupoid (D-CWMS groupoid, D-CWLMS groupoid, D-CLMS groupoid, D-LCMS groupoid, D-SLCMS groupoid), respectively.
- (H,*) is a D-CGS subgroupoid (D-CWGS subgroupoid, D-CWLGS subgroupoid, D-CLGS subgroupoid, D-LCGS subgroupoid, D-SLCGS subgroupoid), if (H,*) is a D-CGS groupoid (D-CWGS groupoid, D-CWLGS groupoid, D-CLGS groupoid, D-LCGS groupoid, D-SLCGS groupoid), respectively.
- (H,*) is a D-CCGS subgroupoid (D-CWCGS subgroupoid, D-CWLCGS subgroupoid, D-CLCGS subgroupoid, D-LCCGS subgroupoid, D-SLCCGS subgroupoid), if (H,*) is a D-CCGS groupoid (D-CWCGS groupoid, D-CWLCGS groupoid, D-CLCGS groupoid, D-LCCGS groupoid, D-SLCCGS groupoid), respectively.
 ²Definition 7
- 1- Suppose Λ is non-empty set and $(G_{\lambda}, *_{\lambda})$ is a groupoid for each $\lambda \in \Lambda$. Their *product* is $\prod_{\lambda \in \Lambda} G_{\lambda}$ with multiplication given by $(\mathbf{x} \otimes \mathbf{y}) = x_{\lambda} *_{\lambda} y_{\lambda}$ for each $x_{\lambda}, y_{\lambda} \in G_{\lambda}$ and $\lambda \in \Lambda$.
- 2- If $G_{\lambda} = G$, $\forall \lambda \in \Lambda$, then we denoted that $G^{\Lambda} = \prod_{\lambda \in \Lambda} G_{\lambda}$.

Definition 8

Let (G,*) and $(\overline{G},\overline{*})$ are two groupoids, we say that

- 1- $f: (G,*) \to (\overline{G},\overline{*})$ is a groupoid homomorphism if $f(x * y) = f(x) \overline{*} f(y) \forall x, y \in G$.
- 2- $f: (G,*) \to (\overline{G},\overline{*})$ is a groupoid isomorphism if f is a bijective and groupoid homomorphism.

3- (G,*) is an isomorphic to $(\overline{G},\overline{*})$, denoted that $(G,*) \cong (\overline{G},\overline{*})$, if there is a groupoid isomorphism $f:(G,*) \to (\overline{G},\overline{*})$.

² See [5] , p54 .

3. Main Results

The prove of all the following lemmas are direct from definitions .

Lemma 1

- 1- If (G,*) is a Smarandache cyclic groupoid, then (G,*) is a Smarandache weakly cyclic groupoid.
- 2- If (G,*) is a Smarandache weakly cyclic groupoid, then (G,*) is a Smarandache G groupoid. Lemma 2
- 1- If (G,*) is a D-CMS groupoid (D-CGS groupoid, D-CCGS groupoid), then (G,*) is a D-CWMS groupoid (D-CWGS groupoid, D-CWCGS groupoid).
- 2- If (G,*) is a *D*-CMS groupoid (*D*-CGS groupoid, *D*-CCGS groupoid), then (G,*) is a *D*-CLMS groupoid (*D*-CLGS groupoid, *D*-CLCGS groupoid).
- 3- If (G,*) is a D-CWMS groupoid (D-CWGS groupoid, D-CWCGS groupoid), then (G,*) is a D-CWLMS groupoid (D-CWLGS groupoid, D-CWLCGS groupoid).
 Lemma 3
- 1- If (*G*,*) is a *D-SLCMS groupoid* (*D-SLCGS groupoid*, *D-SLCCGS groupoid*), then (*G*,*) is a *D-LCMS groupoid* (*D-LCGS groupoid*, *D-LCCGS groupoid*).
- 2- If (G,*) is a D-CLMS groupoid (D-CLGS groupoid, D-CLCGS groupoid), then (G,*) is a D-CWLMS groupoid (D-CWLGS groupoid, D-CWLCGS groupoid).
- 3- If (G,*) is a D-CWLMS groupoid (D-CWLGS groupoid, D-CWLCGS groupoid), then (G,*) is a D-LCMS groupoid (D-LCGS groupoid, D-LCCGS groupoid).
 Lemma 4
- If (G,*) is a D-CCGS groupoid (D-CWCGS groupoid, D-CWLCGS groupoid, D-CLCGS groupoid, D-LCCGS groupoid, D-SLCCGS groupoid), then (G,*) is a D-CGS groupoid (D-CWGS groupoid, D-CWLGS groupoid, D-CLGS groupoid, D-LCGS groupoid, D-SLCGS groupoid).
- 2- If (G,*) is a D-CGS groupoid (D-CWGS groupoid, D-CWLGS groupoid, D-CLGS groupoid,
 D-LCGS groupoid, D-SLCGS groupoid), then (G,*) is a D-CMS groupoid (D-CWMS groupoid, D-CWLMS groupoid, D-CLMS groupoid, D-LCMS groupoid, D-SLCMS groupoid).

The following theorems are direct from definitions and order of groupoid, **Theorem 1**

If (G,*) is a finite groupoid, then the following are equivalent;

- 1) (G,*) is a D-CMS groupoid,
- 2) (G,*) is a *D*-*CWMS groupoid*,
- 3) (G,*) is a *D*-*CWLMS groupoid*,
- 4) (G,*) is a *D*-CLMS groupoid,
- 5) (G,*) is a *D*-LCMS groupoid.

Theorem 2

If (G,*) is a finite groupoid, then the following are equivalent;

- 1) (G,*) is a *D*-*CGS* groupoid,
- 2) (G,*) is a *D*-*CWGS groupoid*,
- 3) (G,*) is a *D*-*CWLGS groupoid*,

- 4) (G,*) is a *D*-*CLGS groupoid*,
- 5) (G,*) is a D-LCGS groupoid. Theorem 3

If (G,*) is a finite groupoid, then the following are equivalent;

- 1) (G,*) is a *D*-*CCGS* groupoid,
- 2) (G,*) is a *D*-*CWCGS groupoid*,
- 3) (G,*) is a *D*-*CWLCGS groupoid*,
- 4) (G,*) is a D-CLCGS groupoid,
- 5) (G,*) is a D-LCCGS groupoid.

³Theorem 4

Any D-compact group is a D-CGS groupoid.

Proof.

Let (G,*) is a D-compact group so any D-cover group of the group (G,*) there is a finite sub-D-cover group of (G,*), but any group is a groupiod so (G,*) is a groupoid and any D-cover group of (G,*) there exists a finite sub-D-cover group of (G,*), therefore (G,*) is a D-CGS groupoid.

⁴Let $N_o(\mathbb{Z}_p) = \{(a, b) ; a, b \in \mathbb{Z}_p\}$ the collection of all open natural intervals, $N_c(\mathbb{Z}_p) = \{[a, b] ; a, b \in \mathbb{Z}_p\}$ the collection of all closed natural intervals, $N_{oc}(\mathbb{Z}_p) = \{(a, b] ; a, b \in \mathbb{Z}_p\}$ the collection of all open-closed natural intervals, and $N_{co}(\mathbb{Z}_p) = \{[a, b) ; a, b \in \mathbb{Z}_p\}$ the collection of all closed-open natural intervals.

Theorem 5

If p is a prime number, then $(N_o(\mathbb{Z}_p), \times_p)$ is a D-CCGS groupoid.

Proof.

It is clear that $(N_o(\mathbb{Z}_p), \times_p)$ is a groupoid and

$$\begin{split} N_o\big(\mathbb{Z}_p\big) &= \big\{(a,b); \ a,b \in \mathbb{Z}_p \setminus \{0\} \} \cup \{(0,b); \ b \in \mathbb{Z}_p \setminus \{0\} \} \cup \{(a,0); \ a \in \mathbb{Z}_p \setminus \{0\} \} \cup \{(0,0)\}, \\ \text{and we know that } (\{(0,0)\}, \times_p), (\big\{(a,0); \ a \in \mathbb{Z}_p \setminus \{0\}\}, \times_p) \text{ and } (\{(0,b); \ b \in \mathbb{Z}_p \setminus \{0\}\}, \times_p) \\ \text{are cyclic groups . From theorem 2.7 in } [6] \text{ we have } (\{(a,b); \ a,b \in \mathbb{Z}_p \setminus \{0\}\}, \times_p) \text{ is a cyclic group . Therefore } (N_o\big(\mathbb{Z}_p\big), \times_p) \text{ is a D-CCGS groupoid .} \\ \Box \end{split}$$

Remark 1

We can in the theorem 5 replace $N_o(\mathbb{Z}_p)$ by $N_c(\mathbb{Z}_p)$ or $N_{oc}(\mathbb{Z}_p)$ or $N_{co}(\mathbb{Z}_p)$ and still the theorem true.

Theorem 6

If $(G,*) \cong (\overline{G},\overline{*})$, then (G,*) is a *D*-CGS groupoid $\Leftrightarrow (\overline{G},\overline{*})$ is a *D*-CGS groupoid. **Proof**.

(⇒) Let $(\overline{G}_{l},\overline{*})$ be any *D*-cover group of the groupoid $(\overline{G},\overline{*}) \Rightarrow \overline{G} = \bigcup_{i \in I} \overline{G}_i$, but *f* is an isomorphism $\Rightarrow f(G) = \overline{G} = \bigcup_{i \in I} \overline{G}_i \Rightarrow G = f^{-1}(\bigcup_{i \in I} \overline{G}_i) = \bigcup_{i \in I} f^{-1}(\overline{G}_i)$, and $f^{-1}(\overline{G}_i)$ is a group $\forall i \in I$, but (G, *) is a *D*-CGS groupoid so there is a finite set *J* such that

³ Definition of the D-compact group in [1]

⁴ See [6]

 ${}^{5}G = \bigcup_{j \in J} f^{-1}(\overline{G}_{j}) = f^{-1}(\bigcup_{j \in J} \overline{G}_{j}) \implies \overline{G} = f(G) = f\left(f^{-1}(\bigcup_{j \in J} \overline{G}_{j})\right) = \bigcup_{j \in J} \overline{G}_{j} \text{ and } (\overline{G}_{j}, \overline{*})$ is a group $\forall j \in J \implies (\overline{G}, \overline{*})$ is a *D*-*CGS* groupoid.

(\Leftarrow) Let $(G_i,*)$ be any *D*-cover group of the groupoid $(G,*) \Rightarrow G = \bigcup_{i \in I} G_i$, but f is an isomorphism $\Rightarrow \overline{G} = f(G) = f(\bigcup_{i \in I} G_i) = \bigcup_{i \in I} f(G_i)$, and $f(G_i)$ is a group $\forall i \in I$, but $(\overline{G},\overline{*})$ is a *D*-*CGS groupoid* so there is a finite set J such that

⁶ $\bar{G} = \bigcup_{j \in J} f(G_j) = f(\bigcup_{j \in J} G_j) \Longrightarrow G = f^{-1}(\bar{G}) = f^{-1}(f(\bigcup_{j \in J} G_j)) = \bigcup_{j \in J} G_j \text{ and } (G_j,*) \text{ is a group } \forall j \in J \Longrightarrow (G,*) \text{ is a } D\text{-}CGS \text{ groupoid}'. \square$

Corollary 1

1- If $f:(G,*) \to (\bar{G},\bar{*})$ is an isomorphism and (H,*) is a *D*-*CGS subgroupoid* of (G,*), then f(H) is a *D*-*CGS subgroupoid* of $(\bar{G},\bar{*})$.

2- If $f:(G,*) \to (\bar{G},\bar{*})$ is an isomorphism and (S,*) is a *D*-CGS subgroupoid of $(\bar{G},\bar{*})$. Then $f^{-1}(S)$ is a *D*-CGS subgroupoid of (G,*).

Theorem 7

If (A,*) is a group and (G,*) is a *D*-*CGS groupoid*, then $(A \times G, \otimes)$ is a *D*-*CGS groupoid*. **Proof**.

Let $\{(A \times G_i, \otimes); G_i \subset G, (A \times G_i, \otimes) \text{ is a group }, \forall i \in I\}$ be any *D*-cover group of $(A \times G, \otimes)$, where $(G_i, *)$ is a groups and $A \times G = \bigcup_{i \in I} (A \times G_i) = A \times (\bigcup_{i \in I} G_i) \Longrightarrow G = \bigcup_{i \in I} G_i$, but (G, *) is a *D*-CGS groupoid, so there is a finite set *J* such that $G = \bigcup_{j \in J} G_j$, and hence $A \times G = A \times (\bigcup_{i \in I} G_i) = \bigcup_{i \in I} A \times G_i \implies (A \times G, \otimes)$ is a *D*-CGS groupoid. \Box

Theorem 8

If (G,*) and $(\bar{G},\bar{*})$ are two *D*-*LCCGS* groupoids, then $(G \times \bar{G}, \otimes)$ is a *D*-*LCCGS* groupoid. **Proof**.

Let $(x, y) \in G \times \overline{G} \Rightarrow x \in G$ and $y \in \overline{G}$, but (G, *) is a *D*-*LCCGS groupoid* $\Rightarrow \exists G_x \subseteq G$ such that $x \in G_x$ and $(G_x, *)$ is a cyclic group, also $(\overline{G}, \overline{*})$ is a *D*-*LCCGS groupoid* $\Rightarrow \exists \overline{G}_y \subseteq \overline{G}$ such that $y \in \overline{G}_y$ and $(\overline{G}_y, \overline{*})$ is a cyclic group $\Rightarrow (x, y) \in G_x \times \overline{G}_y \subseteq G \times \overline{G}$ and $G_x \times \overline{G}_y$ is a cyclic group $\Rightarrow (G \times \overline{G}, \otimes)$ is a *D*-*LCCGS groupoid*. \Box

Theorem 9

If (G,*) and $(\overline{G},\overline{*})$ are two *D*-*CGS* groupoids, then $(G \times \overline{G}, \otimes)$ is a *D*-*CGS* groupoid. **Proof**.

Let (G,*) and $(\bar{G},\bar{*})$ are *D*-*CGS* groupoids \Rightarrow there exists a *D*-cover group of (G,*) say $\{G_a\}_{a\in A}$ and a *D*-cover group of $(\bar{G},\bar{*})$ say $\{\bar{G}_b\}_{b\in B}$ $^7 \Rightarrow G \times \bar{G} \approx (\bigcup_{a\in A} G_a) \times (\bigcup_{b\in B} \bar{G}_b) = \bigcup_{a\in A, b\in B} (G_a \times \bar{G}_b)$

 $\Rightarrow \{G_a \times \bar{G}_b\}_{a \in A, b \in B} \text{ is a } D\text{-cover group of } (G \times \bar{G}, \otimes) .$

Let $\{\mathcal{W}_i\}_{i\in I}$ be any *D*-cover group of $(G \times \overline{G}, \otimes) \Rightarrow G \times \overline{G} = \bigcup_{i\in I} \mathcal{W}_i$, such that $\mathcal{W}'_i = \mathcal{U}_i \times \mathcal{V}_i$, where $\{\mathcal{U}_i\}_{i\in I}$ and $\{\mathcal{V}_i\}_{i\in I}$ are groups with respect to the same induced operations * and $\overline{*}$, respectively. But (G,*) is a *D*-CGS groupoid, so there is a *D*-cover group of (G,*) contains $\{\mathcal{U}_i\}_{i\in I}$ which have a finite sub-D-cover group (*i.e.* there is a finite set *J*) such that $G = \bigcup_{j\in J} \mathcal{U}_j$, let $\mathcal{U}_{j_1} \in \{\mathcal{U}_j\}_{j\in J} \Rightarrow \{\mathcal{U}_{j_1} \times \mathcal{V}_i\}_{i\in I}$ is a *D*-cover group of the *D*-CGS groupoid $(\mathcal{U}_{j_1} \times \overline{G}, \otimes)$

⁵ See [2]

⁶ See [2]

⁷ See [2]

(from <u>Theorem 7</u> since $(\mathcal{U}_{j_l}, *)$ is a group and $(\bar{G}, \tilde{*})$ is a *D-CGS groupoid*), so there is a finite set S such that $\mathcal{U}_{j_l} \times \bar{G} = \bigcup_{s \in S} (\mathcal{U}_{j_l} \times \mathcal{V}_s) = \mathcal{U}_{j_l} \times (\bigcup_{s \in S} \mathcal{V}_s)$ $\Rightarrow \bigcup_{j \in J} (\mathcal{U}_j \times (\bigcup_{s \in S} \mathcal{V}_s)) = (\bigcup_{j \in J} \mathcal{U}_j) \times (\bigcup_{s \in S} \mathcal{V}_s) = G \times \bar{G}$ $\Rightarrow G \times \bar{G} = (\bigcup_{j \in J} \mathcal{U}_j) \times (\bigcup_{s \in S} \mathcal{V}_s) = \bigcup_{j \in J, s \in S} (\mathcal{U}_j \times \mathcal{V}_s).$ Therefore $G \times \bar{G}$ is a *D-CGS groupoid*. \Box It is easy to prove the following Corollary ; **Corollary 2** If (G, *) is a *D-CGS groupoid*, then (G^2, \otimes) is a *D-CGS groupoid*. By induction we can prove the following theorem,

Theorem 10

The product of any finite collection of D-CGS groupoids is D-CGS groupoid.

References

[1] D. G. Salih , On D-Compact Groups , American Journal of Scientific Research , 2012 (v.60) , 5-14 .

[2] P. Schapira, General Topology, Course at Paris VI University, 2010-2011 (v.3).

[3] W. B. Vasantha Kandasamy, Groupoids and Smarandache Groupoids, 2002.

[4] W. B. Vasantha Kandasamy , Smarandache Special Definite Algebraic Structures, InfoLearn Quest , Ann Arbor , 2009 .

[5] W. B. Vasantha Kandasamy, Smarandache Neutrosophic Algebraic Structures, 2006.

[6] W. B. Vasantha Kandasamy & F. Smarandache , Algebraic Structures Using Natural Class Of Intervals , 2011 .