A NEW EXACT SEQUENCE A generalization of J.H.C.Whiteheads
 " Certain exact sequence "

*Dheia G.S.AI-Khafaji and **Raymond N. Shekoury
* Department of Math., College of Computer Science and Mathematics , AL-Qadisiya University .
** Department of Math., College of Science, Baghdad University .

ABSTRACT

In this work we introduce and study a new notion in algebraic topology, which we call " a new exact sequence " which is a generalization of " a certain exact sequence " of J.H.C.Whitehead .

Consider the following sequence :

$$
\begin{aligned}
& \sigma_{p+1, q} \\
& \rightarrow \pi_{p p+t+1}\left(k^{p+1}, k^{p}\right) \rightarrow \boldsymbol{\pi}_{p+q}\left(k^{p}\right) \xrightarrow{j_{p a}} \boldsymbol{\pi}_{p p+q}\left(k^{p}, k^{p-1}\right) \xrightarrow{\beta_{p q}} \boldsymbol{\pi}_{p p+4+1}\left(k^{\rho p}\right) \rightarrow \boldsymbol{\pi}_{p p+4+1}\left(k^{\mu,}, k^{p}\right) \rightarrow \\
& j_{p-1, q} \circ \beta_{p, q} \text { by } \sigma_{p, q} \\
& \operatorname{ker\sigma }_{p, q} / \operatorname{Im} \sigma_{p+1, q} \text { by } \mathrm{H}_{p, q} \\
& \text { ker } j_{p, q} \text { by } \Gamma_{p, q} \\
& \pi_{p+q}\left(k^{p}\right) / \operatorname{Im} \beta_{p+1, q} \text { by } \Sigma_{p, q}
\end{aligned}
$$

The sequence
$E_{q}: \cdots \rightarrow \mathrm{H}_{p+1, q} \xrightarrow{\boldsymbol{\nu}_{p+1,9}} \Gamma_{p, q} \xrightarrow{\varphi_{p, q}} \Sigma_{p, q} \xrightarrow{\mu_{p,,}} \mathrm{H}_{p, q} \rightarrow \cdots$
Where $v_{p+1, q}, \varphi_{p, q}$ and $\mu_{p, q}$ defined in a natural manner, we call " a new exact sequence " which is denoted by NES .
We obtain some results from NES, which are ;
The our NES it is really exact, the class of all NES,s and the homomorphisms between these sequences forms a category E , there is a functor from the category of cw-complexes into E .

INTRODUCTION

This work is inspired by the paper of "a certain exact sequence " of J.H.C.Whitehead,[w1]. We introduce in it a generalization of the main concept of that paper which we call " a new exact sequence " and denote by NES .

This work contains two sections ; in first section, we construct a new exact sequence and we intraduce some a new notions. In second section , we establish some results about our NES, some of these results purely algebraic and other depend on the topology of space .

Section 1"the generalization"

We mean by the term "complex" in the sequel "connected cw-complex".
Let k be a cw-complex .
Denote $\quad \pi_{p+q}\left(k^{p}, k^{p-1}\right)$ by $C_{p, q}$ and $\pi_{p+q}\left(k^{p}\right)$ by $A_{p, q}$
$\left\{\right.$ In case $q<-p$, then $C_{p, q}=A_{p, q}=0$, by the convevtion a mong algbraic topologists to assume $\pi_{n}(X, A)=0$ and $\pi_{n}(X)=0$ if $\left.n \leq 0\right\}$

Now, consider the following sequence ;

$$
\sigma_{p, q} \circ \sigma_{p+1, q}=0 \text { It is easily to prove that }
$$

We will define homomorphisms ;

$$
\begin{gathered}
\varphi_{p, q}: \Gamma_{p, q} \longrightarrow \Sigma_{p, q} \\
\mu_{p, q} \\
v_{p+1, q}
\end{gathered} \Sigma_{p, q} \longrightarrow \mathrm{H}_{p+1, q} \longrightarrow \Gamma_{p, q} \longrightarrow \Gamma_{p, q} .
$$

$$
\mu_{p, q}: \Sigma_{p, q}^{p, q} \longrightarrow \mathrm{H}_{p, q} \quad \text {, } \quad \text { and }
$$

as follows ;

$$
\begin{aligned}
& \mathrm{T}_{q}: \quad \cdots \rightarrow C_{p+1, q} \xrightarrow{\beta_{p+1, q}} A_{p, q} \xrightarrow{j_{p, q}} C_{p, q} \xrightarrow{\beta_{p,, q}} A_{p-1, q} \rightarrow \cdots \\
& \text { where } \beta_{p, q}, j_{p, q} \text { are the homotopy boundary and the } \\
& \text { realativizing operators , respectively . } \\
& j_{p-1, q} \circ \beta_{p, q} \text { by } \sigma_{p, q} \text {, } \\
& Z_{p, q} / B_{p, q} \quad \text { by } \quad \mathrm{H}_{p, q} \text {, } \\
& \text { Ker. } j_{p, q} \text { by } \Gamma_{p, q} \text {, and } \\
& A_{p, q} / D_{p, q} \quad \text { by } \quad \Sigma_{p, q} . \\
& \begin{array}{l}
Z_{p, q}=\operatorname{Ker}^{\text {efof }} \sigma_{p, q} \quad, \\
B_{p, q}=\operatorname{Im} . o f \sigma_{p+1, q} \quad \text {,where } \\
D_{p, q}=\operatorname{Im} . o f \beta_{p+1, q} .
\end{array}
\end{aligned}
$$

$$
\begin{array}{rlllll}
\varphi_{p, q}(x) & =[x] \quad \text { for each xin } \Gamma_{p, q}, & \\
\mu_{p, q}([y]) & =\left[j_{p, q}(y)\right] \text { for each yin } A_{p, q}, & \text { and } \\
\mathrm{v}_{p+1, q}([z]) & =\beta_{p+1, q}(z) & \text { for each } & \text { zin } Z_{p+1, q}
\end{array}
$$

where [] denote the advise equivalence class of the element inside the bracket.

It is easy to check that $\mu_{p, q} \& v_{p+1, q}$ are well defined.
Therefore we get the following sequence of groups and homomorphisms;

$$
E_{q}: \cdots \rightarrow \mathrm{H}_{p+1, q} \xrightarrow{\boldsymbol{V}_{p+1, q}} \Gamma_{p, q} \xrightarrow{\varphi_{p, q}} \Sigma_{p, q} \xrightarrow{\mu_{p, q}} \mathrm{H}_{p, q} \rightarrow \cdots
$$

we call " a new exact sequence " which is denoted by NES .
It is easy to see that by taking q to be 0 we will obtain the exact sequence of J.H.C.Whitehead . Moreover the results which will obtain with generalize many results of Whitehead .

Now, let \mathfrak{J} be the class of all sequences of the form NES and , $\zeta(q)=\left(\tau_{q}, v_{q}, \rho_{q}\right): E_{q} \longrightarrow E_{q}^{-}$morphisms we mean a family of homomorphisms $\quad \varsigma(q)$ By a morphism

$E_{q}^{-}: \quad \cdots \rightarrow \mathrm{H}_{p+1, q}^{-} \xrightarrow{\nu_{p+1, q}^{-}} \Gamma_{p, q}^{-} \xrightarrow{\varphi_{p, q}^{-}} \Sigma_{p, q}^{-} \xrightarrow{\mu_{p, q}^{-}} \mathrm{H}_{p, q}^{-} \rightarrow \cdots$ such that

$$
\begin{aligned}
\mathbf{v}_{p+1, q}^{-} \circ \tau_{p+1, q} & =\mathbf{v}_{p, q} \circ \mathbf{v}_{p+1, q} \\
\varphi_{p, q}^{-} \circ \mathbf{v}_{p, q} & =\rho_{p, q} \circ \varphi_{p, q} \quad \text { and } \\
\mu_{p, q}^{-} \circ \rho_{p, q} & =\tau_{p, q} \circ \mu_{p, q}
\end{aligned}
$$

Let Π be the class of all sequences of the form T_{q} and morphisms $\int(q)=\left(h_{q}, f_{q}\right): T_{q} \rightarrow T_{q}^{-} \quad$, where

$$
T_{q}: \cdots \rightarrow C_{p+1, q} \xrightarrow{\beta_{p+1, q}} A_{p, q} \xrightarrow{j_{p, q}} C_{p, q} \quad \rightarrow \cdots
$$

and $\int(q)$, we mean a family of homomorphisms,

$$
\begin{array}{cccccccc}
T_{q}: & \cdots & \rightarrow & C_{p+1, q} & \xrightarrow{\beta_{p+1, q}} & A_{p, q} & \xrightarrow{j_{p, q}} & C_{p, q}
\end{array} \rightarrow \cdots
$$

such that ;

$$
\begin{array}{ll}
\beta_{p+1, q}^{-} \circ h_{p+1, q} & =f_{p, q} \circ \beta_{p+1, q} \quad \text { and } \\
j_{p, q}^{-} \circ f_{p, q} & =h_{p, q} \circ j_{p, q}
\end{array}
$$

Notice that, it is easy to show that

$$
\sigma_{p+1, q}^{-} \circ h_{p+1, q}=h_{p, q} \circ \sigma_{p+1, q}
$$

Also, we note that

$$
\begin{array}{cccc}
f_{p, q}\left(\Gamma_{p, q}\right) & \subset & \Gamma_{p, q}^{-} & , \\
f_{p, q}\left(D_{p, q}\right) & \subset & D_{p, q}^{-} \quad \text { and } \\
h_{p, q}\left(B_{p, q}\right) & \subset & B_{p, q}^{-} & .
\end{array}
$$

Therefor $\int(q)$ induces morphism $\quad \varsigma(q)=\left(\tau_{q}, v_{q}, \rho_{q}\right): E_{q} \rightarrow E_{q}^{-}$, where

according to the rules ,

$$
\begin{array}{rlrlr}
\tau_{p+1, q}([z]) & =\left[h_{p, q}(z)\right] & \forall z \in Z_{p+1, q} & & \text {, } \\
\mathrm{v}_{p, q}(x) & =f_{p, q}(x) & \forall x \in \Gamma_{p, q} & & \text { and } \\
\rho_{p, q}([x]) & =\left[f_{p, q}(x)\right] & & \forall x \in A_{p, q} & \text {. }
\end{array}
$$

It is easy to show that is a morphism in $\varsigma(q) \mathfrak{J}$, which is called the morphism induced by $\int(q)$.

Moreover, we will construct $\int(q)$ from the map "which is cellular",
Let $h: \quad\left(K^{p+1}, K^{p}, e^{0}\right) \longrightarrow\left(K_{1}^{p+1}, K_{1}^{p}, e_{1}^{0}\right)$, be a cellular map , and $f=\left.h\right|_{K^{p}}: \quad\left(K^{p}, e^{0}\right) \longrightarrow\left(K_{1}^{p}, e_{1}^{0}\right) \quad$ be a cellular map, which is restriction of h.

Then hand f induce a homomorphisms h_{q} and f_{q}, which is defined as following ;
which is represented by a map $x \in C_{p+1, q}$ Let
$\alpha: \quad\left(E^{p+q+1}, S^{p+q}, s_{0}\right) \rightarrow\left(K^{p+1}, K^{p}, e^{0}\right) \quad$ we define $h_{p+1, q}(x)=[h \circ \alpha]$
Let $\quad y \in A_{p, q}$ Which is represented by a map
$\varepsilon:\left(S^{p+q}, s_{0}\right) \rightarrow\left(K^{p}, e^{0}\right) \quad$ we define $\quad f_{p, q}(y)=[f \circ \varepsilon]$
It is easy to show that our maps are well defined,
Moreover, it is easy to show that $\int(q)=\left(h_{q}, f_{q}\right)$ is a morphism in Π, which is called the morphism induced by h.

Remarks

(i) Let $\int(q)=\left(h_{q}, f_{q}\right): T_{q} \rightarrow T_{q}^{-} \quad$ and $\int^{-}(q)=\left(h_{q}^{-}, f_{q}^{-}\right): T_{q}^{-} \rightarrow T_{q}^{-}$,
be two morphisms in Π, we define the composition of morphisms as following; $\int^{-}(q) \circ \int(q)=\left(h_{q}^{-} \circ h_{q}, f_{q}^{-} \circ f_{q}\right)$.

It is easy to show that is a homomorphism in $\int^{-}(q) \circ \int(q) \Pi$.
(ii) Let $\varsigma(q): E_{q} \rightarrow E_{q}^{-}$and $\varsigma^{-}(q): E_{q}^{-} \rightarrow E_{q}^{-} \quad$, be two morphisms in \mathfrak{J}, we define the composition of morphisms as following;

$$
\varsigma^{-}(q) \circ \varsigma(q)=\left(\tau_{q}^{-} \circ \tau_{q}, v_{q}^{-} \circ v_{q}, \rho_{q}^{-} \circ \rho_{q}\right): \quad E_{q} \rightarrow E_{q}^{=}
$$

$\varsigma^{-}(q) \circ \varsigma(q)$ it is easy to show that is a homomorphism in \mathfrak{J}. *
Now, we will define some a new notion which is needs in this work, By a deformation operator, $\delta(q): C_{q}(K) \rightarrow C_{q}\left(K^{-}\right)$we mean a family of homomorphisms ; $\delta_{p+1, q}: C_{p, q} \rightarrow C_{p+1, q}^{-}$

We call two homomorphisms , $\int(q), \int^{*}(q): T_{q}(K) \rightarrow T_{q}\left(K^{-}\right)$, are homotopic, and write $\int(q) \approx \int^{*}(q)$, if and only if , there is a deformation operator, $\delta(q): C_{q}(K) \rightarrow C_{q}\left(K^{-}\right)$, as shown in the following diagram ;

such that

$$
\begin{aligned}
f_{p, q}^{*}-f_{p, q} & =\beta_{p+1, q}^{-} \circ \delta_{p+1, q} \circ j_{p, q} \quad \text { and } \\
h_{p, q}^{*}-h_{p, q} & =\sigma_{p+1, q}^{-} \circ \boldsymbol{\delta}_{p+1, q}+\delta_{p, q} \circ \sigma_{p, q}
\end{aligned} .
$$

We shall describe a homomorohism $\quad \int(q): T_{q} \rightarrow T_{q}^{-} \quad$ as an (algebraic) equivalence, iff ,there is a homomorphism $\int^{-}(q): T_{q}^{-} \rightarrow T_{q}$

$$
\int^{-}(q) \circ \int(q) \approx \mathrm{I} \text { such that } \quad \text { and } \quad \int(q) \circ \int^{-}(q) \approx \mathrm{I}
$$

where I denotes the identical isomorphism both in T_{q} and in T_{q}^{-}.
We shall describe T_{q} as equivalent to $T_{q}^{-} \quad$ And shall write , iff , there is an equivalence $T_{q} \equiv T_{q}^{-} \quad \int(q): T_{q} \rightarrow T_{q}^{-}$.
We shall describe $\varsigma(q)$ as an isomorphism, iff, $\tau_{p, q}, v_{p, q}$ and $\rho_{p, q}$ are an isomorphisms for each p . We shall describe E_{q} as isomorphic to E_{q}^{-}, and shall write $E_{q} \cong E_{q}^{-}$, iff , there is an isomorphism $\quad \varsigma(q): E_{q} \rightarrow E_{q}^{-}$.

Section 2 "Results and Conclusion"

We obtain some results about our " NES" . Some of these results purely algebraic and others depend on the topology of space. We will write some of these results without proof .

Theorem 1

The new exact sequence $\quad E_{q}$ is an exact sequence

Proof

We will prove this theorem in three stages;
(i) $\operatorname{Im} . \mu_{p, q}=\operatorname{Ker} \cdot v_{p, q}$,
(ii) $\operatorname{Im} \cdot \varphi_{p, q}=$ Ker. $\mu_{p, q}$,
(iii) $\operatorname{Im} \cdot \nu_{p+1, q}=\operatorname{Ker} \cdot \varphi_{p, q}$.

Stage (i) ;
(i1) Let $a \in \Sigma_{p, q}$ and $a=[x]$, where $x \in A_{p, q}$, then

$$
\begin{array}{rlrl}
\nu_{p, q}\left(\mu_{p, q}(a)\right) & =v_{p, q}\left(\left[j_{p, q}(x)\right]\right) \quad(\text { by } \operatorname{def} .) \\
& =\beta_{p, q}\left(j_{p, q}(x)\right) \\
& =\left(\beta_{p, q} \circ j_{p, q}\right)(x) \\
& =0 & & \\
& 0 & \text { ef .) }
\end{array}
$$

(i2) Let $b \in \mathrm{H}_{p, q}$ and $b=[z]$, where $z \in Z_{p, q}$.
Assume that $v_{p, q}(b)=0 \Rightarrow \beta_{p, q}(z)=0 \Rightarrow z \in \operatorname{Ker} . \beta_{p, q}=\operatorname{Im} . j_{p, q}$
so that $z=j_{p, q}(y)$ for some $y \in A_{p, q}$,
so we let $\mu_{p, q}([y])=\left[j_{p, q}(y)\right]=[z]=b$
Thus from (i1)\&(i2) we get (i) *
Stage (ii) ;
(ii1) Let $a \in \Sigma_{p, q}$ and $a=[x]$, where $x \in A_{p, q}$.
Assume that $\mu_{p, q}(a)=0$ thus $\left[j_{p, q}(x)\right]=0 \quad$ (from def.)
but $\quad \mathrm{H}_{p, q}=Z_{p, q} / B_{p, q}$ then $j_{p, q}(x) \in \beta_{p, q}$

$$
\text { so that } \sigma_{p+1, q}(y)=j_{p, q}(x) \quad \text { for some } y \in C_{p+1, q} \text {, }
$$

thus $j_{p, q}\left(\beta_{p+1, q}(y)=j_{p, q}(x) \Rightarrow x-\beta_{p+1, q}(y) \in \operatorname{Ker} . j_{p, q}=\Gamma_{p, q}\right.$ so we let $\varphi_{p, q}\left(x-\beta_{p+1, q}(y)\right)=[x]=a \bullet$
(ii2) Let $x \in \Gamma_{p, q}$, then

$$
\left.\begin{array}{rl}
\mu_{p, q}\left(\varphi_{p, q}(x)\right) & =\mu_{p, q}([x]) \\
& = \\
& \left(\begin{array}{ll}
\text { by } & d e f .
\end{array}\right) \\
& =0
\end{array} \quad 0 \quad \begin{array}{lll}
\left.j_{p, q}(x)\right] & (\text { by } & \text { def. } .
\end{array}\right)
$$

Thus from (ii1) \& (ii2) we get (ii) *
Stage (iii)
(iii1) Let $b \in \mathrm{H}_{p+1, q}$ and $b=[z]$, where $z \in Z_{p+1, q}$, then

$$
\begin{aligned}
\varphi_{p, q}\left(v_{p+1, q}(b)\right) & =\varphi_{p, q}\left(\beta_{p+1, q}(z)\right) & (\text { by } & \text { def. }) \\
& =\left[\beta_{p+1, q}(z)\right] & (\text { by } & \text { def. }) \\
& =0 . & (\sin c e & \text { in } \left.\Sigma_{p, q}\right)
\end{aligned}
$$

(iii2) Let $x \in \Gamma_{p, q}$ and $\varphi_{p, q}(x)=0$, then $[x]=0 \Rightarrow x \in \operatorname{Im} . \beta_{p+1, q}$ so that $\quad \beta_{p+1, q}(y)=x \quad$ for some $y \in C_{p+1, q}$, so we let $v_{p+1, q}([y])=\beta_{p+1, q}(y)=x$ •

Thus from (iii1) \& (iii2) we get (iii) * We are done *

Theorem 2

The class Π mention in section 1, is a category .

Theorem 3

The class \mathfrak{I} mention in section 1, is a category .

Theorem 4

. П There is a functor from the category of cw-complexs into

Proof

The prove directly from our remark (i) "section 1 " and theorem 2 .
Denote this functor by , thus $\int: C W \rightarrow \Pi$. where $C W$ denote the category of cw-complexs .

Theorem 5

There is a functor from the category into the category $\Pi \mathfrak{I}$. Proof

The prove directly from our remark (ii) "section 1" and theorem 3 .
Denote this functor by , thus $\varsigma \varsigma: \Pi \rightarrow \mathfrak{I}$.

Theorem 6

There is a functor from the category $C W$ into the category \mathfrak{I}. Proof

The composition of two functors is again a functor, (see [SW]).
Hence from (theorem 4) and (theorem 5), it follows that $\varsigma \circ 1$ as a functor .

- E where $E(K)=E_{q}(K)$ and $E(h)=F(q)$ Denote this fumctor by

Lemma 1

The relation $(i) \equiv$ mention in section 1 , is an equivalence relation .
The relation (ii) \cong Mention in section 1, is an equivalence relation.

Lemma 2 If

$\int(h) \approx \int_{\left(h^{-}\right):} T_{q}(K) \rightarrow T_{q}\left(K^{-}\right)$are homotopic, and $\int\left(h^{\prime}\right): T_{q}\left(K^{-}\right) \rightarrow T_{q}\left(K^{=}\right)$ be a homomorphism, then $\int\left(h^{\circ}\right) \circ \int(h) \approx \int\left(h^{\prime}\right) \circ f\left(h^{-}\right): T_{q}(K) \rightarrow T\left(K^{=}\right)$.

Lemma 3

Let be homotopic ($h, h^{-}: K \rightarrow K^{-} h \approx h^{-}$), then $\int(h) \approx \int\left(h^{-}\right) \quad: \quad T_{q}(K) \rightarrow T_{q}\left(K^{-}\right)$.

Lemma 4

Let $\quad \int(q) \approx \int^{-}(q) \quad: \quad T_{q}(K) \rightarrow T_{q}\left(K^{-}\right) \quad$, then

$$
F(q)=F^{-}(q) \quad: \quad E_{q}(K) \rightarrow E_{q}\left(K^{-}\right) .
$$

Theorem 7
Let be homotopic $h, h^{-}: K \rightarrow K^{-} \quad h \approx h^{-}$, then $F(q)=F^{-}(q) \quad: \quad E_{q}(K) \rightarrow E_{q}\left(K^{-}\right) \quad$.
Proof

The prove direct from (lemma 3) and (lemma 4).
Theorem 8
If $K \equiv K^{-} \quad$, then $\quad E_{q}(K) \cong E_{q}\left(K^{-}\right)$

REFERENCES

[B] H.J.Baues . On Homotopy Classification Problems of J.H.C.Whitehead, in Algebraic Topology Gottingen 1984. Edited by L.Smith, Springer-Verlag, Berlin Heidelberg 1985.
[Hu 1] S.T.Hu . Homotopy Theory . Academic press . New York 1959.
[Hu 2] S.T.Hu . Homology Theory . Holden-Day . Inc. 1966.
[H] A.Hatcher . Algebraic Topology .Cambridge University Press 2002 .(Indian edition 2003).
[SW] R.M.Switzer . Algebraic Topology, Homotopy and homology, Springer-Verlag, New York 1975.
[W1] J.H.C.Whitehead . A Certain Exact Sequence . Ann. Of Math. 52(1950),51-110 .

