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ABSTRACT
In this work we introduce and study a new notion in algebraic
topology , which we call " a new exact sequence " which is a

generalization of " a certain exact sequence " of J.H.C.Whitehead .
Consider the following sequence :
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The sequence

    

 qpqpqpqpq
qpqpqpE ,,,,1

,,,1:


defined in a natural manner ,qpqpqp and ,,,1 ,  Where

we call " a new exact sequence " which is denoted by  NES .
We obtain some results from  NES , which are ;

The our NES it is really exact , the class of all NES,s and
the homomorphisms between these sequences forms a category

 ., there is a functor from the category of cw-complexes into



INTRODUCTION

This work is inspired by the paper of "a certain exact sequence "
of J.H.C.Whitehead,[w1]. We introduce in it a generalization of the main
concept of that paper which we call " a new exact sequence " and denote
by NES .

This work contains two sections ; in first section , we construct a new
exact sequence and we intraduce some a new notions . In second section ,
we establish some results about our  NES , some of these results purely
algebraic and other depend on the topology of space .

"the generalization"1Section
We mean by the term "complex" in the sequel "connected cw-complex".

Let k be a cw-complex .
qp

p
qpqp

pp
qp AbykandCbykk ,,

1 )(),( 


 Denote

}00)(0),(loglg

,0,{ ,,




nifXandAXassumetoiststopobraica

mongaconvevtionthebyACthenpqcaseIn

nn

qpqp



Now, consider the following sequence ;
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   are the homotopy boundary and theqpqp j ,, ,where

realativizing operators , respectively .
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 It is easily to prove that0,1,  qpqp  

We will define homomorphisms ;
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as follows ;
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where [  ] denote the advise equivalence class of the element inside the
bracket .

are well defined .qpqp ,1, & thatIt is easy to check

Therefore we get the following sequence of groups and homomorphisms ;

    

 qpqpqpqpq
qpqpqpE ,,,,1

,,,1:


we call " a new exact sequence " which is denoted by  NES .
It is easy to see that by taking  q  to be 0  we will obtain the exact

sequence of J.H.C.Whitehead . Moreover the results which will obtain
 with generalize many results of Whitehead .

be the class of all sequences of the form NES  andNow , let
morphisms qqqqq EEq :),,()( . ,

By a morphism)(qwe mean a family of homomorphisms
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be the class of all sequences of the form  Tq  and morphismsLet
, where qqqq TTfhq :),()(

   

 qpqpqpq C
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ACT qpqp
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 , we mean a family of homomorphisms ,)(qand
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such that ;
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Notice that , it is easy to show that
.,1,,1,1 qpqpqpqp hh 


   

Also , we note that
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, which is called)(q  is a morphism inIt is easy to show that
.)(qthe morphism induced by

from the map "which is cellular",)(qMoreover, we will construct
, and, be a cellular map),,(),,(: 0

11
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1
01 eKKeKKh pppp  Let

be a cellular map , which is),(),(: 0
11

0 eKeK
K

hf pp
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.hrestriction of
, which isqq fandhinduce a homomorphismsfandhThen

defined as following ;

LetqpCx ,1which is represented by a map

][)(,1 hxh qp we define    ،),,(),,(: 01
0

1 eKKsSE ppqpqp  

Which is represented by a mapqpAy ,Let

][)(, fyf qp we define     ،),(),(: 0
0 eKsS pqp 

It is easy to show that our maps are well defined ,
,is a morphism in),()( qq fhq Moreover , it is easy to show that

.hwhich is called the morphism induced by
Remarks

,:),()(:),()()(   qqqqqqqq TTfhqandTTfhqLeti

of morphisms as, we define the compositionbe two morphisms in
.),()()( qqqq ffhhqq   following ;

.)()( qq     is a homomorphism inIt is easy to show that
be two morphisms,:)(:)()(   qqqq EEqandEEqLetii 

, we define the composition of morphisms as following ;in
.:),,()()(   qqqqqqqq EEqq  



*. is a homomorphism init is easy to show that)()( qq  

       Now , we will define some a new notion which is needs in this work,
we mean a)()(:)(  KCKCq qqBy a deformation operator ,

.
  qpqpqp CC ,1,,1 :family of homomorphisms ;

, are)()(:)(),( *  KTKTqq qqWe call two homomorphisms ,

, if and only if , there is a)()( * qq homotopic , and write
, as shown in the)()(:)(  KCKCq qq,deformation operator

following diagram ;
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anas qq TTq :)( We shall describe a homomorohism

qq TTq   :)((algebraic) equivalence , iff ,there is a homomorphism

,  )()( qq    andsuch that  )()( qq 

.
qTand inqTdenotes the identical isomorphism both inwhere

And shall write
qTas equivalent toqTWe shall describe

. qq TTq :)( qq TT, iff , there is an equivalence

as an isomorphism , iff ,)(qWe shall describe
are an isomorphisms for each p . We shallqpqpqp and ,,, , 

, iff , qq EE ,and shall write
qE as isomorphic toqEdescribe

. qq EEq :)(there is an isomorphism

"Results and Conclusion "2Section
We obtain some results about our " NES" . Some of these results

purely algebraic and others depend on the topology of space .We will
write some of these results without proof .

1Theorem
is an exact sequenceqEThe new exact sequence

Proof
We will prove this theorem in three stages;
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Stage (i) ;
thenAxwherexaandaLeti qpqp ,],[)1( ,, 
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(iii)Stage
thenZzwherezbandbLetiii qpqp ,],[)1( ,1,1  
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qpqpqp xxthenxandxLetiii ,1,, .Im0][,0)()2(  

,)( ,1,1 qpqp Cysomeforxythatso  

  xyyletweso qpqp )(])([ ,1,1 

We are done *)()2(&)1( iiigetweiiiiiifromThus



2Theorem
is a category .mention in section 1,The class

3Theorem
is a category .mention in section 1,The class

4Theorem
There is a functor from the category of  cw-complexs into.

Proof
The prove directly from our remark (i) "section 1" and theorem 2 .

CWwhere. CW:   , thusDenote this functor by
denote the category of cw-complexs .

5Theorem
.  into the categoryThere is a functor from the category

Proof
The prove directly from our remark (ii) "section 1" and theorem 3 .

.: , thusDenote this functor by
6Theorem

. into the categoryCWThere is a functor from the category
Proof

The composition of two functors is again a functor ,( see [SW] ) .
    asHence from (theorem 4) and (theorem 5) , it follows that

a functor .
  Denote this fumctor by)()()()( qFhEandKEKEwhereE q .

1Lemma
relation .mention in section 1, is an equivalence،)(i  The relation

Mention in section 1, is an equivalence relation .،)(ii  The relation

  If2Lemma
)()(:)( `   KTKTh qqare homotopic, and)()(:)()(   KTKThh qq

.)()(:)()()()( ``   KTKThhhh qbe a homomorphism , then

3Lemma
) , then hh  KKhh :,   be homotopic (Let

.)()(:)()(   KTKThh qq

4Lemma
, then)()(:)()(   KTKTqq qqLet

.)()(:)()(   KEKEqFqF qq

7Theorem
, then hh  KKhh :,be homotopicLet

.)()(:)()(   KEKEqFqF qq

Proof



The prove direct from ( lemma 3 ) and ( lemma 4 ) .
8Theorem

.)()(,   KEKEthenKKIf qq

REFERENCES

[B]    H.J.Baues . On Homotopy Classification Problems of
J.H.C.Whitehead , in Algebraic Topology Gottingen 1984 .
Edited by L.Smith , Springer-Verlag , Berlin Heidelberg 1985.

[Hu 1] S.T.Hu . Homotopy Theory . Academic press . New York 1959 .
[Hu 2] S.T.Hu . Homology Theory . Holden-Day . Inc. 1966 .

 [H]     A.Hatcher . Algebraic Topology .Cambridge University Press
2002 .( Indian edition 2003).

[SW]    R.M.Switzer . Algebraic Topology , Homotopy and homology ,
Springer-Verlag , New York 1975 .

[W1] J.H.C.Whitehead . A Certain Exact Sequence . Ann. Of Math.
52(1950),51-110 .


