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ABSTRACT
In this work we introduce and study a new notion in algebraic
topology , which we call " a new exact sequence " which is a

generalization of " a certain exact sequence " of J.H.C.Whitehead .
Consider the following sequence :
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defined in a natural manner ,qpqpqp and ,,,1 ,  Where

we call " a new exact sequence " which is denoted by  NES .
We obtain some results from  NES , which are ;

The our NES it is really exact , the class of all NES,s and
the homomorphisms between these sequences forms a category

 ., there is a functor from the category of cw-complexes into



INTRODUCTION

This work is inspired by the paper of "a certain exact sequence "
of J.H.C.Whitehead,[w1]. We introduce in it a generalization of the main
concept of that paper which we call " a new exact sequence " and denote
by NES .

This work contains two sections ; in first section , we construct a new
exact sequence and we intraduce some a new notions . In second section ,
we establish some results about our  NES , some of these results purely
algebraic and other depend on the topology of space .

"the generalization"1Section
We mean by the term "complex" in the sequel "connected cw-complex".
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where [  ] denote the advise equivalence class of the element inside the
bracket .

are well defined .qpqp ,1, & thatIt is easy to check

Therefore we get the following sequence of groups and homomorphisms ;
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we call " a new exact sequence " which is denoted by  NES .
It is easy to see that by taking  q  to be 0  we will obtain the exact

sequence of J.H.C.Whitehead . Moreover the results which will obtain
 with generalize many results of Whitehead .
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It is easy to show that our maps are well defined ,
,is a morphism in),()( qq fhq Moreover , it is easy to show that
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       Now , we will define some a new notion which is needs in this work,
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"Results and Conclusion "2Section
We obtain some results about our " NES" . Some of these results

purely algebraic and others depend on the topology of space .We will
write some of these results without proof .

1Theorem
is an exact sequenceqEThe new exact sequence

Proof
We will prove this theorem in three stages;
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2Theorem
is a category .mention in section 1,The class

3Theorem
is a category .mention in section 1,The class

4Theorem
There is a functor from the category of  cw-complexs into.

Proof
The prove directly from our remark (i) "section 1" and theorem 2 .

CWwhere. CW:   , thusDenote this functor by
denote the category of cw-complexs .
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.  into the categoryThere is a functor from the category

Proof
The prove directly from our remark (ii) "section 1" and theorem 3 .

.: , thusDenote this functor by
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The composition of two functors is again a functor ,( see [SW] ) .
    asHence from (theorem 4) and (theorem 5) , it follows that

a functor .
  Denote this fumctor by)()()()( qFhEandKEKEwhereE q .

1Lemma
relation .mention in section 1, is an equivalence،)(i  The relation

Mention in section 1, is an equivalence relation .،)(ii  The relation
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)()(:)( `   KTKTh qqare homotopic, and)()(:)()(   KTKThh qq
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The prove direct from ( lemma 3 ) and ( lemma 4 ) .
8Theorem

.)()(,   KEKEthenKKIf qq
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