

$I_{z,m}$. cw – complex

Dheia Gaze Salih Al-Khafajy

Department of Mathematics, College of Computer Science and Mathematics, Al-Qadisiya University, Al-Qadisiya, Iraq dheia.salih@yahoo.com

Abstract

In this paper we introduce a new tool in algebraic topology which is called $I_{z,m}.cw - complex$ (analogous terminology of J.H.C. Whitehead in [1]). By studying effect of this complex on the spectral sequences, we obtained some results, such as; 1- Any complex is an $I_{z,m}.cw - complex$ if $m \le -z$ 2- Let $K \otimes \overline{K}$ are two cw-complexes, if $K \equiv_{z} \overline{K}$, then

K is an $I_{z,m}$.cw - complex \Leftrightarrow K is an $I_{z,m}$.cw - complex.

3- If K is an $I_{z,m}.cw - complex$, then $\eta_{n,m}^r \cong \pi_{n,m}^r \quad \forall n = 2,3, \dots, z$ and $j_{z+1,m}^r$ is onto, $\forall r$.

4- Let K be a cw-complex, if K is a (z-1) - connected, then K is a I_{zm} . cw - complex, and the converse is not true.

Key words : cw-complexes , homotopy and homology group , new exact sequence , spectral sequences , I_{am} , cw - complex.

مجمع - I_{z.m}. CW

ضياء غازي صالح

قسم الرياضيات،كلية علوم الحاسوب والرياضيات،جامعة القادسية، القادسية ،العراق.

الخلاصة

$$\begin{split} I_{\underline{zm}}.Cw^{-} & \text{ë.ord} & \text{lit.equal}, & \text{lit.equal}, & \text{lit.equal}, & \text{lit.equal}, & \text{intermative}, & \text{lit.equal}, & \text{lit.equa}, & \text{lit.equal}, & \text{lit.equal}, & \text{lit.equa}$$

Introduction

There are many tools in algebraic topology, (see [2]). In this paper we introduce a new tool in algebraic topology which is called $I_{z,m}$, cw - complex and study the effect of this notion on the spectral sequences .

In this work a complex will mean a pair (K,e^{0}) , where K is a connected cw-complex and $e^0 \in K^0$ is a 0-cell, which is to be taken as base point for all the homotopy groups which we associate with K. Nevertheless we shall denote complexes by K, \overline{K}, L etc...

This work contains two sections ; in first section, we introduce the spectral sequence and definition of I_{am} . cw - complex. In second section, we establish some results about our work, some of these results are purely algebraic and others depend on the topology of space, for examples;

I- If
$$K \equiv_{\mathbb{F}} \overline{K}$$
, then
K is an $I_{2,m}.cw - complex \Leftrightarrow$
 \overline{K} is an $I_{2,m}.cw - complex$
2- If K is an $I_{2,m}.cw - complex$, then for
each r we have

 $\eta^r_{n,m} \cong \pi^r_{n,m} \quad \forall n = 2, 3, \cdots, z$, and $j_{r+1,m}^r$ is onto

3- If K is a (z-1) - connected, then K is an I_{zam} . cw - complex, and the converse is not true.

Section 1

In this section we introduce the main definition $I_{g,m}$. cw - complex.

Let K be a complex. Consider the following sequence which is known to be exact , see [3];

 $\cdots \to \pi_{n+m}(K^{n-1}) \xrightarrow{\iota_{n,m}} \pi_{n+m}(K^n) \xrightarrow{J_{n,m}} \pi_{n+m}(K^n, K^{n-1}) \xrightarrow{\vartheta_{n,m}} \pi_{n+m-1}(K^{n-1}) \to \cdots$

Definition 1.1

is an <u>K</u> We say that a complex $i_{n,m}(\pi_{n+m}(K^{n-1})) = 0$ if $I_{g,m}.cw - complex$ $n = 1, 2, \cdots, z$ for each

Remarks 1.2

For each integers *n* and *m* let $\pi_{n,m}$ be $\pi_{n+m}(K^n, K^{n-1})$, $\eta_{n,m}$ be $\pi_{n+m}(K^n)$, if $m \ge -n$ $\pi_{n+m}(K^n, K^{n-1}) = \pi_{n+m}(K^n) = 0$ and

if $n+m \ge 0$ (see [4]).

which forms a first exact couple,

where ∂ is of degree (-1,0)*i* is of degree (1, -1)i is of degree (0,0) And

From this exact couple, we obtain a second exact couple, by taking

$$\pi_{n,m}^{1} = \frac{\ker d_{n,m}}{\lim d_{n-1,m}}$$

where

 $\eta_{n,m}^{1} = \frac{\eta_{n,m}}{im} \frac{\partial_{n+1,m}}{\partial_{n+1,m}}$ and $\eta_{n,m}^1 = ker.j_{n,m}$

where

 $d_{n,m} = j_{n-1,m} \circ \partial_{n,m} \, .$ Hence we have a second exact couple ;

The process of derivation can be iterated indefinitely, yielding an infinite sequence of exact couples ;

 π^{*}

$$\varpi^r : \qquad \eta^r \qquad \eta^r \qquad r = 0, 1, 2, \cdots$$

1 such that $\varpi^0 = \varpi$, $\varpi^1 = NES$ and ϖ^{r+1} is the derived couple of $\boldsymbol{\varpi}^{\boldsymbol{r}}$.

The endomorphism $d^r = j^r \circ \partial^r$ has the property that $d^r \circ d^r = 0$, so that ϖ^r is a chain complex under d^r , whose homology group is ϖ^{r+1} .

In this way we obtain a spectral sequence, (for details see [5]).

A morphism $\mathcal{F}_r: \overline{\omega}^r \to \overline{\omega}^r$ between two exact couples $\boldsymbol{\varpi}^r, \boldsymbol{\overline{\varpi}}^r$, we mean a family of homomorphisms (f_r, g_r) showing in the following diagram

$$\begin{array}{l} \partial^{r} \circ f_{r} = g_{0r} \circ \partial \\ \overline{i}^{r} \circ g_{0r} = g_{1r} \circ i^{r} \\ \overline{j}^{r} \circ g_{1r} = f_{r} \circ j^{r} \end{array}$$

So that $\mathcal{F}_{\mathbf{r}}$ is a chain morphism and induces a morphism $\mathcal{F}_r^1 = \mathcal{F}_{r+1}$, and f_r^1, g_r^1 defined maps between the derived couples, such that :

 $f_{r+1}: \pi^{r+1} \to \overline{\pi}^{r+1}$ defined by $f_{r+1}([z]) = [f_r(z)], \forall [z] \in \pi^{r+1}$ $g_{0r+1}:\eta^{r+1} \to \bar{\eta}^{r+1}$ defined by $g_{0r+1}(x) = g_{0r}(x)$, $\forall x \in \eta^{r+1}$. $g_{1r+1}: \eta^{r+1} \rightarrow \overline{\eta}^{r+1}$ defined by

¹ I mean " the new exact sequence" NES, for details see [3].

 $g_{1r+1}([x]) = [g_{1r}(x)], \forall x \in \eta^{r+1}.$ Now, let $\mathcal{F}_r : \varpi^r \to \overline{\varpi}^r \text{ and } \mathcal{F}_r^* : \overline{\varpi}^r \to \overline{\overline{\varpi}}^r$ are two morphisms, the composition of morphisms be given can by $\mathcal{F}_r^* \circ \mathcal{F}_r = (f_r^* \circ f_r, g_r^* \circ g_r) : \overline{\varpi}^r \longrightarrow \overline{\overline{\varpi}}^r.$ We shall describe $\mathcal{F}_r: \overline{\boldsymbol{\omega}}^r \to \overline{\boldsymbol{\omega}}^r$ is an isomorphism , if and only if , f_r , $g_{0r} \& g_{1r}$ are isomorphisms . We shall describe \overline{w}^r as isomorphic to $\overline{\varpi}^r$ and write $\overline{\varpi}^r \cong \overline{\varpi}^r$, if and only if, there is an isomorphism $\mathcal{F}_r: \varpi^r \to \overline{\varpi}^r$.

Section 2 (Results and Conclusions) Lemma 2.1

Any complex is an $I_{z,m}$ cw - complex

if $m \leq -z$. Proof

Since $m \le -z \implies \pi_{n+m}(K^{n-1}) = 0$ $\forall n = 1, 2, \cdots, z$ $\implies i_{n,m}(\pi_{n+m}(K^{n-1})) = 0$ $\forall n = 1, 2, \cdots, z$

Lemma 2.2 If $K = \{e^0\} \implies K$ is an $I_{zm} \cdot cw - complex$. Proof Since $\pi_{n+m}(K) = \pi_{n+m}(e^0) = 0$ Man and

$$\Rightarrow i_{n,m}(\pi_{n+m}(K)) = 0 \quad \forall n,m \qquad \blacksquare$$

Lemma 2.3

Let K be a complex and $j_{n,m}:\pi_{n+m}(K^n) \longrightarrow \pi_{n+m}(K^n,K^{n-1}).$ Then $ker. j_{n,m} = 0 \quad \forall n = 2, 3, \cdots, z$ iff K is an I_{zm} .cw - complex. Proof We know that $im.i_{n,m} = ker.j_{n,m}$. Then $ker.j_{m,m}=0$ $\forall n = 2, 3, \cdots, z$ $i_{nm}(\pi_{n+m}(K^n)) = 0 \quad \forall n = 2,3, \cdots,$ iff iff k is a $I_{zm}.cw - complex$ Theorem 2.4 If $K \equiv \overline{K}$ (\equiv of the same homotopy type

K is an I_{zm} . $cw - complex \iff$ \overline{K} is an $I_{z,m}.cw - complex$ Proof Since $K \equiv \overline{K}$ then there are two maps $f: K \to \overline{K} \text{ and } g: \overline{K} \to K$ such that $g \circ f \approx 1_K \& f \circ g \approx 1_R$ Hence, f & g induce a homomorphisms $\alpha_n: i_{n,m}(\pi_{n+m}(K)) \to i_{n,m}(\pi_{n+m}(\overline{K})) \quad \forall n$ $\beta_n: i_{n,m}(\pi_{n+m}(\overline{K})) \to i_{n,m}(\pi_{n+m}(K)) \quad \forall n$ And $f \circ g$ induce an automorphism of $i_{n,m}(\pi_{n+m}(\overline{K}))$ for each n. Thus $\alpha_n \circ \beta_n$ is an automorphism, thus α_n maps $i_{n,m}(\pi_{n+m}(K))$ onto $i_{n,m}(\pi_{n+m}(\overline{K}))$, that is $\alpha_n\left(i_{n,m}(\pi_{n+m}(K))\right) = i_{n,m}(\pi_{n+m}(\overline{K})).$ Now, if K is an $I_{E,m}.cw - complex$, it follows that $i_{n,m}(\pi_{n+m}(K)) = 0 \quad \forall n \implies$ $i_{n,m}(\pi_{n+m}(\overline{k})) = 0 \quad \forall n$ Therefore \overline{K} is an $I_{z,m}$.cw - complex. Conversely, **g** • **f** induce an automorphism $\beta_n \circ \alpha_n$ for each n. Thus β_n maps $i_{n,m}(\pi_{n+m}(\overline{K}))$ onto $i_{n,m}(\pi_{n+m}(K))$, that is $\beta_n\left(i_{n,m}(\pi_{n+m}(\overline{K}))\right) = i_{n,m}(\pi_{n+m}(K)).$ Now, if \overline{K} is an $I_{z.m.}cw - complex$, it follows that $i_{n,m}(\pi_{n+m}(\overline{K})) = 0 \quad \forall n \quad \Longrightarrow$ $i_{n,m}(\pi_{n+m}(K)) = 0 \quad \forall n$ Therefore K is an $I_{z,m}.cw - complex$

Theorem 2.5 If $K \equiv_{\mathbb{Z}} \overline{K}$ $(\equiv_{z} z - homotopy equivalence)$, then K is an $I_{z,m}$. cw – complex \overline{K} is an $I_{zm}.cw - complex$

Proof

Since $K \equiv_{\Xi} \overline{K}$ then there are two cellular maps $f: K^z \to \overline{K}^z$ and $g: \overline{K}^z \to K^z$ such that $g\circ f pprox \mathbf{1}_{R^Z} \& f\circ g pprox \mathbf{1}_{\overline{R}^Z}$ Hence, f & g induce homomorphisms $\alpha_n: i_{n,m}(\pi_{n+m}(K^{n-1})) \rightarrow$ $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1})) \quad \forall n \leq z$ $\beta_n: i_{n,m}(\pi_{n+m}(\overline{K}^{n-1})) \rightarrow$ $i_{n,m}(\pi_{n+m}(K^{n-1})) \quad \forall n \leq z$

We may take the homotopy joining

 $(f \circ g)|_{R^{2-1}}$ and $1|_{R^{2-1}}$ to be cellular. Hence $(f \circ g)|_{\overline{K}^{n-1}} \colon \overline{K}^{n-1} \to \overline{K}^n$ induce an automorphism of $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1}))$ for each $n = 2, 3, \cdots, z$. Thus $\alpha_m \circ \beta_m$ is an automorphism , thus maps α_n $i_{n,m}(\pi_{n+m}(K^{n-1}))$ onto $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1}))$ that is $\alpha_n\left(i_{n,m}(\pi_{n+m}(K^{n-1}))\right) =$ $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1}))$ Now, if K is a $l_{zm}.cw - complex$, it follows that $i_{n,m}(\pi_{n+m}(K^{n-1})) = 0 \implies$ $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1})) = 0 \quad \forall n = 2, 3, \cdots, z$ Therefore \overline{K} is a $I_{z,m}.cw - complex$. Conversely, $(g \circ f)|_{K^{2-4}} : K^{n-1} \to K^n$ induce an automorphism $\beta_n \circ \alpha_n$ for each $n = 2, 3, \cdots, \underline{z}$ Thus β_n maps $i_{n,m}(\pi_{n+m}(\overline{K}^{n-1}))$ onto $i_{n,m}(\pi_{n+m}(K^{n-1}))$, that is $\beta_n(i_{n,m}(\pi_{n+m}(\overline{K}^{n-1}))) =$ $i_{n,m}(\pi_{n+m}(K^{n-1}))$ Now, if \overline{K} is a $I_{z,m}$. cw - complex, it follows that $t_{n,m}(\pi_{n+m}(\overline{K}^{n-1})) = 0 \implies$ $i_{n,m}(\pi_{n+m}(K^{n-1})) = 0 \quad \forall n = 2, 3, \cdots, z$ Therefore **K** is an $I_{\mu m}$ cw – complex The following corollary is a direct consequence from Theorem 2.5, Lemma 2.3

Corollary 2.6

 $\begin{aligned} If & K \equiv_{z} \overline{K} \\ \eta_{n,m}(K) = 0 & \Leftrightarrow & \eta_{n,m}(\overline{K}) = 0 \end{aligned}$ then for each $n = 2, 3, \cdots, z$.

Theorem 2.7

and Remark 1.2

If K is an I_{zm} . cw - complex, then for each **r** we have

1

$$\begin{array}{l} \eta_{n,m}^r \cong \pi_{n,m}^r \quad \forall n = 2, 3, \cdots, z \\ \text{and} \qquad j_{n+1,m}^r \quad is \ onto \end{array}$$

Proof

Let *K* be a complex.

First, consider the following sequence which is known to be exact, see [3];

Since *K* is an $I_{z.m.}cw - complex$ and $im.i_{nm} = ker.j_{nm}$

then $\eta_{n,m}^0 \cong \pi_{n,m}^0 \quad \forall n =$ 2,3,...,z and $j_{p+1,m}^0$ is onto Second, consider the second exact couple; $\cdots \rightarrow \eta^1_{z+1,m} \xrightarrow{j^1_{z+2,m}} \pi^1_{z+1,m} \xrightarrow{\theta^1_{z+4,m}} \eta^1_{z,m} \xrightarrow{j^1_{z,m}} \eta^1_{z,m} \xrightarrow{j^1_{z,m}} \pi^1_{z,m} \rightarrow \eta^1_{z-1,m} \rightarrow \cdots$ Since $\eta_{n,m}^1 = ker. j_{n,m} = 0$ $\forall n = 2, \cdots, z$. It follows from exactness, that $\eta^{1}_{n,m} \cong \pi^{1}_{n,m} \quad \forall n = 2, \cdots, z .$ $im.j^{1}_{s+1,m} = ker.\partial^{1}_{s+1,m} = \pi^{1}_{s+1,m}$ and Therefore $\int_{a+1}^{1} dt dt$ is onto . Final, consider the r-th exact couple; $\begin{array}{l} & \cdots \rightarrow \eta_{z+1,m}^r \xrightarrow{j_{z+1,m}^r} \pi_{z+1,m}^r \xrightarrow{j_{z+1,m}^r} \eta_{z,m}^r \xrightarrow{j_{z,m}^r} \eta_{z,m}^r \xrightarrow{j_{z,m}^r} \eta_{z,m}^r \rightarrow \eta_{z-1,m}^r \rightarrow \cdots \\ & \text{Since } \eta_{m,m}^r = ker. j_{m,m}^{r-1} = 0 \end{array}$ $\forall n = 2, \cdots, z$. It follows from exactness, that $\eta_{n,m}^r \cong \pi_{n,m}^r \quad \forall n = 2, \cdots, z$. $im.j^r_{s+1,m} = ker.\partial^r_{s+1,m} = \pi^r_{s+1,m}$ and Therefore $\int_{a+1}^{r} dt dt$ is onto. So on The following corollary is a direct consequence from Theorem 2.4 and Theorem 2.7 **Corollary 2.8** If K is an $I_{z,m}$. cw - complex, and $K \equiv_z \overline{K}$, then $\eta_{n,m}^r(\overline{K}) \cong \pi_{n,m}^r(\overline{K})$ $\forall p = 2, \dots, m$ and $\tilde{j}_{z+1,m}^r$ is onto, $\forall r$. Lemma 2.9 Let K be a (z-1) – connected, then K is a I_{z,m}. cw – complex . Proof Suppose that K is an (z-1) – connected,

that is $\pi_i(K) = 0$ for each $i = 1, 2, \dots, z - 1$. So there is a singleton complex Lsuch that $K^{z} \equiv_{z-1} L$ (*i.e.* $K \equiv_{z} L = \{e^0\}$). (<u>*Theorem 2*</u> in [1])

Hence, from Lemma 2.2 we have L is an $I_{z,m}$. cw - complex, and from Theorem 2.4 it follows that K is an $I_{z,m}$. cw - complexRemarks 2.10

(1) If m < 0, then

¹ If m=0, coming back to J_{Ξ} – complex of J.H.C. Whitehead, [1].

K is a (z-1) - connected K is an $l_{z,m}$ cw - complex ² If $m \ge 0$, then K is a (z-1) - connected ⇒

K is an I_{zm} .cw – complex

The converse in general is not true, (depend on values of n & m).

Example 2.11

Let $K = e^0 \cup e^3 \cup e^4$, where e^0 is a 0-cell, e^3 is a 3-cell whose closure is a 3-sphere, $S^3 = e^0 \cup e^3$, and e^4 is attached to S^3 by a map, $f: \partial e^4 \to S^3$, of degree (2r + 1) (r > 0). The complex K is not 3-connected (since $\pi_3(K) = \mathbb{Z}_{2r+1}$), while K is an $I_{4,0} \cdot cw - complex$, since $K^2 = K^1 = K^0 = e^0$, whence $\pi_n(K^{n-1}) = 0$

 $\forall n = 1,2,3$ and $i_4(\pi_3(K^3)) = 0$, for, let $g: S^4 \to \partial e^4$ be an essential map, then $f \circ \sigma_1 S^4 \to S^3$ is assential and hence represents

 $f \circ g: S^4 \to S^3$ is essential and hence represents the nonzero element of $\pi_4(S^3)$, [6].

References

- [1]J.H.C.Whitehead.**1949**.Combinatorial Homotopy I.Bull. Amer. Math. Soc 55,213-
- 245. [2]Paul Yiu.**2006**.Algebraic Topology . *Florida*
- Atlantic University press .
- [3]Dheia Al-Khafaji and Raymond Shekoury. 2010. A new exact sequence (a generalization of J. H. C. Whiteheads "certain exact sequence"). Journal of Al-Qadisiyah for Computer Science and Mathematics, vol(2), no(2):53-61.
- [4]C. Adams and R. Franzosa. **2008**. In introduction to topology pure and applied . *Pearson ,preatic-Hall*.
- [5]Dheia Al-Khafaji.2011.On some relationships between spectral sequences and the new exact sequences. *Journal of Al-Qadisiyah for Computer Science and Mathematics*, vol(3), no(1):59-70.
- [6]P.J.Hilton.1964.An Introduction To
- Homotopy Theory. Cambridge at the university press

Al-khafajy