

$I_{z, m} . c W-$ complex

Dheia Gaze Salih AI-Khafajy

Department of Mathematics,College of Computer Science and Mathematics, Al-Qadisiya University,Al-Qadisiya, Iraq dheia.salih@yahoo.com

Abstract

In this paper we introduce a new tool in algebraic topology which is called $I_{z, m} \cdot c W$ - complex (analogous terminology of J.H.C. Whitehead in [1]) . By studying effect of this complex on the spectral sequences, we obtained some results, such as ; 1- Any complex is an $I_{z m} c w-$ complex if $m \leq-z$ 2- Let $K \& \bar{K}$ are two cw-complexes, if $K \equiv_{z} \bar{K}$, then K is an $I_{z, m} . c W$ - complex $\Leftrightarrow \bar{K}$ is an $I_{z, m}, c W$ - complex. 3- If K is an $I_{z_{m},}, c W$ - complex, then $\eta_{n, m}^{r} \cong \pi_{n, m}^{r} \quad \forall n=2,3, \cdots, z$ and $\vec{j}_{z+1, m}^{r}$ is onto, $\forall r$. 4- Let K be a cw-complex, if K is a $(z-1)$ - connected, then K is a $I_{s, m} \cdot \mathrm{CW}$ - complex, and the converse is not true.

Key words: cw-complexes, homotopy and homology group, new exact sequence , spectral sequences, $I_{z, m}, c w-$ complex.
Iz.m.cw- مجمع

Introduction

There are many tools in algebraic topology , (see [2]). In this paper we introduce a new tool in algebraic topology which is called $I_{\mathrm{I}, \mathrm{m}} \cdot \mathrm{CW}$ - complex and study the effect of this notion on the spectral sequences.

In this work a complex will mean a pair (K, e^{0}), where K is a connected cw-complex and $e^{0} \in K^{0}$ is a 0 -cell, which is to be taken as base point for all the homotopy groups which we associate with K. Nevertheless we shall denote complexes by K, \bar{K}, L etc. .

This work contains two sections ; in first section, we introduce the spectral sequence and definition of $I_{z, m}$. Cw - complex. In second section, we establish some results about our work, some of these results are purely algebraic and others depend on the topology of space, for examples ;

1- If $K \equiv_{z} \bar{K}$, then
K is an $I_{z, m}, c w-$ complex \Leftrightarrow
\bar{K} is an $I_{\text {sm }} . c W$ - complex
2- If K is an $I_{z, m}$. $C W$-complex, then for each r we have
$\eta_{n, m}^{r} \cong \pi_{n, m}^{r} \quad \forall n=2,3, \cdots, z$,
and $\quad j_{z+1, m}^{r}$ is onto
3- If K is a $(z-1)$ - connected, then K is an $I_{\varepsilon, m} . C W$ - complex, and the converse is not true.

Section 1

In this section we introduce the main definition $I_{g, m}$, , W - complex .

Let K be a complex . Consider the following sequence which is known to be exact , see [3];
$\ldots \rightarrow \pi_{n+m}\left(K^{n-1}\right) \xrightarrow{i_{n m}} \pi_{n+m}\left(K^{n}\right) \xrightarrow{j_{n, m}} \pi_{n+m}\left(K^{n}, K^{n-1}\right) \xrightarrow{\theta_{n, m}} \pi_{n+m-1}\left(K^{n-1}\right) \rightarrow \ldots$

Definition 1.1

is an K We say that a complex
$i_{n, m}\left(\pi_{n+m}\left(K^{m-1}\right)\right)=0$ if $I_{r, m} \subset W-$ complex

$$
n=1,2, \cdots, z \text { for each }
$$

Remarks 1.2

For each integers n and m, let $\pi_{n, m}$ be $\pi_{n+m}\left(K^{n}, K^{n-1}\right)$,
$\eta_{m, m}$ be $\pi_{n+m}\left(K^{n}\right)$, if $m \geq-n \quad, \quad$ and
where
∂ is of degree ($-1,0$)
i is of degree $(1,-1)$
j is of degree (0,0)
And
$\pi_{n+m}\left(K^{n}, K^{n-1}\right)=\pi_{m+m}\left(K^{n}\right)=0$
if $n+m \geq 0$ (see [4]).
which forms a first exact couple ,

From this exact couple, we obtain a second exact couple, by taking
$\pi_{n, m}^{1}={ }^{\text {ker } . d_{n, m}} / \mathrm{im}_{\mathrm{m}, d_{n-1, m}}$
$\varpi^{1}:$

$\eta_{n, m}^{1}=\eta_{n, m} / i m, a_{n+1, m} \quad$ and

$$
\eta_{n, m}^{1}=\operatorname{ker}_{\cdot \overline{I n}_{n} m}
$$

where $\quad d_{n, m}=j_{n-1, m} \circ \partial_{n, m}$.
Hence we have a second exact couple ;

The process of derivation can be iterated indefinitely, yielding an infinite sequence of exact couples ;
σ^{2}

1 such
that
$\bar{\sigma}^{0}=\omega, \bar{\omega}^{1}=N E S \quad$ and \bar{w}^{+1} is the derived couple of $\bar{\sigma}^{r}$.

The endomorphism $d^{r}=j^{r} s \partial^{r}$ has the property that $d^{r} \circ d^{r}=0$, so that σ^{r} is a chain complex under d^{r}, whose homology group is \bar{w}^{r+1}.

In this way we obtain a spectral sequence, (for details see [5]).

A morphism $\mathcal{F}_{r}: \bar{\omega}^{r} \rightarrow \bar{\varpi}^{r}$ between two exact couples $\bar{\sigma}^{r}{ }_{3} \overline{\bar{\sigma}}^{r}$, we mean a family of homomorphisms $\left(f_{r}, g_{r}\right)$ showing in the following diagram

such that

$$
\begin{aligned}
& \bar{b}^{r} \stackrel{f_{r}}{ }=g_{0 r} \circ g^{r} \\
& \bar{u}^{r} \stackrel{g_{0 r}}{ }=g_{1 r} \circ i^{r} \\
& \bar{J}^{r} \stackrel{g_{1 r}}{ }=f_{r} \circ j^{r}
\end{aligned}
$$

So that \mathcal{F}_{r} is a chain morphism and induces a morphism $\mathcal{F}_{r^{1}}^{1}=\mathcal{F}_{r+1}$, and f_{r}^{1}, g_{r}^{1} defined maps between the derived couples, such that ;
$f_{r+1}: \pi^{r+1} \rightarrow \bar{\pi}^{r+1}$ defined by
$f_{r+1}([z])=\left[f_{r}(z)\right], \forall[z] \in \pi^{r+1}$.
$g_{0 r+1}=\eta^{r+1} \rightarrow \eta^{r+1}$ defined by
$g_{0 r+1}(x)=g_{0 r}(x), \forall x \in \eta^{r+1}$.
$g_{1 r+1}: \eta^{r+1} \rightarrow \eta^{r+1}$ defined by
${ }^{1}$ I mean " the new exact sequence" NES , for details see [3].
$g_{1 r+1}([x])=\left[g_{1 r}(x)\right], \forall x \in \eta^{r+1}$.
Now,
let $\mathcal{F}_{r}: \overline{\boldsymbol{w}}^{r} \rightarrow \overline{\boldsymbol{w}}^{r}$ and $\mathcal{F}_{r}^{*}: \overline{\boldsymbol{w}}^{r} \rightarrow \overline{\bar{w}}^{r}$ are two morphisms, the composition of morphisms can be given by ; $\mathcal{F}_{r}^{*} \circ \mathcal{F}_{r}=\left(f_{r}^{*} \circ f_{r}, g_{r}^{*} \circ g_{r}\right): \omega^{r} \rightarrow \overline{\bar{\omega}}^{r}$.

We shall describe $\mathcal{F}_{r}: \bar{W}^{r} \rightarrow \bar{W}^{r}$ is an isomorphism, if and only if $, f_{r}, g_{0 r} \& g_{1 r}$ are isomorphisms . We shall describe $\boldsymbol{\sigma}^{r}$ as isomorphic to $\bar{\omega}^{r}$ and write ${\overline{w^{r}}}^{r} \cong \bar{\varpi}^{r}$, if and only if, there is an isomorphism $\mathcal{F}_{r}: \bar{\omega}^{r} \rightarrow \bar{\omega}^{r}$.

Section 2 (Results and Conclusions)

Lemma 2.1

Any complex is an $I_{s, m}, C W$-complex if $m \leq-z$.

Proof

$$
\text { Since } m \leq-z \Rightarrow \pi_{n+m}\left(K^{n-1}\right)=0
$$

$\forall n=1,2, \cdots, z$

$$
\Rightarrow \quad i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right)=0
$$

$\forall n=1,2, \cdots, z$

Lemma 2.2

If $K=\left[e^{0}\right] \Rightarrow K$ is an $I_{g, m}, 6 w-$ complex.

Proof

$$
\begin{aligned}
& \text { Since } \pi_{n+m}(K)=\pi_{n+m}\left(e^{0}\right)=0 \\
& \forall n, m \\
& \Rightarrow \quad i_{m, m}\left(\pi_{n+m}(K)\right)=0 \quad \forall n, m
\end{aligned}
$$

Lemma 2.3

Let K be a complex, and $j_{n, m}: \pi_{n+m}\left(K^{n}\right) \rightarrow \pi_{n+m}\left(K^{n} K^{n-1}\right)$.
Then

$$
\text { ker } \cdot j_{n, m}=0 \quad \forall n=2,3, \cdots, z \quad \text { iff }
$$

K is an $I_{s, m} . c w$ - complex.

Proof

$$
\text { We know that } \quad i m . i_{m, m}=k e r \cdot j_{m, m}
$$

Then ker. $j_{n, m}=0 \quad \forall n=2,3, \cdots, z$
iff $\quad i_{n m}\left(\pi_{n+m}\left(K^{n}\right)\right)=0 \quad \forall n=2,3, \cdots$,
iff k is a $I_{z m}$.cw - complear

Theorem 2.4

If $K \equiv \bar{K}$ (\equiv of the same homotopy type), then

K is an $I_{\text {Im }}$. $C W$ - complex \Leftrightarrow \bar{K} is an $I_{z m}$.cw - complex
 Proof

Since $K \equiv \bar{K}$ then there are two maps
$f: K \rightarrow \bar{K}$ and $g: \bar{K} \rightarrow K$ such that $g \circ f \approx 1_{k} \& f \circ g \approx 1_{\bar{K}}$
Hence, $f \& g$ induce a homomorphisms
$\alpha_{n}: i_{n, m}\left(\pi_{n+m}(K)\right) \rightarrow i_{n, m}\left(\pi_{n+m}(\bar{K})\right) \quad \forall n$
$\beta_{n}: i_{n m}\left(\pi_{n+m}(\bar{K})\right) \rightarrow i_{n, m}\left(\pi_{n+m}(K)\right) \quad \forall n$
And $f \circ g$ induce an automorphism of $i_{n, m}\left(\pi_{n+m}\left(\frac{Q}{K}\right)\right)$ for each n.
Thus $\alpha_{n} \circ \beta_{n}$ is an automorphism, thus α_{n} maps $i_{n_{2} m}\left(\pi_{n+m}\left(K^{*}\right)\right)$ onto $i_{n, m}\left(\pi_{n+m}(\bar{K})\right)$, that
is
$\alpha_{n}\left(i_{n_{m} m}\left(\pi_{n+m}(K)\right)\right)=i_{m_{m} m}\left(\pi_{n+m}(\bar{K})\right)$.
Now, if K is an $I_{z m} . c W$ - complex, it follows that

$$
\begin{aligned}
& i_{n, m}\left(\pi_{n+m}\left(K^{\prime}\right)\right)=0 \quad \forall n \quad \Rightarrow \\
& i_{n, m}\left(\pi_{n+m}(\bar{K})\right)=0 \quad \forall n
\end{aligned} \quad \Rightarrow
$$

Therefore \bar{K} is an $I_{z, m} . c w$ - complex.
Conversely, $g \circ f$ induce an automorphism $\beta_{n} \circ \alpha_{n}$ for each n.
Thus $\quad \beta_{n}$ maps $i_{n, m}\left(\pi_{n+m}(\bar{K})\right)$ onto $i_{n, m}\left(\pi_{n+m}\left(K^{*}\right)\right)$, that is

$$
\beta_{n}\left(i_{n, m}\left(\pi_{n+m}(\bar{K})\right)\right)=i_{n, m}\left(\pi_{n+m}(N)\right)
$$

Now, if \bar{K} is an $I_{E, m} . c W$ - complex, it follows that

$$
\begin{aligned}
& i_{n m}\left(\pi_{n+m}(\bar{K})\right)=0 \quad \forall n \quad i_{n, m}\left(\pi_{n+m}(K)\right)=0 \quad \forall n \\
& \text { Therefore } K \text { is an } I_{z, m} \cdot c w-\text { complex }
\end{aligned}
$$

Theorem 2.5

$$
\text { If } K \equiv_{x} \bar{K}
$$

($\equiv_{1 z} z$-homotopy equivalence), then
K is an $I_{z, m} . c w$ - complex \Leftrightarrow \bar{K} is an $I_{z m}$.cw - complex

Proof

Since $K \equiv_{g} \bar{K}$ then there are two cellular maps
$f: K^{z} \rightarrow \bar{K}^{z}$ and $g: \bar{K}^{z} \rightarrow K^{z}$ such that $g \circ f \approx 1_{R^{z}} \& f \circ g \approx 1_{\bar{R}^{z}}$
Hence, $f \& g$ induce homomorphisms
$\alpha_{n}: i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right) \rightarrow$
$i_{n, m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right\rangle\right) \quad \forall n \leq z$
$\beta_{n}: i_{n, m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right) \rightarrow$
$i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right) \quad \forall n \leq z$
We may take the homotopy joining
(f $\circ g)\left.\right|_{\vec{R}^{x-1}}$ and $\left.1\right|_{\bar{R}^{x-s}}$ to be cellular . Hence $\left.(f \circ g)\right|_{\bar{K}^{n-1:}} \bar{K}^{n-1} \rightarrow \bar{K}^{n} \quad$ induce \quad an automorphism of $i_{n, m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right)$ for each $n=2,3, \cdots, z$. Thus $\alpha_{n} \circ \beta_{n}$ is an automorphism , thus α_{n} maps $i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right) \quad$ onto $i_{n, m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right)$, that is $\alpha_{n}\left(i_{n m}\left(\pi_{n+m}\left(K^{n-1}\right)\right)\right)=$ $i_{n_{m} m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right)$

Now, if K is a $l_{\text {zm }}$ cw - complex, it follows that
$i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right)=0 \Rightarrow$ $i_{n_{m} m}\left(\pi_{m+m}\left(\bar{K}^{n-1}\right)\right)=0 \quad \forall n=2,3, \cdots, z$
Therefore \bar{K} is a $I_{z, m}, c w$-complex.
Conversely, $\left.\left(g{ }^{\circ} f^{\prime}\right)\right|_{K^{z-1}}=K^{n-1} \rightarrow K^{n}$ induce an automorphism $\beta_{n} \circ \alpha_{n}$ for each $n=2,3, \cdots, z$. Thus β_{n} maps $i_{n, m}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right)$ onto $\quad i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right)$, that
is
$\beta_{n}\left(i_{n, m 2}\left(\pi_{n s+m}\left(\bar{K}^{n-1}\right)\right)\right)=$
$i_{n, m}\left(\pi_{n+m}\left(K^{n-1}\right)\right)$
Now, if \bar{K} is a $I_{z, m}$ cw-complex, it follows that
$i_{n, n}\left(\pi_{n+m}\left(\bar{K}^{n-1}\right)\right)=0 \Rightarrow$
$i_{m m}\left(\pi_{m+m}\left(K^{n-1}\right)\right)=0 \quad \forall n=2,3, \cdots, z$
Therefore K is an $\boldsymbol{I}_{\mathrm{z}, \mathrm{m}}$. $c w$ - complex
The following corollary is a direct consequence from Theorem 2.5, Lemma 2.3 and Remark 1.2

Corollary 2.6

Theorem 2.7

If K is an $I_{z, m}$. $C w$ - complex, then for each r we have
$\eta_{n, m}^{r} \cong \pi_{n, m}^{r} \quad \forall n=2,3, \cdots, z$,
and $j_{s+1, m}^{r}$ is onto
Proof
Let K be a complex.
First, consider the following sequence which is known to be exact, see [3];

By using our symbols in Remark 1.2
Since K is an $I_{z, m}$, cw - complex and im. $i_{n, m}=\operatorname{ker} \cdot j_{n, m}$

then

$\eta_{m_{m} m}^{0} \cong \pi_{m, m}^{0} \quad \forall n=$
$2,3, \cdots, z$ and $j_{z+1, m}^{0}$ is onto
Second, consider the second exact
couple ;

Since $\eta_{n, m}^{1}=$ ker. $j_{m, m}=0$
$\forall n=2, \cdots, z$.
It follows from exactness, that
$\eta_{n, m}^{1} \cong \pi^{1}{ }_{n m} \quad \forall n=2, \cdots, z$.
and $\quad i m \cdot j_{z+1 m}^{1}=k e r \cdot g_{z+1 m}^{1}=\pi_{z+1 m}^{1}$.
Therefore $j_{z+1, m}^{1}$ is onto .
Final, consider the r-th exact couple ;

Since $\eta_{n, m}^{r}=\operatorname{ker} \cdot j_{n, m}^{r-1}=0$
$\forall n=2, \cdots, z$.
It follows from exactness, that
$\eta_{n_{t} m}^{p} \cong \pi_{n_{i} m}^{p_{m}} \quad \forall n=2, \cdots, z$.
and $\quad i m \cdot \dot{j}_{\pi+1, m}^{r}=\operatorname{ker} \cdot \partial_{\pi+1, m}^{r}=\pi_{\pi+1, m}^{r}$.
Therefore $\bar{l}_{x+1, m}^{r}$ is onto .
So on
The following corollary is a direct consequence from Theorem 2.4 and Theorem 2.7

Corollary 2.8

If
K is an $I_{z, m} . c w-$ complex, and $K \equiv_{z} \bar{K}_{3}$
then
$\eta_{n_{p}, m}^{r}(\bar{K}) \stackrel{\cong}{\cong} \pi_{m_{2} m}^{r}(\bar{K})$
$\forall p=2, \cdots, m$ and $\vec{I}_{z+1, m}$ is onto, $\forall r$.
Lemma 2.9
Let K be a $(z-1)$ - connected, then K is a $Z_{I, m}$.cW - complex.

Proof

Suppose that K is an $(z-1)-$ connected, that is $\pi_{i}(K)=0$ for each $i=1,2, \cdots, z-1$. So there is a singleton complex L
such that $K^{g} \equiv_{g-1} L$ (i.e. $K \equiv_{a} L=\left\{e^{0}\right\}$). (Theorem 2 in [1])

Hence, from Lemma 2.2 we have L is an $I_{z, m}$.cw - complex, and from Theorem 2.4 it follows that K is an $I_{s_{m} m} . \mathrm{CW}$ - complex

Remarks 2.10

[^0]Kisa $(z-1)$ - connected \Leftrightarrow
K is an $I_{s, m}, C W$ - complex
.2 If $m \geq 0$, then
K isa $(z-1)$ - connected \Rightarrow
K is an $I_{z m}$. cw - complex
The converse in general is not true, (depend on values of $n \& m$) .

Example 2.11

Let $K=e^{0} \cup e^{3} \cup e^{4}$, where e^{0} is a 0 -cell , 8^{3} is a 3 -cell whose closure is a 3 -sphere, $S^{3}=e^{0} \cup e^{3}$, and e^{4} is attached to S^{3} by a map, $f: \partial e^{4} \rightarrow S^{3}$, of degree $(2 r+1)(r>0)$.

The complex K is not 3-connected (since $\left.\pi_{3}(K)=\mathbb{Z}_{2 r+1}\right)$, while K is an $I_{4,0} \cdot \mathrm{cW}$ - compex , since $K^{2}=K^{1}=K^{0}=e^{0}$, whence $\pi_{n}\left(K^{n-1}\right)=$ 0
$\forall n=1,2,3$ and $i_{4}\left(\pi_{3}\left(K^{3}\right)\right)=0$, for, let $g: S^{4} \rightarrow \partial e^{4}$ be an essential map , then $f \circ g: S^{4} \rightarrow S^{3}$ is essential and hence represents the nonzero element of $\pi_{4}\left(5^{3}\right)$, [6] .

References

[1]J.H.C.Whitehead.1949.Combinatorial Homotopy I.Bull. Amer. Math. Soc 55,213245.
[2]Paul Yiu.2006.Algebraic Topology . Florida Atlantic University press .
[3]Dheia Al-Khafaji and Raymond Shekoury. 2010. A new exact sequence (a generalization of J. H. C. Whiteheads "certain exact sequence") . Journal of AlQadisiyah for Computer Science and Mathematics , vol(2), no(2):53-61.
[4]C. Adams and R. Franzosa. 2008. In introduction to topology pure and applied . Pearson , preatic-Hall.
[5]Dheia Al-Khafaji.2011.On some relationships between spectral sequences and the new exact sequences.Journal of Al-Qadisiyah for Computer Science and Mathematics, vol(3), no(1):59-70.
[6]P.J.Hilton.1964.An Introduction To
Homotopy Theory. Cambridge at the university press

[^0]: (1) If $m<0$, then
 ${ }^{1}$ If $\mathrm{m}=0$, coming back to J_{z} - complex of J.H.C. Whitehead, [1].

