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Abstract 

       The concept of 𝜌-injective modules (where 𝜌 is a preradical) is introduced in this work as a 

generalization of injective modules. The definition of 𝜌-injectivity unifies several definitions on  

generalizations of injectivity such as nearly injective modules and special injective modules. Many 

characterizations and properties of 𝜌-injectivity are given. We study the endomorphisms rings of        

𝜌-injective modules. The results of this work unify and extend many results in the literature. 
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1. Introduction: 

Throughout this work, 𝑅 stands a commutative 

ring with identity element 1 and a module 

means a unitary left 𝑅-modules. The class of all 

𝑅-module will be denoted by 𝑅-Mod and the 

symbol 𝜌  means a preradical on 𝑅-Mod (A 

preradical 𝜌 is defined to be a subfunctor of the 

identity functor of 𝑅-Mod). For an 𝑅-module 

𝑀, the notations J(𝑀), L(𝑀), E(𝑀) and 

𝑆 =  End𝑅(𝑀) will respectively stand for the 

Jacobson radical of 𝑀, the prime radical of 𝑀, 

the injective envelope of 𝑀 and the 

endomorphism ring of 𝑀. The notation 

Hom𝑅(𝑁, 𝑀) denoted to the set of all                 

𝑅-homomorphism from 𝑅-module 𝑁 into             

𝑅-module 𝑀. An 𝑅-module 𝑀 is called 

injective, if for every 𝑅-monomorphism 

𝑓: 𝐴 → 𝐵  (where 𝐴 and 𝐵 are 𝑅-modules) and 

every 𝑅-monomorphism 𝑔: 𝐴 → 𝑀, there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

𝑔 = ℎ ∘ 𝑓 [1].  

       Injective modules have been studied 

extensively, and several generalizations for 

these modules are given, for example, quasi-

injective modules [2], P-injective Modules [3],  

and 𝑆-injective module [4]. 

       

 

In 2000, nearly-injective modules were 

discussed in [5] as generalization of injective 

modules. An 𝑅-module 𝑀 is said to be nearly 

injective if for each 𝑅-monomorphism            

𝑓: 𝐴 → 𝐵 (where 𝐴 and 𝐵 are two 𝑅-modules), 

each 𝑅-homomorphism 𝑔: 𝐴 → 𝑀 , there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

(ℎ 𝑜 𝑓)(𝑎) − 𝑔(𝑎)  ∈  J(𝑀) ,for all 𝑎 ∈  𝐴 [5]. 

     Also, in [6] M. S. Abbas and Sh. N. Abd-

Alridha introduced the concept of special 

injective modules as a generalization of 

injectivity. An 𝑅-module 𝑀 is said to be special 

injective if for each 𝑅-monomorphism           

𝑓: 𝐴 → 𝐵 (where 𝐴 and 𝐵 are two 𝑅-modules), 

each 𝑅-homomorphism 𝑔: 𝐴 → 𝑀,  there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

(ℎ 𝑜 𝑓)(𝑎) − 𝑔(𝑎)  ∈  L(𝑀) ,for all 𝑎 ∈  𝐴 [6]. 

 A ring 𝑅 is called Von Neumann 

regular (in short, regular) if for each 𝑎 ∈  𝑅 , 

there exsits 𝑏 ∈  𝑅 such that 𝑎 = 𝑎𝑏𝑎. For a 

submodule 𝑁 of an 𝑅-module 𝑀 and 𝑎 ∈  𝑀 , 

[𝑁:𝑅 𝑎]  = {𝑟 ∈  𝑅  ׀ 𝑟𝑎 ∈  𝑁}. For an            

𝑅-module 𝑀 and 𝑎 ∈  𝑀. A submodule 𝑁 of 

an 𝑅-module 𝑀 is called essential and denoted 

by 𝑁 ≤𝑒 𝑀 if every non zero submodule of 𝑀 

has nonzero intersection with 𝑁. 
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2. Injective Modules Relative to a 

Preradical 

        In this section, we will introduce a new 

generalization of injective module namely, 

injective module relative to a preradical.           

We will study some properties and 

characterizations of these modules.  

We start by the following definition:- 

Definition 2.1.  Let 𝜌 be a preradical on              

𝑅-Mod and let 𝑀, 𝑁 and 𝐾 be 𝑅-modules. A 

module 𝑀 is said to be 𝑁-injective relative to 

the preradical 𝜌 (shortly, 𝜌-𝑁-injective) if for 

each 𝑅-monomorphism 𝑓: 𝐾 → 𝑁  and each          

𝑅-homomorphism  𝑔: 𝐾 → 𝑀 there is an              

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that  

(ℎ𝑜𝑓)(𝑥)– 𝑔(𝑥) ∈ 𝜌(𝑀), for each 𝑥 in 𝐾. 

   

 

An 𝑅-module 𝑀 is said to be injective relative 

to the preradical 𝜌 (shortly, 𝜌-injective) if  𝑀 is  

𝜌-𝑁-injective for all 𝑅-modules 𝑁. A ring 𝑅 is 

said to be 𝜌-injective ring, if 𝑅 is a 𝜌-injective 

𝑅-module. 

Examples and Remarks 2.2.                            

(1) It is clear that injective modules and          

𝑁-injective modules are 𝜌-𝑁-injective for every 

𝑅-module 𝑁.                                                             

(2) There are many types of preradical functors, 

for examples: the Jacobson radical functor (J), 

the socle functor (soc), the prime radical functor 

(L) and the torsion functor (T) [7]. Each one of 

these functors gives a special case of 𝜌-injective 

modules, for example a left 𝑅-module 𝑀 is said 

to be (soc)-injective if 𝑀 is 𝜌-injective, where    

𝜌 = soc.  

(3) The concept of nearly-injective module             

(which is introduced in [5]) is a special case of  

𝜌-injective 𝑅-modules by taking 𝜌 = J, where J 

is the Jacobson radical functor. 

(4) Special injective modules (which are 

introduced in [6]) are special case of                    

𝜌-injectivity by taking  𝜌 = L, where L is the 

prime radical functor. 

(5) Let 𝑀 be a module such that 𝜌(𝑀) = 0, thus 

𝑀 is injective if and only if 𝑀 is 𝜌-injective. 

(6) It is clear that if 𝜌(𝑀) = 𝑀, then 𝑀 is a          

𝜌-injective module, in particular: 

(a) Every module 𝑀 which has no maximal 

submodule (i.e, J(𝑀) = 𝑀) is J-injective. 

(b) Every semisimple module 𝑀 (i.e., 

soc(𝑀) = 𝑀) is (soc)-injective. Thus                   

𝜌-injective modules may not be injective, for 

example: let 𝑀 = ℤ𝑝 as ℤ-module, where 𝑝 is a 

prime number. Since 𝑀 is semisimple, thus 

soc(𝑀) = 𝑀 and hence 𝑀 is (soc)-injective but 

𝑀 is not injective. 

(7) Let 𝑀1 be an 𝑅-module. If 𝑀1is a 𝜌-𝑁-

injective 𝑅-module and 𝑀1 is isomorphic to 𝑀2, 

then 𝑀2 is a  𝜌-𝑁-injective.     

(8) Form (7) above we have that 𝜌-injectivity is 

an algebraic property.  

(9) Every submodule of semisimple 𝑅-module 

is 𝜌-injective, where ρ is the socle functor. 

 

Lemma 2.3.  Let 𝑁 and 𝑀 be 𝑅-modules. Then 

the following statements are equivalent: 

(1) 𝑀 is 𝜌-𝑁-injective; 

(2) for any diagram,  

 

 

 

                    

 

where 𝐴 is a submodule of an 𝑅-module 𝑁,  

𝑔: 𝐴 → 𝑀 is any 𝑅-homomorphism and 𝑖 is the 

inclusion mapping, there exists an                    

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑎) − 𝑔(𝑎) ∈  𝜌(𝑀),  for all 𝑎 in 𝐴. 

Proof:  The proof is obvious.  

 

     In the following proposition we show that 

the set of all essential submodules of 𝑁 is a test 

set for 𝜌-𝑁-injectivity. 
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Proposition 2.4.  Let 𝑁 be an 𝑅-module. Then 

an 𝑅-module 𝑀 is 𝜌-𝑁-injective if  and only if  

for each essential submodule 𝐴 of 𝑁 and each            

𝑅-homomorphism 𝑓: 𝐴 → 𝑀, there is an                 

𝑅-homomorphism 𝑔: 𝑁 → 𝑀 such that                      

(𝑔 ∘ 𝑖)(𝑎) − 𝑓(𝑎) ∈  𝜌(𝑀) for each 𝑎 in 𝐴.  

Proof: (⟹) This  is obvious.  

(⟸) Let 𝐴 be any essential submodule of 𝑁 

and 𝑓: 𝐴 → 𝑀 be any 𝑅-homomorphism. 

Consider the diagram (1). 

 

 

                  

                                    (diagram (1)) 

 

                                                                                                                                                            

Let 𝐴𝑐 be any complement submodule of 𝐴 in 

𝑁. By [8, p.16], we have that 𝐴 ⊕ 𝐴𝑐 ≤𝑒 𝑁. 

Define 𝑔: 𝐴 ⊕ 𝐴𝑐 → 𝑀 by 𝑔(𝑎 + 𝑎1) = 𝑓(𝑎), 

for all 𝑎 ∈ 𝐴 and 𝑎1 ∈ 𝐴𝑐. It is easy to prove 

that 𝑔 is a well-defined 𝑅-homomorphism. 

Therefore, we have the diagram (2). 

 

 

        

                       

By hypothesis, there exists an                            

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑥) − 𝑔(𝑥)𝜖 𝜌(𝑀) for all 𝑥 in 𝐴 ⊕ 𝐴𝑐.   

For the diagram (1), we get that                      

(ℎ ∘ 𝑖)(𝑎) − 𝑓(𝑎) = (ℎ ∘ 𝑖)(𝑎) − 𝑔(𝑎) ∈ 𝜌(𝑀) 

for all 𝑎 in 𝐴. Therefore, 𝑀 is a 𝜌-𝑁-injective              

𝑅-module, by Lemma 2.3.   

 

      Now, we will study the direct product and 

the direct sum of 𝜌-𝑁-injective modules.   

 

Proposition 2.5.  Let {𝑀𝜆}𝜆∈𝛬   be a family of 

𝑅-modules. Then : 

(1) if  ∏ 𝑀𝜆𝜆∈𝛬   is a 𝜌-𝑁-injective (where 𝑁 is 

an 𝑅-module), then each 𝑀𝜆 is 𝜌-𝑁-injective.  

(2) if  𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝜌(𝑀𝜆))𝜆∈𝛬 , then the 

converse of (1) is true.  

Proof:  (1) Put 𝑀 =  ∏ 𝑀𝜆𝜆∈𝛬  and let   

𝑖𝜆: 𝑀𝜆 → 𝑀 and 𝑝𝜆: 𝑀 → 𝑀𝜆 be the injections 

and projections associated with this direct 

product respectively. Suppose that 𝑀 is 𝜌-𝑁-

injective. To prove that 𝑀𝜆 is 𝜌-𝑁-injective for 

each 𝜆 ∈ 𝛬. Consider the following diagram 

where 𝐴 is a submodule of 𝑁  and 𝛼𝜆 is  

an 𝑅-homomorphism. 

 

                                                          

  

 

 

 

 

 

 

Since 𝑀 is a 𝜌-𝑁-injective module, thus there 

exists an 𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑎) − ( 𝑖𝜆 ∘  𝛼𝜆)(𝑎) ∈  𝜌(𝑀) for all 𝑎 in 

𝐴. Put
 

 𝑔𝜆
= 𝑝𝜆 ∘ ℎ ∶ 𝑁 → 𝑀𝜆. For every 𝑎 in 𝐴, 

we have that  (𝑔𝜆 ∘ 𝑖)(𝑎) − 𝛼𝜆(𝑥) = 𝑔𝜆(𝑎) −

𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) − 𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) −

((𝑝𝜆 ∘ 𝑖𝜆) ∘ 𝛼𝜆)(𝑎) = 

𝑝𝜆(ℎ(𝑎) − (𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) ∈ 𝜌(𝑀𝜆).       

Thus (𝑔𝜆 ∘ 𝑖)(𝑎) − 𝛼𝜆(𝑎) ∈ 𝜌(𝑀𝜆), for each 

𝜆 ∈ 𝛬 and for every 𝑎 ∈ 𝐴 and hence 𝑀𝜆 is  

𝜌-𝑁-injective, for each  𝜆 ∈ 𝛬.  

(2) Suppose that 𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) =

∏ (𝜌(𝑀𝜆))𝜆∈𝛬  and consider the following 

diagram. 

 

                                                    

 

 

 

 

 

For each  𝜆 ∈ 𝛬, let 𝑝𝜆: 𝑀 → 𝑀𝜆 be the 

projection 𝑅-homomorphism. Since each 𝑀𝜆  is 

𝜌-𝑁-injective, thus there exists an                      

𝑅-homomorphism 𝑔𝜆: 𝑁 → 𝑀𝜆, for each 𝜆 ∈ 𝛬 

such that (𝑔𝜆 ∘ 𝑖)(𝑎) − (𝑝𝜆 ∘ 𝛼)(𝑎) ∈ 𝜌(𝑀𝜆), 

for every 𝑎 in 𝐴. Define 𝑔: 𝑁 → 𝑀 by 𝑔(𝑥) =

{𝑔𝜆(𝑥)}𝜆∈𝛬, for every 𝑥 ∈ 𝑁. It is clear that 𝑔 is 

an 𝑅-homomorphism. For every 𝑎 in 𝐴, we 

have that 

(𝑔 ∘ 𝑖)(𝑎) − 𝛼(𝑎) = {𝑔𝜆(𝑖(𝑎))}
𝜆∈𝛬

−
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{(𝑝𝜆 ∘ 𝛼)(𝑎)}𝜆∈𝛬 = {(𝑔𝜆 ∘ 𝑖)(𝑎) −

(𝑝𝜆 ∘ 𝛼)(𝑎)}𝜆∈𝛬 ∈ ∏ (𝜌(𝑀𝜆))𝜆∈𝛬 . Since 

∏ (𝜌(𝑀𝜆))𝜆∈𝛬 = 𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) (by hypothesis) it 

follows that (𝑔 ∘ 𝑖)(𝑎) − 𝛼(𝑎) ∈ 𝜌(𝑀), for 

every 𝑎 in 𝐴. Therefore, 𝑀 is a 𝜌-𝑁-injective 

module.   

 

Corollary 2.6.  Let 𝑅 be a ring such that 

𝑅/J(𝑅) is a semisimple 𝑅-module, let {𝑀𝜆}𝜆∈𝛬 

be a family of 𝑅-modules and let 𝑁 be any 

𝑅-module. Then ∏ 𝑀𝜆𝜆∈𝛬  is (soc)-𝑁-injective if 

and only if 𝑀𝜆 is (soc)-𝑁-injective, for each 

𝜆 ∈ 𝛬. 

Proof: Since 𝑅/J(𝑅) is a semisimple               

𝑅-module,  soc(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ soc(𝑀𝜆𝜆∈𝛬 )    

[7, Exercise (11), p.239]. Therefore, the result 

follows from Proposition 2.5.  

 

Corollary 2.7. Let 𝑅 be a ring and let 𝐼 be a 

finitely generated ideal of 𝑅. Let {𝑀𝜆}𝜆∈𝛬 be a 

family of 𝑅-modules and let 𝑁 be 

𝑅-module. Then ∏ 𝑀𝜆𝜆∈𝛬  is 𝜌𝐼-𝑁-injective if 

and only if 𝑀𝜆 is 𝜌𝐼-𝑁-injective. 

Proof:  Since 𝐼 is a finitely generated ideal of 𝑅 

it follows from [9, Exercise 3(1), p.174] that 

𝐼(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝐼𝑀𝜆)𝜆∈𝛬  and hence 

𝜌𝐼(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝜌𝐼(𝑀𝜆𝜆∈𝛬 )). Therefore, the 

result follows from Proposition 2.5.  

  

     For any family  {𝑀𝜆}𝜆∈𝛬 of 𝑅-modules, if  

⊕𝜆∈𝛬 𝑀𝜆 is an 𝑁-injective 𝑅-module, then each 

𝑀𝜆 is an 𝑁-injective and the converse is true, if 

𝛬 is finite by [3, Proposition(1.11), p. 6]. 

 

    The following proposition shows that this 

result is true in case of 𝜌-𝑁-injectivity. 

 

Proposition 2.8.  Let  {𝑀𝜆}𝜆∈𝛬 be a family of 

𝑅-modules, let 𝑀 = ⊕𝜆∈𝛬 𝑀𝜆 and let 𝑁 be any 

𝑅-module. 

(1) If 𝑀 is 𝜌-𝑁-injective, then each 𝑀𝜆 is 𝜌-𝑁-

injective.  

(2) If 𝛬 is a finite set, then the converse of (1) is 

true.  

Proof: Suppose that 𝑀 is a 𝜌-𝑁-injective 

module. To prove that each 𝑀𝜆 is 𝜌-𝑁-injective. 

(1) Let 𝑖𝜆: 𝑀𝜆 → 𝑀 and  𝑝𝜆: 𝑀 → 𝑀𝜆 be the 

injections and projections associated with this 

direct product respectively. Consider the 

following diagram, where 𝐴 is a submodule of 

𝑁 and 𝛼𝜆 is an 𝑅-homomorphism. 

                                                                                            

                                                                                                         

        

                                                            

    

 

 

 

 

Since 𝑀 is 𝜌-𝑁-injective, there exists an                          

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that             

(ℎ ∘ 𝑖)(𝑎) − ( 𝑖𝜆 ∘  𝛼𝜆)(𝑎) ∈  𝜌(𝑀), for all 𝑎 in 

𝐴. For each 𝜆 ∈ 𝛬, put  𝑔𝜆 = 𝑝𝜆 ∘ ℎ: 𝑁 → 𝑀𝜆. 

For every 𝑎 in 𝐴, we  have that (𝑔𝜆 ∘ 𝑖)(𝑎) −

𝛼𝜆(𝑎) = 𝑔𝜆(𝑎) − 𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) −

𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) − ((𝑝𝜆 ∘ 𝑖𝜆) ∘ 𝛼𝜆)(𝑎) =

(𝑝𝜆 ∘ ℎ)(𝑎) − (𝑝𝜆(𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) =

𝑝𝜆(ℎ(𝑎) − (𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) ∈ 𝜌(𝑀𝜆) (because 𝜌 is 

a preradical). Thus 𝑔𝜆(𝑎) − 𝛼𝜆(𝑎) ∈ 𝜌(𝑀𝜆), 

for each 𝜆 ∈ 𝛬 and for every 𝑎 ∈ 𝐴. 

Therefore, 𝑀𝜆 is 𝜌-𝑁-injective, for each 𝜆 ∈ 𝛬. 

 

(2) Suppose that 𝛬 is a finite set. Let {𝑀𝜆}𝜆∈𝛬 

be a family of  𝜌-𝑁-injective modules. Since 𝛬 

is finite it follows from [7, p.82] that 

⊕𝜆∈𝛬 𝑀𝜆 = ∏ 𝑀𝜆𝜆∈𝛬 . Since        

𝜌(⊕𝜆∈𝛬 𝑀𝜆) =⊕ 𝜆∈𝛬 𝜌(𝑀𝜆) (by [10, 

Proposition 2, p.76]) it follows that 

𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏𝜆∈𝛬𝜌(𝑀𝜆). By Proposition 2.5 

(2), ∏ 𝑀𝜆𝜆∈𝛬  is 𝜌-𝑁-injective and hence 

⊕𝜆∈𝛬 𝑀𝜆 is 𝜌-𝑁-injective.   

 

    The following corollary is immediate from 

Proposition 2.8(1). 

 

Corollary 2.9. Let 𝑀 be  a 𝜌-𝑁-injective          

𝑅-module and let 𝐾 be a direct summand of  𝑀. 

Then 𝐾 is a 𝜌-𝑁-injective 𝑅-module.  

 

Corollary 2.10. Let {𝑀𝜆}𝜆∈𝛬 be a family of      

𝑅-modules and let 𝑀 =⊕𝜆∈𝛬 𝑀𝜆 .Then 

ℎ

   
𝑖𝜆 

𝑔𝜆 

𝑁 𝐴   0

𝛼𝜆 

𝑖 

𝑀𝜆 

𝑀 

𝑝𝜆  
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(i) (1) If 𝜌 is a preradical and  𝑀/𝜌(𝑀) is 𝜌-𝑁-

injective, then each 𝑀𝜆/𝜌(𝑀𝜆) is ρ-𝑁-injective.  

     (2) If 𝜌 is  a radical and 𝑀/𝜌(𝑀) is 𝜌-𝑁-

injective, then each 𝑀𝜆 𝜌(𝑀𝜆)⁄  is 𝑁-injective. 

(ii) (1) If 𝜌 is  a preradical, then 𝑀𝜆/𝜌(𝑀𝜆) is    

𝜌-𝑁-injective and 𝛬 is a finite set, then            

 𝑀/𝜌(𝑀) is 𝜌-𝑁-injective.  

    (2) If 𝜌 is a radical, each 𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-

injective and 𝛬 is a finite set, then 𝑀/𝜌(𝑀) is 

𝑁-injective. 

Proof: (i)(1) Suppose that 𝜌 is a preradical 

and 𝑀/𝜌(𝑀) is a 𝜌-𝑁-injective 𝑅-module. 

Since 𝑀/𝜌(𝑀) =⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆))   and 

𝑀/𝜌(𝑀) is 𝜌-𝑁-injective (by hypothesis) 

it follows that  ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) is 𝜌-𝑁-

injective. By Proposition 2.8(1) , 𝑀𝜆/𝜌(𝑀𝜆) is 

𝜌-𝑁-injective, for all 𝜆 ∈ 𝛬.  

 

(i)(2) Suppose that 𝜌 is a radical and 𝑀/𝜌(𝑀) 

is a 𝜌-𝑁-injective module. By (i)(1),               

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective, for all 𝜆 ∈ 𝛬. 

Since 𝜌 is a radical,  𝜌(𝑀𝜆/𝜌(𝑀𝜆)) = 0 and 

hence 𝑀𝜆/𝜌(𝑀𝜆) is 𝑁-injective, for all 𝜆 ∈ 𝛬. 

 

(ii)(1) Suppose that 𝜌 is a preradical, each 

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective and 𝛬 is a finite set. 

By Proposition 2.8(2), ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) is 

𝜌-𝑁-injective. Since ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) =

 ⊕𝜆∈𝛬 𝑀𝜆/⊕𝜆∈𝛬 𝜌(𝑀𝜆) = 𝑀/𝜌(⊕𝜆∈𝛬 𝑀𝜆) 

= 𝑀/𝜌(𝑀) it follows that 𝑀/𝜌(𝑀)  is 𝜌-𝑁-

injective. 

 

(ii(2)) Suppose that 𝜌 is a radical, each            

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective and 𝛬 is a finite set. 

By (ii(1)), 𝑀/𝜌(𝑀) is 𝜌-𝑁-injective. Since 𝜌 is 

a radical,  𝜌(𝑀𝜆/𝜌(𝑀𝜆)) = 0 and hence 

 𝑀𝜆/𝜌(𝑀𝜆) is 𝑁-injective.  

 

Examples 2.11.  

(1) The converse of Proposition 2.8(1) is not 

true in general. For example, let 𝛬 be an infinite 

countable index set and let 𝑇𝜆 = 𝑄 for all 𝜆 ∈ 𝛬 

(where 𝑄 is the field of rational numbers). 

Let 𝑅 = ∏ 𝑇𝜆𝜆∈𝛬  be the ring product of the 

family {𝑇𝜆|𝜆 ∈ 𝛬}. It is easy to prove that R is a 

regular ring. For  𝑘 ∈ 𝛬, let 𝑒𝑘  be the element of 

𝑅 whose kth-component is 1 and whose 

remaining components are 0.  

Let 𝐴 =⊕𝜆∈𝛬 𝑅𝑒𝜆, it is clear that 𝐴 is a 

submodule of an 𝑅-module 𝑅. By [7, p.140], 𝐴 

is a direct sum of injective 𝑅-modules, but 𝐴 is 

not injective 𝑅-module. Since every injective 

𝑅-module is 𝜌-injective, thus 𝐴 is a direct sum 

of 𝜌-injective 𝑅-modules. Let 𝜌 be any  

J-preradical. Assume that 𝐴 is 𝜌-injective. Since 

𝑅 is a regular  ring, thus J(𝐴) = 0 ( by [7, 

p.272] ). Since 𝜌 is a J-preradical, thus 𝜌(𝐴) =

0 and hence 𝐴 is injective and this is a 

contradiction. Thus 𝐴 is not 𝜌-injective. 

Therefore, 𝐴 is a direct sum of 𝜌-injective 

modules, but it is not 𝜌-injective.  

(2) Let 𝑀 = 𝑄⨁ℤ. Thus 𝑀 is not 𝜌-injective  

ℤ-module, where 𝜌 is a J-preradical. In fact, if 

𝑀 is 𝜌-injective, then by Proposition 2.8(1) we 

have ℤ is 𝜌-injective ℤ-module and hence ℤ 

is an injective ℤ-module (because ρ(ℤ) =

 J(ℤ) = 0) and this is a contradiction. Thus 𝑀 is 

not 𝜌-injective ℤ-module.    

    

      In following, we will introduce further 

characterizations of  𝜌-injective modules. 

    

    Recall that a submodule 𝑁 of an 𝑅-module 𝑀 

is said to be a direct summand of 𝑀 if there 

exists a submodule 𝐾 of 𝑀 such that  

𝑀 = 𝑁 ⊕ 𝐾, (i.e., 𝑀 = 𝑁 + 𝐾 and 𝑁 ∩ 𝐾 = 0) 

[7]. This is equivalent to saying that, for every 

commutative diagram with exact rows,  

 

                                                

  

                                                    

 

(where 𝐴 and 𝐵 are  two 𝑅-modules), there 

exists an 𝑅-homomorphism ℎ: 𝐵 → 𝑁 such that 

𝑓 = ℎ ∘ 𝛼 [11]. It is well-known that an            

𝑅-module 𝑀 is injective if and only if 𝑀 is a 

direct summand of every extension of it self [1, 

Theorem (2.1.5)]. 

    

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

ℎ  
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      For analogous result for 𝜌-injective             

𝑅-modules, we introduce the following concept 

as a generalization of direct summands. 

 

Definition 2.12. A submodule 𝑁 of an               

𝑅-module 𝑀 is said to be 𝜌-direct summand of  

𝑀 if for every commutative diagram with exact 

rows,  

                                                  

 

 

                                                  

 

(where 𝐴 and 𝐵 are two 𝑅-modules), there 

exists an 𝑅-homomorphism ℎ: 𝐵 → 𝑁 such that 

(ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎)𝜖 𝜌(𝑁), for all 𝑎 in 𝐴.  

 

Proposition 2.13.  Let 𝑁 be a submodule of an 

𝑅-module 𝑀. Then the following statements are 

equivalent:- 

(1) 𝑁 is  𝜌-direct summand of 𝑀; 

(2) for each diagram with exact row, 

                                                   

                                                             

                                                                                                                                                                                                

 

 

where 𝐼𝑁 is the identity homomorphism of 𝑁, 

there exists an 𝑅-homomorphism ℎ: 𝑀 → 𝑁 

such that (ℎ ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑁),for all 𝑎 ∈ 𝑁. 

Proof: (𝟏) ⇒ (𝟐) Suppose that 𝑁 is a 𝜌-direct 

summand of 𝑀 and consider the following 

diagram with exact row.  

                                                     

                                                               

                                                                                           

                                                                  

 

Thus we have the following commutative 

diagram with exact rows. 

                                              

  

 

  

 

By hypothesis, there exists a homomorphism 

ℎ: 𝑀 → 𝑁 such that (ℎ ∘ 𝛼)(𝑎) − 𝐼𝑁(𝑎)𝜖 𝜌(𝑁), 

for all 𝑎 in 𝐴 and hence  (ℎ ∘ 𝛼)(𝑎) − 𝑎 ∈

𝜌(𝑁), for all 𝑎 in 𝑁. 

 (𝟐) ⇒ (𝟏)  Consider the following 

commutative diagram with exact rows. 

                                                        

                                                    

                                                                                                                                                                                       

 

 

Thus we have the following diagram. 

                                         

           

 

                                                   

                                       

 

 

By hypothesis, there exists a homomorphism 

ℎ: 𝑀 → 𝑁 such that (ℎ ∘ 𝛽)(𝑎) − 𝑎 ∈  𝜌(𝑁), 

for all 𝑎 ∈ 𝑁. Put ℎ1 = ℎ ∘ 𝑔: 𝐵 ⟶ 𝑁. It is 

clear that ℎ1 is a homomorphism. Let 𝑎 ∈ 𝐴, 

thus (ℎ1 ∘ 𝛼)(𝑎) − 𝑓(𝑎) = ((ℎ ∘ 𝑔) ∘ 𝛼)(𝑎) −

𝑓(𝑎) = (ℎ ∘ (𝑔 ∘ 𝛼))(𝑎) − 𝑓(𝑎) =

(ℎ ∘ (𝛽 ∘ 𝑓))(𝑎) − 𝑓(𝑎) = (ℎ ∘ 𝛽)(𝑓(𝑎)) −

𝑓(𝑎) ∈ 𝜌(𝑁). Hence (ℎ1 ∘ 𝛼)(𝑎) − 𝑓(𝑎) ∈

𝜌(𝑁), for all 𝑎 in 𝐴 and this implies that 𝑁 is a 

𝜌-direct summand of  𝑀.   

                                                                                               

     In the following theorem we will give a 

characterization of 𝜌-injective modules, by 

using  𝜌-direct summands. 

 

Theorem 2.14.  For an 𝑅-module 𝑀, the 

following statements are equivalent: 

(1) 𝑀 is 𝜌-injective.  

(2) 𝑀 is a 𝜌-direct summand of every extension 

of itself.  

(3) 𝑀 is a 𝜌-direct summand of every injective 

extension of itself. 

(4) 𝑀 is a  𝜌-direct summand of at least, one 

injective extension of itself.  

(5) 𝑀 is a  ρ-direct summand of E(𝑀), where 

E(𝑀) is the injective hull of 𝑀. 

Proof:-  (𝟏) ⟹ (𝟐)  Suppose that 𝑀 is a         

𝜌-injective 𝑅-module and let 𝑀1 be any 

extension 𝑅-module of 𝑀.  We will prove that 

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

ℎ  

𝑁 

0 N

                 

𝛼 
𝑀 

𝐼𝑁 ℎ 

𝑁 

0 N

                 

𝛼 
𝑀 

𝐼𝑁 

𝑀 

𝐼𝑀 

0

𝑀 𝑁 0

𝐼𝑁  

𝛼

= 𝐽 

𝑁 
𝛼

= 𝐽 

ℎ  

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝐼𝑁  

𝛼

= 𝐽 

𝑁 

𝑁 

𝛽

= 𝐽 

ℎ1  

ℎ 
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𝑀 is 𝜌-direct summand of 𝑀1. Consider the 

following diagram with exact row.  

 

 

 

 

 

Since 𝑀 is 𝜌-injective, there exists an             

𝑅-homomorphism 𝑓:  𝑀1 → 𝑀 such that 

(𝑓 ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑀), for all 𝑎 ∈ 𝑀. Thus  

Proposition 2.13. implies that 𝑀 is a 𝜌-direct 

summand of 𝑀1. 

(𝟐) ⇒ (𝟑)   and  (𝟑) ⇒ (𝟒)   are clear. 

(𝟒) ⇒ (𝟏)  Suppose that 𝑀 is a 𝜌-direct 

summand of at least, one injective extension    

𝑅-module of 𝑀, say 𝐸. To prove that 𝑀 is a   

 𝜌-injective module. Consider the diagram (1) 

with exact row, where 𝐴 and 𝐵 are 𝑅-modules 

and 𝑓: 𝐴 → 𝑀 is an 𝑅-homomorphism. 

                                                                                                                                   

                                                                                           

                                                   (diagram (1))           

 

 

Since 𝐸 is an extension of 𝑀, there is an             

𝑅-monomorphism, say 𝛽: 𝑀 ⟶ 𝐸. Thus we 

have the diagram (2). 

 

 

 

                                                (diagram (2))           

 

 

 

Since 𝐸 is an injective 𝑅-module, there exists 

an 𝑅-homomorphism 𝑔: 𝐵 → 𝐸 such that               

(𝑔 ∘ 𝛼)(𝑎) = ( 𝛽 ∘ 𝑓)(𝑎) for all 𝑎 in 𝐴. Thus 

we have the commutative diagram (3) with 

exact rows.  

 

 

                                                    (diagram (3)) 

 

 

Since 𝑀 is a 𝜌-direct summand of 𝐸 (by 

hypothesis), thus there exists a homomorphism 

ℎ: 𝐵 → 𝑀 such that (ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎) 

∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. Thus, for the diagram 

(1), we get a homomorphism ℎ: 𝐵 → 𝑀 such 

that (ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎) ∈  𝜌(𝑀),  for all 𝑎 in 𝐴. 

Therefore, 𝑀 is 𝜌-injective.  

(𝟑) ⇒ (𝟓) This is clear. 

(𝟓) ⇒ (𝟏) Suppose that 𝑀 is a 𝜌-direct 

summand of E(𝑀). Since E(𝑀) is an injective 

extension of 𝑀, thus 𝑀 is a 𝜌-direct summand 

of at least, one injective extension of itself.  

                                                                                               

     In the following corollary we will give an 

inner characterization of 𝜌-injective modules, 

for the term inner see [7]. 

 

Corollary 2.15. An 𝑅-module 𝑀 is 𝜌-injective 

if and only if 𝑀 is a ρ-direct summand of an           

𝑅-module Homℤ(𝑅, 𝐵), with 𝐵 is a divisible 

Abelian group. 

Proof: (⇒) Suppose that 𝑀 is 𝜌-injective. By 

[7,  p.91], there is a ℤ-monomorphism        

𝑓: 𝑀 → 𝐵, where 𝐵 is a divisible Abelian 

group. Thus Lemma (5.5.2) in [7] implies that 

Homℤ(𝑅, 𝐵) is an injective 𝑅-module. 

Define 𝜃: 𝑀 → Homℤ(𝑅, 𝐵) by 𝜃(𝑚)(𝑟) =

𝑓(𝑟𝑚), for all 𝑚 ∈ 𝑀 and for all 𝑟 ∈ 𝑅. It is 

easy to see that 𝜃 is an 𝑅-monomorphism and 

hence Homℤ(𝑅, 𝐵) is an extension 𝑅-module of 

M. Since 𝑀 is a 𝜌-injective 𝑅-module, thus 

Theorem 2.14. implies that 𝑀 is a 𝜌-direct 

summand of an 𝑅-module Homℤ(𝑅, 𝐵). 

(⇐) Suppose that 𝑀 is a 𝜌-direct summand of 

an 𝑅-module Homℤ(𝑅, 𝐵) with 𝐵 is a divisible 

Abelian group. By [7, Lemma (5.5.2)], we have 

that Homℤ(𝑅, 𝐵) is an injective 𝑅-module. 

Thus 𝑀 is a 𝜌-direct summand of an injective 

extension 𝑅-module. Therefore, 𝑀 is a             

𝜌-injective 𝑅-module, by Theorem 2.14.   

 

    An R-monomorphism α: N → M (where N 

and M are R-modules) is called split, if there 

exists an R-homomorphism β: M → N such that  

β ∘ α = IN [7]. 

        

      An 𝑅-module 𝑀 is injective if and only if 

for every 𝑅-module 𝑁, each 𝑅-monomorphism 

𝛼: 𝑀 → 𝑁 is split [7]. 

𝑀 

0 M

                 

𝛼 
𝑀1 

𝐼𝑀 𝑓 

𝑀 

0 A                 
𝛼 

𝐵 

𝑓 

𝑔   

𝛽 

𝐵 𝐴   0

𝑓 

𝛼 

𝑀 

𝐸 

𝐸 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑀 
𝛽

= 𝐽 

ℎ  
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     For analogous result for 𝜌-injective modules, 

we introduce the following concept. 

 

Definition 2.16. An 𝑅-monomorphism      

𝛼: 𝑁 → 𝑀 is said to be 𝜌-split, if there exists an 

𝑅-homomorphism 𝛽: 𝑀 → 𝑁 such that 

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈ 𝜌(𝑁), for all 𝑎 in 𝑁. 

 

          

 

 

 

          

           The following theorem gives and 

characterization of 𝜌-injectivity by using         

𝜌-split monomorphisms. 

 

Theorem 2.17.  The following statements are 

equivalent for an 𝑅-module 𝑀:  

(1) 𝑀 is 𝜌-injective; 

(2) for each 𝑅-module 𝑁, each                           

𝑅-monomorphism 𝛼: 𝑀 → 𝑁 is a 𝜌-split; 

(3) for each injective 𝑅-module 𝑁, each            

𝑅-monomorphism  𝛼: 𝑀 → 𝑁 is a 𝜌-split; 

(4) each 𝑅-monomorphism 𝛼: 𝑀 →E(𝑀) is       

𝜌-split. 

Proof: (𝟏) ⇒ (𝟐) Suppose that 𝑀 is a               

𝜌-injective 𝑅-module. Let 𝑁 be any 𝑅-module 

and let 𝛼: 𝑀 → 𝑁 be any 𝑅-monomorphism. 

Consider the following diagram. 

 

 

 

 

 

Since 𝑀 is 𝜌-injective, there exists an             

𝑅-homomorphism 𝛽: 𝑁 → 𝑀 such that         

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑀), for all  𝑎 ∈  𝑀.    

Hence 𝛼 is a 𝜌-split.  

(𝟐) ⇒ (𝟑) and (𝟑) ⇒ (𝟒)  are obvious. 

(𝟒) ⇒ (𝟏) Suppose that each 𝑅-monomorphism 

𝛼: 𝑀 → 𝐸(𝑀) is a  𝜌-split. To prove that 𝑀 is a 

𝜌-injective. Consider the following diagram 

with exact row, where 𝐴 and 𝐵 are 𝑅-modules 

and 𝑔: 𝐴 → 𝑀 is any 𝑅-homomorphism.  

 

 

 

 

 

Since E(𝑀) is an extension of 𝑀, thus there is a 

monomorphism, say 𝛼: 𝑀 → E(𝑀) and hence 

we get the following diagram with exact row. 

  

                                                                                                                                                                                  

          

 

 

 

 

 

Since E(𝑀) is an injective module, there exists 

a homomorphism ℎ: 𝐵 → 𝐸(𝑀) such that 

(ℎ ∘ 𝑓)(𝑎) = (𝛼 ∘ 𝑔)(𝑎), for all 𝑎 ∈ 𝐴. By 

hypothesis, we have 𝛼: 𝑀 → E(𝑀)is a              

𝜌-split and hence there exists a 

homomorphism 𝛽: 𝐸(𝑀) → 𝑀 such that 

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝑀. 

Put ℎ1 = 𝛽 ∘ ℎ, it is clear that ℎ1 is an               

𝑅-homomorphism. For each 𝑎 in 𝐴, we have 

that (ℎ1 ∘ 𝑓)(𝑎) − 𝑔(𝑎) = ((𝛽 ∘ ℎ) ∘ 𝑓)(𝑎) −

𝑔(𝑎) = (𝛽(ℎ ∘ 𝑓))(𝑎) − 𝑔(𝑎) = 

  (𝛽(𝛼 ∘ 𝑔))(𝑎) − 𝑔(𝑎) = (𝛽 ∘ 𝛼)(𝑔(𝑎)) −

𝑔(𝑎) ∈  𝜌(𝑀). Thus (ℎ1 ∘ 𝑓)(𝑎) − 𝑔(𝑎) ∈

 𝜌(𝑀), for all 𝑎 ∈ 𝐴 and hence 𝑀 is a                

𝜌-injective module.         

     

        The following proposition gives a 

characterization of 𝜌-injective modules by 

using the class of injective modules. 

 

Proposition 2.18. The following statements are 

equivalent for an 𝑅-modules 𝑀: 

(1) 𝑀 is 𝜌-injective; 

(2) 𝑀 is 𝜌-𝐵-injective, for every injective 

module 𝐵; 

(3) for each diagram with 𝐵 is an injective        

𝑅-module and 𝐴 is an essential submodule in 𝐵, 

 

 

 

𝛽 

𝑁 𝑀   0

𝐼𝑀 

𝛼 

𝑀 

𝐵   𝐴   0

𝑔 

𝑓 

𝑀 

ℎ

   

𝛼 

ℎ1 

𝐵 𝐴   0

𝑔 

𝑓 

𝑀 

E(𝑀) 

𝛽 

𝛽 

𝑀 𝑁   0

𝐼𝑁 

𝛼 

𝑁 
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there exists a  homomorphism 𝑔: 𝐵 → 𝑀 such 

that (𝑔 ∘ 𝑖)(𝑎) − 𝑓(𝑎) ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. 

Proof: (𝟏) ⇒ (𝟐) and (𝟐) ⇒ (𝟑)  are obvious. 

(𝟑) ⇒ (𝟏)  Consider the following diagram 

with 𝐵 is any 𝑅-module and 𝐴 is any essential 

submodule in 𝐵.   

                                              

 

 

 

 

 

By [1], there exists an injective 𝑅-module say 

𝐸, such that 𝐵 is an essential submodule in 𝐸. 

Thus we have the following diagram, 

 

 

 

 

 

 

where  𝑖𝐴  and  𝑖𝐵  are inclusion                        

𝑅-homomorphisms. Since 𝐴 ≤𝑒 𝐵 (by 

hypothesis) and  𝐵 ≤𝑒 𝐸 it follows from [8] that 

𝐴 ≤𝑒 𝐸. By hypothesis, there exists an               

𝑅-homomorphism ℎ: 𝐸 → 𝑀 such that                

(ℎ ∘  𝑖𝐵 ∘ 𝑖𝐴)(𝑎) − 𝑓(𝑎) ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. 

Put  𝑔 = ℎ ∘  𝑖𝐵, thus (𝑔 ∘ 𝑖𝐴)(𝑎) − 𝑓(𝑎) ∈

𝜌(𝑀), for all 𝑎 ∈ 𝐴. By Proposition 2.4., 𝑀 is 

𝜌-𝐵-injective, for every 𝑅-module 𝐵 and hence 

𝑀 is a 𝜌-injective 𝑅-module.  

 

        In the following proposition, we will give 

another characterization of 𝜌-injectivity by 

using the class of free modules. 

 

Proposition 2.19.  An 𝑅-module 𝑀 is             

𝜌-injective if and only if 𝑀 is 𝜌-𝐹-injective, for 

every free 𝑅-module 𝐹. 

Proof: (⟹) This is obvious.  

(⟸) Suppose that 𝑀 is 𝜌-𝐹-injective, for every 

free 𝑅-module 𝐹. Consider the following 

diagram with exact row. 

 

 

 

 

 

Since 𝐵 is a set, thus there exists a free                

𝑅-module, say 𝐹,  such that 𝐵 is a basis of  𝐹 

[12, p.58]. By hypothesis, there exists an            

𝑅-homomorphism h1: F → M such that 

(ℎ1 ∘ (𝑖 ∘ 𝑓))(𝑎) − 𝑔(𝑎) ∈ 𝜌(𝑀), for all 

𝑎 ∈ 𝐴. Put ℎ =: ℎ1 ∘ 𝑖: B → M, it is clear that 

ℎ is an 𝑅-homomorphism. For every 𝑎 ∈ 𝐴, we 

have that 

(ℎ ∘ 𝑓)(𝑎) − 𝑔(𝑎) = ((ℎ1 ∘ 𝑖) ∘ 𝑓)(𝑎) −

𝑔(𝑎) ∈ 𝜌(𝑀) and hence 𝑀 is a 𝜌-injective        

𝑅-module.      

 

 

3. Endomorphism Ring of 𝝆-Injective 

Modules 

      

          Let 𝑀 be an 𝑅-module, 𝑆 = End𝑅(𝑀) 

and let  Δ = {𝑓 ∈ 𝑆 ker(𝑓) ≤𝑒 𝑀}. It is well-

known that ∆ is a two-sided ideal of 𝑆 [13] and 

if an 𝑅-module 𝑀 is injective, then the ring 𝑆/Δ 

is regular. Moreover, if  Δ = 0, then the ring 𝑆 

is a right self-injective ring [8]. 

   For analogous results for 𝜌-injective modules 

we consider the following. 

 

Let 𝑀 and 𝑁  be 𝑅-modules and 𝑓: 𝑀 → 𝑁 be 

an 𝑅-homomorphism. The set 𝑓−1(𝜌(𝑁)) =

{𝑥 ∈ 𝑀𝑓(𝑥) ∈ 𝜌(𝑁)} is said to be the kernel 

of 𝑓 relative to a preradical 𝜌 and denoted 

by 𝜌ker(𝑓). 

 

     Let 𝑀 be an 𝑅-module and 𝑆 = End𝑅(𝑀).    

We will use the notation 𝜌Δ for the set          

{𝑓 ∈ 𝑆𝜌ker(𝑓) ≤𝑒 𝑀}.   

𝑔 

𝐵 𝐴   0

𝑓 

𝑖 

𝑀 

𝐵 𝐴   0

𝑓 

𝑖𝐴 

𝑀 

𝐸 
𝑔 

𝐵 𝐴   0

𝑓 

𝑖𝐴 𝑖𝐵 

𝑀 

ℎ 

𝐹 
ℎ 

𝐵 𝐴   0

𝑔 

𝑓 𝑖 

𝑀 

ℎ1 
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Proposition 3.1. Let 𝑀 be an 𝑅-module 

and  𝑆 = End𝑅(𝑀). Then 𝜌Δ is a two-sided 

ideal of 𝑆. 

Proof. Since the zero function belong to Δ , 

thus 𝜌Δ is a non-empty set. Let 𝑓, 𝑔 ∈ 𝜌Δ, thus 

𝜌ker(𝑓) ≤𝑒 𝑀 and  𝜌ker(𝑔) ≤𝑒 𝑀 and hence 

Lemma 5.1.5(b) in [7] implies that  

𝜌ker(𝑓) ∩ 𝜌ker(𝑔) ≤𝑒 𝑀. Since       

𝜌ker(𝑓) ∩ 𝜌𝑘𝑒𝑟(𝑔) ⊆ 𝜌ker(𝑓 − 𝑔), thus 

𝜌ker(𝑓 − 𝑔) ≤𝑒 M (by [7, Lemma 5.1.5(a)]) 

and hence 𝑓 − 𝑔 ∈ 𝜌∆.  

Let 𝑓 ∈ 𝜌∆ and ℎ ∈ 𝑆, thus 𝜌ker(𝑓) ≤𝑒 𝑀. 

Since 𝜌ker(𝑓) ⊆ 𝜌ker(ℎ ∘ 𝑓), thus        

𝜌ker(ℎ ∘ 𝑓) ≤𝑒 𝑀 (by [7, Lemma 5.1.5(a)]) 

and hence  ℎ ∘ 𝑓 ∈ 𝜌∆. Now we will prove that 

𝑓 ∘ ℎ ∈ 𝜌∆. Since 𝜌ker(𝑓) ≤𝑒 𝑀, thus Lemma 

5.1.5(c) in [7] implies that 

ℎ−1(𝜌ker(𝑓)) ≤𝑒 𝑀. But ℎ−1(𝜌ker(𝑓)) ⊆

𝜌ker(𝑓 ∘ ℎ), therefore 𝜌ker(𝑓 ∘ ℎ) ≤𝑒 𝑀, by 

[7, Lemma 5.1.5(a)]. Thus 𝑓 ∘ ℎ ∈ 𝜌∆ and 

hence 𝜌∆ is a two-sided ideal of  𝑆.  

       Now, we are ready to state and prove the 

main result in this section.  

Theorem 3.2. Let 𝑀 be an 𝑅-module and 

𝑆 = End𝑅(𝑀). If 𝑀 is 𝜌-injective, then:  

(1)  𝑆/𝜌∆ is a regular ring; 

(2) if 𝜌∆= 0, then 𝑆 is a right self-injective 

ring.                                                                   

Proof.  Suppose that 𝑀 is a 𝜌-injective           

𝑅-module.                                                       

(1) Let 𝜆 + 𝜌Δ ∈ 𝑆/𝜌Δ, thus 𝜆 ∈ 𝑆.  Put 

𝐾 = ker(𝜆) and let 𝐿 be a relative complement 

of 𝐾 in 𝑀. Define 𝛼: 𝜆(𝐿) → 𝑀 by 𝛼(𝜆(𝑥)) =

𝑥, for all  𝑥 ∈ 𝐿. It is easy to prove that 𝛼 is a 

well-defined 𝑅-homomorphism. 

Thus we have the following diagram, where 𝑖 is 

the inclusion 𝑅-homomorphism. 

  

 

 

 

 

Since 𝑀 is 𝜌-injective (by hypothesis), there 

exists an 𝑅-homomorphism 𝛽: 𝑀 → 𝑀 such that 

𝛽(𝜆(𝑥)) − 𝛼(𝜆(𝑥)) ∈ 𝜌(𝑀) for each 𝑥 ∈ 𝐿. 

That is for each 𝑥 ∈ 𝐿, we have that  

 𝛽(𝜆(𝑥)) = 𝛼(𝜆(𝑥)) + 𝑚𝑥, for some 𝑚𝑥 ∈

𝜌(𝑀). Let 𝑢 ∈ 𝐾 ⊕ 𝐿, thus 𝑢 = 𝑥 + 𝑦 where 

𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐿 and hence (𝜆 − 𝜆𝛽𝜆)(𝑢) =

(𝜆 − 𝜆𝛽𝜆)(𝑥 + 𝑦) = 𝜆(𝑥) − 𝜆𝛽(𝜆(𝑥)) +

𝜆(𝑦) − 𝜆𝛽(𝜆(𝑦)) = 0 − 0 − 𝜆(𝑦) −

𝜆(𝛼𝜆(𝑦) + 𝑚𝑦) = 𝜆(𝑦) − 𝜆(𝑦) − 𝜆(𝑚𝑦) ∈

𝜌(𝑀) (because 𝜌 is a preradical) and hence  

𝑢 ∈ 𝜌ker(𝜆 − 𝜆𝛽𝜆). Thus for each 𝑢 ∈ 𝐾 ⊕ 𝐿, 

we have that  𝑢 ∈ 𝜌ker(𝜆 − 𝜆𝛽𝜆) and this 

implies that  𝐾 ⊕ 𝐿 ⊆ 𝜌ker(𝜆 − 𝜆𝛽𝜆).  Since 

𝐾 ⊕ 𝐿 ≤𝑒 𝑀 [8], thus Lemma 5.1.5(a) in [7]  

implies that   𝜌ker(𝜆 − 𝜆𝛽𝜆) ≤𝑒 𝑀 and hence 

𝜆 − 𝜆𝛽𝜆 ∈ 𝜌Δ. Thus 𝜆 + 𝜌Δ = (𝜆𝛽𝜆) + 𝜌Δ and 

hence 𝑆/𝜌Δ is a regular ring. 

 

(2) Suppose that 𝜌∆= 0, thus by (1) above, we 

have that  𝑆 is a regular ring. Let 𝐼 be any right 

ideal of 𝑆 and let  𝑓: 𝐼 → 𝑆  be any right             

𝑆-homomorphism. Consider the following 

diagram. 

 

 

 

 

 

Let 𝐼𝑀 be the 𝑅-submodule of 𝑀 generated by 

{𝜆𝑚| 𝜆 ∈ 𝐼, 𝑚 ∈ 𝑀}. Thus, if 𝑥 ∈ 𝐼𝑀, then 

𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1  for some 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 ∈ 𝐼 and 

some 𝑚1, 𝑚2, ⋯ , 𝑚𝑛 ∈ 𝑀 where 𝑛 ∈ ℤ+. 

Define 𝜃: 𝐼𝑀 → 𝑀 as follows, for each                     

𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ∈ 𝐼𝑀, put 

𝜃(𝑥) = 𝜃(∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ) = ∑ 𝑓(𝜆𝑖)(𝑚𝑖)𝑛

𝑖=1 .  Let 

𝑥, 𝑦 ∈ 𝐼𝑀, thus 𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1  and                   

𝑦 = ∑ 𝛼𝑗𝑚𝑗
′𝑡

𝑗=1 ,  for some 𝜆𝑖, 𝛼𝑗 ∈ 𝐼 

and  𝑚𝑖, 𝑚𝑗
′ ∈ 𝑀, with 𝑖 = 1, ⋯ , 𝑛 and 𝑗 =

1, ⋯ , 𝑡 where 𝑛, 𝑡 ∈ ℤ+. Since 𝑆 is a regular 

ring, thus Proposition 4.14 in  [8] implies that 

each finitely generated right ideal of  𝑆 is 

generated by an idempotent. Hence the right 

ideal of a ring  𝑆 which is generated by 

𝜆1, ⋯ , 𝜆𝑛, 𝛼1, ⋯ , 𝛼𝑡 written as 𝑒𝑆, where 

𝑒 = 𝑒2 ∈ 𝐼 and hence 𝜆𝑖, 𝛼𝑗 ∈ 𝑒𝑆 for all 

𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑡 and this implies that 

𝑀 

0 λ(L)     

)            

𝑖 
𝑀 

𝛼 𝛽 

𝑆 

0 I                  
𝑖 

𝑆 

𝑓 
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𝜆𝑖 = 𝑒ℎ𝑖 and 𝛼𝑗 = 𝑒ℎ𝑗
′ for some ℎ𝑖, ℎ𝑗

′ ∈ 𝑆 and 

for all 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑡. Hence 𝑒𝜆𝑖 =

𝑒(𝑒ℎ𝑖) = 𝑒2ℎ𝑖 = 𝑒ℎ𝑖 = 𝜆𝑖, for all 𝑖 = 1, ⋯ , 𝑛 

and 𝑒𝛼𝑗 = 𝑒(𝑒ℎ𝑗
′) = 𝑒2ℎ𝑗

′ = 𝑒ℎ𝑗
′ = 𝛼𝑗 for 

all 𝑗 = 1, ⋯ , 𝑡. Thus, 𝑓(𝜆𝑖) = 𝑓(𝑒)𝜆𝑖 and 

𝑓(𝛼𝑗) = 𝑓(𝑒)𝛼𝑗 for all 𝑖 = 1, ⋯ , 𝑛 and 

𝑗 = 1, ⋯ , 𝑡. Therefore, 𝜃(𝑥) = 𝜃(∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ) =

∑ 𝑓(𝜆𝑖)(𝑚𝑖)𝑛
𝑖=1 = ∑ 𝑓(𝑒)𝜆𝑖𝑚𝑖

𝑛
𝑖=1 =

𝑓(𝑒) ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 = 𝑓(𝑒)𝑥 and similarly we have 

that 𝜃(𝑦) = 𝑓(𝑒)𝑦. Clearly, 𝜃 is a well-defined                 

𝑅-homomorphism, since for all 𝑥, 𝑦 ∈ 𝐼𝑀, if 

𝑥 = 𝑦, then  𝑓(𝑒)𝑥 = 𝑓(𝑒)𝑦. Since 𝜃(𝑥) =

𝑓(𝑒)𝑥 and  𝜃(𝑦) = 𝑓(𝑒)𝑦 (as above), thus  

𝜃(𝑥) = 𝜃(𝑦). Let 𝑥, 𝑦 ∈ 𝐼𝑀 and 𝑟 ∈ 𝑅 , thus 

𝜃(𝑥 + 𝑦) = 𝑓(𝑒) (𝑥 + 𝑦) = 𝑓(𝑒)𝑥 + 𝑓(𝑒)𝑦 =

𝜃(𝑥) + 𝜃(𝑦) and 𝜃(𝑟𝑥) = 𝑓(𝑒)(𝑟𝑥) =

𝑟(𝑓(𝑒)(𝑥)) = 𝑟𝜃(𝑥). Therefore, 𝜃 is a well-

defined 𝑅-homomorphism. Thus we have the 

following diagram (where 𝑖 is the inclusion     

𝑅-homomorphism). 

 

 

    

 

 

 

Since 𝑀 is a 𝜌-injective,  there exists an           

𝑅-homomorphism 𝜑: 𝑀 → 𝑀 such that 

𝜑(𝑥) − 𝜃(𝑥) ∈ 𝜌(𝑀), for all 𝑥 ∈ 𝐼𝑀.  

Let 𝑚 ∈ 𝑀  and  𝜆 ∈ 𝐼. Thus (𝜑𝜆)(𝑚) =

𝜑(𝜆𝑚) = 𝜃(𝜆𝑚) + 𝑙𝑚 = 𝑓(𝜆)𝑚 + 𝑙𝑚,  for 

some 𝑙𝑚 ∈ 𝜌(𝑀) and hence (𝜑𝜆 − 𝑓(𝜆))(𝑚) 

∈ 𝜌(𝑀) and this implies that 𝑚 ∈ 𝜌ker(𝜑𝜆 −

𝑓(𝜆)). Thus  𝑀 = 𝜌ker(𝜑𝜆 − 𝑓(𝜆)), for each 

𝜆 ∈ 𝐼. Therefore 𝜌ker(𝜑𝜆 − 𝑓(𝜆)) ≤𝑒 𝑀 and 

hence  𝜑𝜆 − 𝑓(𝜆) ∈ 𝜌Δ, for all 𝜆 ∈ 𝐼. Since 

𝜌Δ = 0  (by hypothesis), thus 𝑓(𝜆) = 𝜑𝜆, for 

all 𝜆 ∈ 𝐼 and hence  𝑆 satisfied Baer's condition. 

Therefore, 𝑆 is a right self-injective ring, by [8, 

Theorem 1.6.].  

Proposition 3.3. Let 𝑀 be an 𝜌-injective               

𝑅-module and 𝑆 = End𝑅(𝑀). Then                  

𝐼 ∩ 𝐾 = 𝐼𝐾 + 𝜌Δ ∩ (𝐼 ∩ 𝐾), for every two-

sided ideals 𝐼 and 𝐾 of 𝑆. 

Proof. Suppose that 𝑀 is a 𝜌-injective              

𝑅-module, thus Theorem 3.2. implies that 

 𝑆/𝜌∆ is a regular. Let 𝐼 and 𝐾 be any two-

sided ideals of 𝑆. Let 𝛼 ∈ 𝐼 ∩ 𝐾, thus 𝛼 + 𝜌Δ ∈

 𝑆/𝜌∆. Since 𝑆/𝜌∆  is a regular ring, thus there 

exists an element 𝛽 + 𝜌Δ ∈ 𝑆/𝜌∆ such that 

𝛼 + 𝜌Δ = 𝛼𝛽𝛼 + 𝜌Δ and hence 𝛼 − 𝛼𝛽𝛼 ∈ 𝜌Δ. 

Since 𝛼 − 𝛼𝛽𝛼 ∈ 𝐼 ∩ 𝐾, thus  𝛼 − 𝛼𝛽𝛼 ∈ 𝜌𝛥 ∩

(𝐼 ∩ 𝐾). Put 𝛼1 = 𝛼 − 𝛼𝛽𝛼, thus 

𝛼 = 𝛼𝛽𝛼 +  𝛼1 ∈ 𝐼𝐾 + 𝜌𝛥 ∩ (𝐼 ∩ 𝐾) and 

hence  𝐼 ∩ 𝐾 ⊆ 𝐼𝐾 + 𝜌Δ ∩ (𝐼 ∩ 𝐾). Since 

𝐼𝐾 ⊆ 𝐼 and 𝐼𝐾 ⊆ 𝐾, thus 𝐼𝐾 ⊆ 𝐼 ∩ 𝐾. Since 

𝜌Δ ∩ (𝐼 ∩ 𝐾) ⊆ (𝐼 ∩ 𝐾), thus 𝐼𝐾 + 𝜌Δ ∩

(𝐼 ∩ 𝐾) ⊆ 𝐼 ∩ 𝐾. Therefore, 𝐼 ∩ 𝐾 = 𝐼𝐾 +

𝜌Δ ∩ (𝐼 ∩ 𝐾).    

    By applying Proposition 3.3. we have the 

following result. 

Corollary 3.4.  Let 𝑀 be a 𝜌-injective             

𝑅-module, 𝑆 = End𝑅(𝑀) and let 𝐾 be any   

two-sided ideal of 𝑆.Then 𝐾 = 𝐾2 + ( 𝜌Δ ∩ 𝐾) 

      In [14], Osofsky showed that, for an            

𝑅-module 𝑀, if 𝑍(𝑀) = 0, then the Jacobson 

radical of the ring 𝑆 = End𝑅(𝑀) is zero. Also, 

if 𝑀 is an injective 𝑅-module with 𝑍(𝑀) = 0, 

then the ring 𝑆 = End𝑅(𝑀) is a right self-

injective regular [8]. 

     In the following, we will state and prove  

analogous results for 𝜌-injective modules. 

Firsty, we need the following lemma. 

Lemma 3.5.  Let M  be an 𝑅-module and 

𝑆 = End𝑅(𝑀). Then for each 𝜆 ∈ 𝑆 and for 

each 𝑥 ∈ 𝑀 we have                     

[𝜌(𝑀): 𝜆(𝑥)]𝑅 = [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅. 

Proof.  Let 𝜆 ∈ 𝑆 and 𝑥 ∈ 𝑀. Thus if              

𝑟 ∈ [𝜌(𝑀): 𝜆(𝑥)], then 𝜆(𝑥)𝑟 ∈ 𝜌(𝑀) and 

hence  𝜆(𝑥𝑟) ∈ 𝜌(𝑀) and this implies that 

𝑥𝑟 ∈ 𝜌𝑘𝑒𝑟(𝜆) and so  𝑟 ∈ [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅. 

Therefore,  [𝜌(𝑀): 𝜆(𝑥)]𝑅 ⊆ [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅 and 

by similar way we can prove [𝜌ker(𝜆): 𝑥]𝑅 ⊆

[𝜌(𝑀): 𝜆(𝑥)]𝑅. Thus [𝜌(𝑀): 𝜆(𝑥)]𝑅 =

[𝜌ker(𝜆): 𝑥]𝑅.  

𝑀 

0 
𝑖 

𝑀 

𝜃 𝜑 

𝐼𝑀 
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        Let 𝑀 be an 𝑅-module. It is easy to prove 

that the set  {𝑚 ∈ 𝑀| [𝜌(𝑀): 𝑚]𝑅 is an essential 

ideal in 𝑅} is a submodule of 𝑀. This 

submodule is said to be the 𝜌-singular 

submodule of 𝑀 and denoted by 𝜌𝑍(𝑀). 

     The following proposition is an analogous 

result of  the Osofsky's result [14]. 

Proposition 3.6. Let 𝑀 be an 𝑅-module and 

𝑆 = End𝑅(𝑀). If 𝜌Z(𝑀) = 0, then 𝜌Δ = 0.    

Proof.  Suppose that  𝜌Z(𝑀) = 0 and let 

𝛼 ∈ 𝜌Δ, thus  𝜌ker(𝛼) ≤𝑒 𝑀 and hence  [8, 

Lemma 3, p. 46]  implies that 

[𝜌ker(𝛼): 𝑥]𝑅 ≤e 𝑅, for each 𝑥 ∈ 𝑀. Since 

[𝜌(𝑀): 𝛼(𝑥)]𝑅 = [𝜌ker(𝛼): 𝑥]𝑅 (by Lemma 

3.5.), thus [𝜌(𝑀): 𝛼(𝑥)]𝑅 ≤e 𝑅 and hence 

𝛼(𝑥) ∈  𝜌𝑍(𝑀). Since 𝜌𝑍(𝑀) = 0 (by 

hypothesis), thus 𝛼(𝑥) = 0, for all 𝑥 in 𝑀 (i.e 

𝛼 = 0) and hence 𝜌Δ = 0.  

     The following corollary (for 𝜌-injective 

modules) is analogous of the statement for 

injective modules [8]. 

Corollary 3.7. Let 𝑀 be a 𝜌-injective             

𝑅-module and  𝑆 = End𝑅(𝑀). If  𝜌Z(𝑀) = 0, 

then  𝑆 is a right self-injective regular ring.      

Proof. Suppose that 𝑀 is a 𝜌-injective module 

with 𝜌Z(𝑀) = 0. Thus Proposition 3.6.  implies 

that 𝜌Δ = 0. Therefore, 𝑆 is a right self-

injective regular ring, by Theorem 3.2.    

Corollary 3.8. If 𝑅 is a self 𝜌-injective ring and 

𝜌Z(𝑅) = 0, then  𝑅 is a right self-injective 

regular ring. 

Proof. Since 𝑅 ≅ End𝑅(𝑅), thus the result  

follows from Corollary 3.7.           

      Let 𝑅 be a ring and x ∈ R. Let  xL: R → R 

be the mapping defined by xL(r) = rx, for all 

r ∈ R. Then  𝑥𝐿  is an 𝑅-homomorphism and 

End𝑅(𝑅) = {𝑥𝐿| 𝑥 ∈ 𝑅} [8]. 

 

Lemma 3.9. Let 𝑅 be a ring and 𝑆 = End𝑅(𝑅). 

Define 𝛼: 𝑅 𝜌Z(𝑅)⁄ → 𝑆/𝜌Δ  as follows:  

𝛼(𝑥 + 𝜌Z(𝑅)) = 𝑥𝐿 + 𝜌Δ for each 𝑥 ∈ 𝑅. Then 

𝛼 is an 𝑅-isomorphism. 

Proof. It is easy.  

     The following proposition is an analogous 

result of the statement for self-injective rings 

[15]. 

Proposition 3.10.  If 𝑅 is a self 𝜌-injective ring, 

then 𝑅/𝜌Z(𝑅) is a regular ring.                         

Proof.  Let  𝛼: 𝑅/𝜌Z(𝑅) → 𝑆/𝜌Δ  be the         

𝑅-isomorphism as in Lemma 3.9., where   

𝑆 = End𝑅(𝑅). Let 𝑥 + 𝜌Z(𝑅) ∈ 𝑅/𝜌Z(𝑅), thus 

𝛼(𝑥 + 𝜌Z(𝑅)) = 𝑥𝐿 + 𝜌Δ ∈ 𝑆/𝜌Δ. Since 𝑅 is a 

self 𝜌-injective ring, thus 𝑆/𝜌Δ is a regular ring 

(by Theorem 3.2.) and this implies that there 

exists an element 𝑦𝐿 + 𝜌Δ ∈ 𝑆/𝜌Δ such that 

𝑥𝐿 + 𝜌Δ = 𝑥𝐿𝑦𝐿𝑥𝐿 + 𝜌Δ = (𝑥𝑦𝑥)𝐿 + 𝜌Δ. Since 

𝛼 is an 𝑅-isomorphism, thus 𝛼−1 exists and 

𝛼−1(𝑥𝐿 + 𝜌Δ) = 𝛼−1((𝑥𝑦𝑥)𝐿 + 𝜌Δ). Hence 

𝑥 + 𝜌Z(𝑅) =  𝑥𝑦𝑥 + 𝜌Z(𝑅) = (𝑥 + 𝜌Z(𝑅)) ∙

(𝑦 + 𝜌Z(𝑅)) ∙ (𝑥 + 𝜌Z(𝑅)). Since        

𝛼−1(𝑦𝐿 + 𝜌Δ) = 𝑦 + 𝜌Z(𝑅) ∈ 𝑅/𝜌Z(𝑅), thus 

we get an element 𝑦 + 𝜌Z(𝑅) in 𝑅/𝜌Z(𝑅) such 

that 𝑥 + 𝜌Z(𝑅) = (𝑥 + 𝜌Z(𝑅)) ∙ (𝑦 + 𝜌Z(𝑅)) ∙

(𝑥 + 𝜌Z(𝑅)). Therefore, 𝑅/𝜌Z(𝑅) is a regular 

ring.     
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 الموديولات الأغمارية نسبة الى جذر ابتدائي*
 

 من قبل
 

 ضحى طعيمة عبد الكاظم
قسم الرياضيات/ كلية علوم الحاسوب والرياضيات/ جامعة 

 لعراق.القادسية/ مدينة الديوانية/ ا
dhuha.taima@yahoo.comEmail:  

 

 عقيل رمضان مهدي
قسم الرياضيات/ كلية التربية/ جامعة القادسية/                         

 مدينة الديوانية/ العراق.
oo.comakeel_math@yahEmail: 

 
 

 الخلاصة
)الموديولات الاغمارية مفهوم الموديولات الاغمارية نسبة الى جذر ابتدائي  (  طرحت في هذا العمل كتعميم للموديولات −

يوحد عدة تعريفات عن تعميمات الموديولات الاغمارية مثل  الاغمارية. تعريف الموديولات الاغمارية نسبة الى جذر ابتدائي 
لاغمارية تقريبا والموديولات الاغمارية الخاصة. العديد من التشخيصات وخواص الموديولات الاغمارية نسبة الى جذر الموديولات ا

. نتائج هذا العمل للموديولات الاغمارية نسبة الى جذر ابتدائي  الذاتية قد اعطيت. درسنا حلقات التماثلات الموديولية ابتدائي 
 الموجودة في المصادر. توحد وتوسع العديد من النتائج

 

 
  حلقات التماثلات الموديولية الذاتية. جذر الابتدائي،الموديولات الاغمارية تقريبا، ال الموديولات الاغمارية،الكلمات المفتاحية: 
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