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Abstract 

       The concept of 𝜌-injective modules (where 𝜌 is a preradical) is introduced in this work as a 

generalization of injective modules. The definition of 𝜌-injectivity unifies several definitions on  

generalizations of injectivity such as nearly injective modules and special injective modules. Many 

characterizations and properties of 𝜌-injectivity are given. We study the endomorphisms rings of        

𝜌-injective modules. The results of this work unify and extend many results in the literature. 
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1. Introduction: 

Throughout this work, 𝑅 stands a commutative 

ring with identity element 1 and a module 

means a unitary left 𝑅-modules. The class of all 

𝑅-module will be denoted by 𝑅-Mod and the 

symbol 𝜌  means a preradical on 𝑅-Mod (A 

preradical 𝜌 is defined to be a subfunctor of the 

identity functor of 𝑅-Mod). For an 𝑅-module 

𝑀, the notations J(𝑀), L(𝑀), E(𝑀) and 

𝑆 =  End𝑅(𝑀) will respectively stand for the 

Jacobson radical of 𝑀, the prime radical of 𝑀, 

the injective envelope of 𝑀 and the 

endomorphism ring of 𝑀. The notation 

Hom𝑅(𝑁, 𝑀) denoted to the set of all                 

𝑅-homomorphism from 𝑅-module 𝑁 into             

𝑅-module 𝑀. An 𝑅-module 𝑀 is called 

injective, if for every 𝑅-monomorphism 

𝑓: 𝐴 → 𝐵  (where 𝐴 and 𝐵 are 𝑅-modules) and 

every 𝑅-monomorphism 𝑔: 𝐴 → 𝑀, there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

𝑔 = ℎ ∘ 𝑓 [1].  

       Injective modules have been studied 

extensively, and several generalizations for 

these modules are given, for example, quasi-

injective modules [2], P-injective Modules [3],  

and 𝑆-injective module [4]. 

       

 

In 2000, nearly-injective modules were 

discussed in [5] as generalization of injective 

modules. An 𝑅-module 𝑀 is said to be nearly 

injective if for each 𝑅-monomorphism            

𝑓: 𝐴 → 𝐵 (where 𝐴 and 𝐵 are two 𝑅-modules), 

each 𝑅-homomorphism 𝑔: 𝐴 → 𝑀 , there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

(ℎ 𝑜 𝑓)(𝑎) − 𝑔(𝑎)  ∈  J(𝑀) ,for all 𝑎 ∈  𝐴 [5]. 

     Also, in [6] M. S. Abbas and Sh. N. Abd-

Alridha introduced the concept of special 

injective modules as a generalization of 

injectivity. An 𝑅-module 𝑀 is said to be special 

injective if for each 𝑅-monomorphism           

𝑓: 𝐴 → 𝐵 (where 𝐴 and 𝐵 are two 𝑅-modules), 

each 𝑅-homomorphism 𝑔: 𝐴 → 𝑀,  there exists 

an 𝑅-homomorphism ℎ: 𝐵 → 𝑀 such that 

(ℎ 𝑜 𝑓)(𝑎) − 𝑔(𝑎)  ∈  L(𝑀) ,for all 𝑎 ∈  𝐴 [6]. 

 A ring 𝑅 is called Von Neumann 

regular (in short, regular) if for each 𝑎 ∈  𝑅 , 

there exsits 𝑏 ∈  𝑅 such that 𝑎 = 𝑎𝑏𝑎. For a 

submodule 𝑁 of an 𝑅-module 𝑀 and 𝑎 ∈  𝑀 , 

[𝑁:𝑅 𝑎]  = {𝑟 ∈  𝑅  ׀ 𝑟𝑎 ∈  𝑁}. For an            

𝑅-module 𝑀 and 𝑎 ∈  𝑀. A submodule 𝑁 of 

an 𝑅-module 𝑀 is called essential and denoted 

by 𝑁 ≤𝑒 𝑀 if every non zero submodule of 𝑀 

has nonzero intersection with 𝑁. 
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2. Injective Modules Relative to a 

Preradical 

        In this section, we will introduce a new 

generalization of injective module namely, 

injective module relative to a preradical.           

We will study some properties and 

characterizations of these modules.  

We start by the following definition:- 

Definition 2.1.  Let 𝜌 be a preradical on              

𝑅-Mod and let 𝑀, 𝑁 and 𝐾 be 𝑅-modules. A 

module 𝑀 is said to be 𝑁-injective relative to 

the preradical 𝜌 (shortly, 𝜌-𝑁-injective) if for 

each 𝑅-monomorphism 𝑓: 𝐾 → 𝑁  and each          

𝑅-homomorphism  𝑔: 𝐾 → 𝑀 there is an              

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that  

(ℎ𝑜𝑓)(𝑥)– 𝑔(𝑥) ∈ 𝜌(𝑀), for each 𝑥 in 𝐾. 

   

 

An 𝑅-module 𝑀 is said to be injective relative 

to the preradical 𝜌 (shortly, 𝜌-injective) if  𝑀 is  

𝜌-𝑁-injective for all 𝑅-modules 𝑁. A ring 𝑅 is 

said to be 𝜌-injective ring, if 𝑅 is a 𝜌-injective 

𝑅-module. 

Examples and Remarks 2.2.                            

(1) It is clear that injective modules and          

𝑁-injective modules are 𝜌-𝑁-injective for every 

𝑅-module 𝑁.                                                             

(2) There are many types of preradical functors, 

for examples: the Jacobson radical functor (J), 

the socle functor (soc), the prime radical functor 

(L) and the torsion functor (T) [7]. Each one of 

these functors gives a special case of 𝜌-injective 

modules, for example a left 𝑅-module 𝑀 is said 

to be (soc)-injective if 𝑀 is 𝜌-injective, where    

𝜌 = soc.  

(3) The concept of nearly-injective module             

(which is introduced in [5]) is a special case of  

𝜌-injective 𝑅-modules by taking 𝜌 = J, where J 

is the Jacobson radical functor. 

(4) Special injective modules (which are 

introduced in [6]) are special case of                    

𝜌-injectivity by taking  𝜌 = L, where L is the 

prime radical functor. 

(5) Let 𝑀 be a module such that 𝜌(𝑀) = 0, thus 

𝑀 is injective if and only if 𝑀 is 𝜌-injective. 

(6) It is clear that if 𝜌(𝑀) = 𝑀, then 𝑀 is a          

𝜌-injective module, in particular: 

(a) Every module 𝑀 which has no maximal 

submodule (i.e, J(𝑀) = 𝑀) is J-injective. 

(b) Every semisimple module 𝑀 (i.e., 

soc(𝑀) = 𝑀) is (soc)-injective. Thus                   

𝜌-injective modules may not be injective, for 

example: let 𝑀 = ℤ𝑝 as ℤ-module, where 𝑝 is a 

prime number. Since 𝑀 is semisimple, thus 

soc(𝑀) = 𝑀 and hence 𝑀 is (soc)-injective but 

𝑀 is not injective. 

(7) Let 𝑀1 be an 𝑅-module. If 𝑀1is a 𝜌-𝑁-

injective 𝑅-module and 𝑀1 is isomorphic to 𝑀2, 

then 𝑀2 is a  𝜌-𝑁-injective.     

(8) Form (7) above we have that 𝜌-injectivity is 

an algebraic property.  

(9) Every submodule of semisimple 𝑅-module 

is 𝜌-injective, where ρ is the socle functor. 

 

Lemma 2.3.  Let 𝑁 and 𝑀 be 𝑅-modules. Then 

the following statements are equivalent: 

(1) 𝑀 is 𝜌-𝑁-injective; 

(2) for any diagram,  

 

 

 

                    

 

where 𝐴 is a submodule of an 𝑅-module 𝑁,  

𝑔: 𝐴 → 𝑀 is any 𝑅-homomorphism and 𝑖 is the 

inclusion mapping, there exists an                    

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑎) − 𝑔(𝑎) ∈  𝜌(𝑀),  for all 𝑎 in 𝐴. 

Proof:  The proof is obvious.  

 

     In the following proposition we show that 

the set of all essential submodules of 𝑁 is a test 

set for 𝜌-𝑁-injectivity. 

 

𝑀 

0 
𝑖 

𝑁 

𝑔 ℎ 

𝐴 

𝑀 

0 
𝑖 

𝑁 

𝑔 ℎ 

𝐾 



3 

Proposition 2.4.  Let 𝑁 be an 𝑅-module. Then 

an 𝑅-module 𝑀 is 𝜌-𝑁-injective if  and only if  

for each essential submodule 𝐴 of 𝑁 and each            

𝑅-homomorphism 𝑓: 𝐴 → 𝑀, there is an                 

𝑅-homomorphism 𝑔: 𝑁 → 𝑀 such that                      

(𝑔 ∘ 𝑖)(𝑎) − 𝑓(𝑎) ∈  𝜌(𝑀) for each 𝑎 in 𝐴.  

Proof: (⟹) This  is obvious.  

(⟸) Let 𝐴 be any essential submodule of 𝑁 

and 𝑓: 𝐴 → 𝑀 be any 𝑅-homomorphism. 

Consider the diagram (1). 

 

 

                  

                                    (diagram (1)) 

 

                                                                                                                                                            

Let 𝐴𝑐 be any complement submodule of 𝐴 in 

𝑁. By [8, p.16], we have that 𝐴 ⊕ 𝐴𝑐 ≤𝑒 𝑁. 

Define 𝑔: 𝐴 ⊕ 𝐴𝑐 → 𝑀 by 𝑔(𝑎 + 𝑎1) = 𝑓(𝑎), 

for all 𝑎 ∈ 𝐴 and 𝑎1 ∈ 𝐴𝑐. It is easy to prove 

that 𝑔 is a well-defined 𝑅-homomorphism. 

Therefore, we have the diagram (2). 

 

 

        

                       

By hypothesis, there exists an                            

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑥) − 𝑔(𝑥)𝜖 𝜌(𝑀) for all 𝑥 in 𝐴 ⊕ 𝐴𝑐.   

For the diagram (1), we get that                      

(ℎ ∘ 𝑖)(𝑎) − 𝑓(𝑎) = (ℎ ∘ 𝑖)(𝑎) − 𝑔(𝑎) ∈ 𝜌(𝑀) 

for all 𝑎 in 𝐴. Therefore, 𝑀 is a 𝜌-𝑁-injective              

𝑅-module, by Lemma 2.3.   

 

      Now, we will study the direct product and 

the direct sum of 𝜌-𝑁-injective modules.   

 

Proposition 2.5.  Let {𝑀𝜆}𝜆∈𝛬   be a family of 

𝑅-modules. Then : 

(1) if  ∏ 𝑀𝜆𝜆∈𝛬   is a 𝜌-𝑁-injective (where 𝑁 is 

an 𝑅-module), then each 𝑀𝜆 is 𝜌-𝑁-injective.  

(2) if  𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝜌(𝑀𝜆))𝜆∈𝛬 , then the 

converse of (1) is true.  

Proof:  (1) Put 𝑀 =  ∏ 𝑀𝜆𝜆∈𝛬  and let   

𝑖𝜆: 𝑀𝜆 → 𝑀 and 𝑝𝜆: 𝑀 → 𝑀𝜆 be the injections 

and projections associated with this direct 

product respectively. Suppose that 𝑀 is 𝜌-𝑁-

injective. To prove that 𝑀𝜆 is 𝜌-𝑁-injective for 

each 𝜆 ∈ 𝛬. Consider the following diagram 

where 𝐴 is a submodule of 𝑁  and 𝛼𝜆 is  

an 𝑅-homomorphism. 

 

                                                          

  

 

 

 

 

 

 

Since 𝑀 is a 𝜌-𝑁-injective module, thus there 

exists an 𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that 

(ℎ ∘ 𝑖)(𝑎) − ( 𝑖𝜆 ∘  𝛼𝜆)(𝑎) ∈  𝜌(𝑀) for all 𝑎 in 

𝐴. Put
 

 𝑔𝜆
= 𝑝𝜆 ∘ ℎ ∶ 𝑁 → 𝑀𝜆. For every 𝑎 in 𝐴, 

we have that  (𝑔𝜆 ∘ 𝑖)(𝑎) − 𝛼𝜆(𝑥) = 𝑔𝜆(𝑎) −

𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) − 𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) −

((𝑝𝜆 ∘ 𝑖𝜆) ∘ 𝛼𝜆)(𝑎) = 

𝑝𝜆(ℎ(𝑎) − (𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) ∈ 𝜌(𝑀𝜆).       

Thus (𝑔𝜆 ∘ 𝑖)(𝑎) − 𝛼𝜆(𝑎) ∈ 𝜌(𝑀𝜆), for each 

𝜆 ∈ 𝛬 and for every 𝑎 ∈ 𝐴 and hence 𝑀𝜆 is  

𝜌-𝑁-injective, for each  𝜆 ∈ 𝛬.  

(2) Suppose that 𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) =

∏ (𝜌(𝑀𝜆))𝜆∈𝛬  and consider the following 

diagram. 

 

                                                    

 

 

 

 

 

For each  𝜆 ∈ 𝛬, let 𝑝𝜆: 𝑀 → 𝑀𝜆 be the 

projection 𝑅-homomorphism. Since each 𝑀𝜆  is 

𝜌-𝑁-injective, thus there exists an                      

𝑅-homomorphism 𝑔𝜆: 𝑁 → 𝑀𝜆, for each 𝜆 ∈ 𝛬 

such that (𝑔𝜆 ∘ 𝑖)(𝑎) − (𝑝𝜆 ∘ 𝛼)(𝑎) ∈ 𝜌(𝑀𝜆), 

for every 𝑎 in 𝐴. Define 𝑔: 𝑁 → 𝑀 by 𝑔(𝑥) =

{𝑔𝜆(𝑥)}𝜆∈𝛬, for every 𝑥 ∈ 𝑁. It is clear that 𝑔 is 

an 𝑅-homomorphism. For every 𝑎 in 𝐴, we 

have that 

(𝑔 ∘ 𝑖)(𝑎) − 𝛼(𝑎) = {𝑔𝜆(𝑖(𝑎))}
𝜆∈𝛬

−
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{(𝑝𝜆 ∘ 𝛼)(𝑎)}𝜆∈𝛬 = {(𝑔𝜆 ∘ 𝑖)(𝑎) −

(𝑝𝜆 ∘ 𝛼)(𝑎)}𝜆∈𝛬 ∈ ∏ (𝜌(𝑀𝜆))𝜆∈𝛬 . Since 

∏ (𝜌(𝑀𝜆))𝜆∈𝛬 = 𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) (by hypothesis) it 

follows that (𝑔 ∘ 𝑖)(𝑎) − 𝛼(𝑎) ∈ 𝜌(𝑀), for 

every 𝑎 in 𝐴. Therefore, 𝑀 is a 𝜌-𝑁-injective 

module.   

 

Corollary 2.6.  Let 𝑅 be a ring such that 

𝑅/J(𝑅) is a semisimple 𝑅-module, let {𝑀𝜆}𝜆∈𝛬 

be a family of 𝑅-modules and let 𝑁 be any 

𝑅-module. Then ∏ 𝑀𝜆𝜆∈𝛬  is (soc)-𝑁-injective if 

and only if 𝑀𝜆 is (soc)-𝑁-injective, for each 

𝜆 ∈ 𝛬. 

Proof: Since 𝑅/J(𝑅) is a semisimple               

𝑅-module,  soc(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ soc(𝑀𝜆𝜆∈𝛬 )    

[7, Exercise (11), p.239]. Therefore, the result 

follows from Proposition 2.5.  

 

Corollary 2.7. Let 𝑅 be a ring and let 𝐼 be a 

finitely generated ideal of 𝑅. Let {𝑀𝜆}𝜆∈𝛬 be a 

family of 𝑅-modules and let 𝑁 be 

𝑅-module. Then ∏ 𝑀𝜆𝜆∈𝛬  is 𝜌𝐼-𝑁-injective if 

and only if 𝑀𝜆 is 𝜌𝐼-𝑁-injective. 

Proof:  Since 𝐼 is a finitely generated ideal of 𝑅 

it follows from [9, Exercise 3(1), p.174] that 

𝐼(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝐼𝑀𝜆)𝜆∈𝛬  and hence 

𝜌𝐼(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏ (𝜌𝐼(𝑀𝜆𝜆∈𝛬 )). Therefore, the 

result follows from Proposition 2.5.  

  

     For any family  {𝑀𝜆}𝜆∈𝛬 of 𝑅-modules, if  

⊕𝜆∈𝛬 𝑀𝜆 is an 𝑁-injective 𝑅-module, then each 

𝑀𝜆 is an 𝑁-injective and the converse is true, if 

𝛬 is finite by [3, Proposition(1.11), p. 6]. 

 

    The following proposition shows that this 

result is true in case of 𝜌-𝑁-injectivity. 

 

Proposition 2.8.  Let  {𝑀𝜆}𝜆∈𝛬 be a family of 

𝑅-modules, let 𝑀 = ⊕𝜆∈𝛬 𝑀𝜆 and let 𝑁 be any 

𝑅-module. 

(1) If 𝑀 is 𝜌-𝑁-injective, then each 𝑀𝜆 is 𝜌-𝑁-

injective.  

(2) If 𝛬 is a finite set, then the converse of (1) is 

true.  

Proof: Suppose that 𝑀 is a 𝜌-𝑁-injective 

module. To prove that each 𝑀𝜆 is 𝜌-𝑁-injective. 

(1) Let 𝑖𝜆: 𝑀𝜆 → 𝑀 and  𝑝𝜆: 𝑀 → 𝑀𝜆 be the 

injections and projections associated with this 

direct product respectively. Consider the 

following diagram, where 𝐴 is a submodule of 

𝑁 and 𝛼𝜆 is an 𝑅-homomorphism. 

                                                                                            

                                                                                                         

        

                                                            

    

 

 

 

 

Since 𝑀 is 𝜌-𝑁-injective, there exists an                          

𝑅-homomorphism ℎ: 𝑁 → 𝑀 such that             

(ℎ ∘ 𝑖)(𝑎) − ( 𝑖𝜆 ∘  𝛼𝜆)(𝑎) ∈  𝜌(𝑀), for all 𝑎 in 

𝐴. For each 𝜆 ∈ 𝛬, put  𝑔𝜆 = 𝑝𝜆 ∘ ℎ: 𝑁 → 𝑀𝜆. 

For every 𝑎 in 𝐴, we  have that (𝑔𝜆 ∘ 𝑖)(𝑎) −

𝛼𝜆(𝑎) = 𝑔𝜆(𝑎) − 𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) −

𝛼𝜆(𝑎) = (𝑝𝜆 ∘ ℎ)(𝑎) − ((𝑝𝜆 ∘ 𝑖𝜆) ∘ 𝛼𝜆)(𝑎) =

(𝑝𝜆 ∘ ℎ)(𝑎) − (𝑝𝜆(𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) =

𝑝𝜆(ℎ(𝑎) − (𝑖𝜆 ∘ 𝛼𝜆)(𝑎)) ∈ 𝜌(𝑀𝜆) (because 𝜌 is 

a preradical). Thus 𝑔𝜆(𝑎) − 𝛼𝜆(𝑎) ∈ 𝜌(𝑀𝜆), 

for each 𝜆 ∈ 𝛬 and for every 𝑎 ∈ 𝐴. 

Therefore, 𝑀𝜆 is 𝜌-𝑁-injective, for each 𝜆 ∈ 𝛬. 

 

(2) Suppose that 𝛬 is a finite set. Let {𝑀𝜆}𝜆∈𝛬 

be a family of  𝜌-𝑁-injective modules. Since 𝛬 

is finite it follows from [7, p.82] that 

⊕𝜆∈𝛬 𝑀𝜆 = ∏ 𝑀𝜆𝜆∈𝛬 . Since        

𝜌(⊕𝜆∈𝛬 𝑀𝜆) =⊕ 𝜆∈𝛬 𝜌(𝑀𝜆) (by [10, 

Proposition 2, p.76]) it follows that 

𝜌(∏ 𝑀𝜆𝜆∈𝛬 ) = ∏𝜆∈𝛬𝜌(𝑀𝜆). By Proposition 2.5 

(2), ∏ 𝑀𝜆𝜆∈𝛬  is 𝜌-𝑁-injective and hence 

⊕𝜆∈𝛬 𝑀𝜆 is 𝜌-𝑁-injective.   

 

    The following corollary is immediate from 

Proposition 2.8(1). 

 

Corollary 2.9. Let 𝑀 be  a 𝜌-𝑁-injective          

𝑅-module and let 𝐾 be a direct summand of  𝑀. 

Then 𝐾 is a 𝜌-𝑁-injective 𝑅-module.  

 

Corollary 2.10. Let {𝑀𝜆}𝜆∈𝛬 be a family of      

𝑅-modules and let 𝑀 =⊕𝜆∈𝛬 𝑀𝜆 .Then 

ℎ

   
𝑖𝜆 

𝑔𝜆 

𝑁 𝐴   0

𝛼𝜆 

𝑖 

𝑀𝜆 

𝑀 

𝑝𝜆  
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(i) (1) If 𝜌 is a preradical and  𝑀/𝜌(𝑀) is 𝜌-𝑁-

injective, then each 𝑀𝜆/𝜌(𝑀𝜆) is ρ-𝑁-injective.  

     (2) If 𝜌 is  a radical and 𝑀/𝜌(𝑀) is 𝜌-𝑁-

injective, then each 𝑀𝜆 𝜌(𝑀𝜆)⁄  is 𝑁-injective. 

(ii) (1) If 𝜌 is  a preradical, then 𝑀𝜆/𝜌(𝑀𝜆) is    

𝜌-𝑁-injective and 𝛬 is a finite set, then            

 𝑀/𝜌(𝑀) is 𝜌-𝑁-injective.  

    (2) If 𝜌 is a radical, each 𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-

injective and 𝛬 is a finite set, then 𝑀/𝜌(𝑀) is 

𝑁-injective. 

Proof: (i)(1) Suppose that 𝜌 is a preradical 

and 𝑀/𝜌(𝑀) is a 𝜌-𝑁-injective 𝑅-module. 

Since 𝑀/𝜌(𝑀) =⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆))   and 

𝑀/𝜌(𝑀) is 𝜌-𝑁-injective (by hypothesis) 

it follows that  ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) is 𝜌-𝑁-

injective. By Proposition 2.8(1) , 𝑀𝜆/𝜌(𝑀𝜆) is 

𝜌-𝑁-injective, for all 𝜆 ∈ 𝛬.  

 

(i)(2) Suppose that 𝜌 is a radical and 𝑀/𝜌(𝑀) 

is a 𝜌-𝑁-injective module. By (i)(1),               

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective, for all 𝜆 ∈ 𝛬. 

Since 𝜌 is a radical,  𝜌(𝑀𝜆/𝜌(𝑀𝜆)) = 0 and 

hence 𝑀𝜆/𝜌(𝑀𝜆) is 𝑁-injective, for all 𝜆 ∈ 𝛬. 

 

(ii)(1) Suppose that 𝜌 is a preradical, each 

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective and 𝛬 is a finite set. 

By Proposition 2.8(2), ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) is 

𝜌-𝑁-injective. Since ⊕𝜆∈𝛬 (𝑀𝜆/𝜌(𝑀𝜆)) =

 ⊕𝜆∈𝛬 𝑀𝜆/⊕𝜆∈𝛬 𝜌(𝑀𝜆) = 𝑀/𝜌(⊕𝜆∈𝛬 𝑀𝜆) 

= 𝑀/𝜌(𝑀) it follows that 𝑀/𝜌(𝑀)  is 𝜌-𝑁-

injective. 

 

(ii(2)) Suppose that 𝜌 is a radical, each            

𝑀𝜆/𝜌(𝑀𝜆) is 𝜌-𝑁-injective and 𝛬 is a finite set. 

By (ii(1)), 𝑀/𝜌(𝑀) is 𝜌-𝑁-injective. Since 𝜌 is 

a radical,  𝜌(𝑀𝜆/𝜌(𝑀𝜆)) = 0 and hence 

 𝑀𝜆/𝜌(𝑀𝜆) is 𝑁-injective.  

 

Examples 2.11.  

(1) The converse of Proposition 2.8(1) is not 

true in general. For example, let 𝛬 be an infinite 

countable index set and let 𝑇𝜆 = 𝑄 for all 𝜆 ∈ 𝛬 

(where 𝑄 is the field of rational numbers). 

Let 𝑅 = ∏ 𝑇𝜆𝜆∈𝛬  be the ring product of the 

family {𝑇𝜆|𝜆 ∈ 𝛬}. It is easy to prove that R is a 

regular ring. For  𝑘 ∈ 𝛬, let 𝑒𝑘  be the element of 

𝑅 whose kth-component is 1 and whose 

remaining components are 0.  

Let 𝐴 =⊕𝜆∈𝛬 𝑅𝑒𝜆, it is clear that 𝐴 is a 

submodule of an 𝑅-module 𝑅. By [7, p.140], 𝐴 

is a direct sum of injective 𝑅-modules, but 𝐴 is 

not injective 𝑅-module. Since every injective 

𝑅-module is 𝜌-injective, thus 𝐴 is a direct sum 

of 𝜌-injective 𝑅-modules. Let 𝜌 be any  

J-preradical. Assume that 𝐴 is 𝜌-injective. Since 

𝑅 is a regular  ring, thus J(𝐴) = 0 ( by [7, 

p.272] ). Since 𝜌 is a J-preradical, thus 𝜌(𝐴) =

0 and hence 𝐴 is injective and this is a 

contradiction. Thus 𝐴 is not 𝜌-injective. 

Therefore, 𝐴 is a direct sum of 𝜌-injective 

modules, but it is not 𝜌-injective.  

(2) Let 𝑀 = 𝑄⨁ℤ. Thus 𝑀 is not 𝜌-injective  

ℤ-module, where 𝜌 is a J-preradical. In fact, if 

𝑀 is 𝜌-injective, then by Proposition 2.8(1) we 

have ℤ is 𝜌-injective ℤ-module and hence ℤ 

is an injective ℤ-module (because ρ(ℤ) =

 J(ℤ) = 0) and this is a contradiction. Thus 𝑀 is 

not 𝜌-injective ℤ-module.    

    

      In following, we will introduce further 

characterizations of  𝜌-injective modules. 

    

    Recall that a submodule 𝑁 of an 𝑅-module 𝑀 

is said to be a direct summand of 𝑀 if there 

exists a submodule 𝐾 of 𝑀 such that  

𝑀 = 𝑁 ⊕ 𝐾, (i.e., 𝑀 = 𝑁 + 𝐾 and 𝑁 ∩ 𝐾 = 0) 

[7]. This is equivalent to saying that, for every 

commutative diagram with exact rows,  

 

                                                

  

                                                    

 

(where 𝐴 and 𝐵 are  two 𝑅-modules), there 

exists an 𝑅-homomorphism ℎ: 𝐵 → 𝑁 such that 

𝑓 = ℎ ∘ 𝛼 [11]. It is well-known that an            

𝑅-module 𝑀 is injective if and only if 𝑀 is a 

direct summand of every extension of it self [1, 

Theorem (2.1.5)]. 

    

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

ℎ  
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      For analogous result for 𝜌-injective             

𝑅-modules, we introduce the following concept 

as a generalization of direct summands. 

 

Definition 2.12. A submodule 𝑁 of an               

𝑅-module 𝑀 is said to be 𝜌-direct summand of  

𝑀 if for every commutative diagram with exact 

rows,  

                                                  

 

 

                                                  

 

(where 𝐴 and 𝐵 are two 𝑅-modules), there 

exists an 𝑅-homomorphism ℎ: 𝐵 → 𝑁 such that 

(ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎)𝜖 𝜌(𝑁), for all 𝑎 in 𝐴.  

 

Proposition 2.13.  Let 𝑁 be a submodule of an 

𝑅-module 𝑀. Then the following statements are 

equivalent:- 

(1) 𝑁 is  𝜌-direct summand of 𝑀; 

(2) for each diagram with exact row, 

                                                   

                                                             

                                                                                                                                                                                                

 

 

where 𝐼𝑁 is the identity homomorphism of 𝑁, 

there exists an 𝑅-homomorphism ℎ: 𝑀 → 𝑁 

such that (ℎ ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑁),for all 𝑎 ∈ 𝑁. 

Proof: (𝟏) ⇒ (𝟐) Suppose that 𝑁 is a 𝜌-direct 

summand of 𝑀 and consider the following 

diagram with exact row.  

                                                     

                                                               

                                                                                           

                                                                  

 

Thus we have the following commutative 

diagram with exact rows. 

                                              

  

 

  

 

By hypothesis, there exists a homomorphism 

ℎ: 𝑀 → 𝑁 such that (ℎ ∘ 𝛼)(𝑎) − 𝐼𝑁(𝑎)𝜖 𝜌(𝑁), 

for all 𝑎 in 𝐴 and hence  (ℎ ∘ 𝛼)(𝑎) − 𝑎 ∈

𝜌(𝑁), for all 𝑎 in 𝑁. 

 (𝟐) ⇒ (𝟏)  Consider the following 

commutative diagram with exact rows. 

                                                        

                                                    

                                                                                                                                                                                       

 

 

Thus we have the following diagram. 

                                         

           

 

                                                   

                                       

 

 

By hypothesis, there exists a homomorphism 

ℎ: 𝑀 → 𝑁 such that (ℎ ∘ 𝛽)(𝑎) − 𝑎 ∈  𝜌(𝑁), 

for all 𝑎 ∈ 𝑁. Put ℎ1 = ℎ ∘ 𝑔: 𝐵 ⟶ 𝑁. It is 

clear that ℎ1 is a homomorphism. Let 𝑎 ∈ 𝐴, 

thus (ℎ1 ∘ 𝛼)(𝑎) − 𝑓(𝑎) = ((ℎ ∘ 𝑔) ∘ 𝛼)(𝑎) −

𝑓(𝑎) = (ℎ ∘ (𝑔 ∘ 𝛼))(𝑎) − 𝑓(𝑎) =

(ℎ ∘ (𝛽 ∘ 𝑓))(𝑎) − 𝑓(𝑎) = (ℎ ∘ 𝛽)(𝑓(𝑎)) −

𝑓(𝑎) ∈ 𝜌(𝑁). Hence (ℎ1 ∘ 𝛼)(𝑎) − 𝑓(𝑎) ∈

𝜌(𝑁), for all 𝑎 in 𝐴 and this implies that 𝑁 is a 

𝜌-direct summand of  𝑀.   

                                                                                               

     In the following theorem we will give a 

characterization of 𝜌-injective modules, by 

using  𝜌-direct summands. 

 

Theorem 2.14.  For an 𝑅-module 𝑀, the 

following statements are equivalent: 

(1) 𝑀 is 𝜌-injective.  

(2) 𝑀 is a 𝜌-direct summand of every extension 

of itself.  

(3) 𝑀 is a 𝜌-direct summand of every injective 

extension of itself. 

(4) 𝑀 is a  𝜌-direct summand of at least, one 

injective extension of itself.  

(5) 𝑀 is a  ρ-direct summand of E(𝑀), where 

E(𝑀) is the injective hull of 𝑀. 

Proof:-  (𝟏) ⟹ (𝟐)  Suppose that 𝑀 is a         

𝜌-injective 𝑅-module and let 𝑀1 be any 

extension 𝑅-module of 𝑀.  We will prove that 

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

ℎ  

𝑁 

0 N

                 

𝛼 
𝑀 

𝐼𝑁 ℎ 

𝑁 

0 N

                 

𝛼 
𝑀 

𝐼𝑁 

𝑀 

𝐼𝑀 

0

𝑀 𝑁 0

𝐼𝑁  

𝛼

= 𝐽 

𝑁 
𝛼

= 𝐽 

ℎ  

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑁 
𝛽

= 𝐽 

𝑀 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝐼𝑁  

𝛼

= 𝐽 

𝑁 

𝑁 

𝛽

= 𝐽 

ℎ1  

ℎ 
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𝑀 is 𝜌-direct summand of 𝑀1. Consider the 

following diagram with exact row.  

 

 

 

 

 

Since 𝑀 is 𝜌-injective, there exists an             

𝑅-homomorphism 𝑓:  𝑀1 → 𝑀 such that 

(𝑓 ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑀), for all 𝑎 ∈ 𝑀. Thus  

Proposition 2.13. implies that 𝑀 is a 𝜌-direct 

summand of 𝑀1. 

(𝟐) ⇒ (𝟑)   and  (𝟑) ⇒ (𝟒)   are clear. 

(𝟒) ⇒ (𝟏)  Suppose that 𝑀 is a 𝜌-direct 

summand of at least, one injective extension    

𝑅-module of 𝑀, say 𝐸. To prove that 𝑀 is a   

 𝜌-injective module. Consider the diagram (1) 

with exact row, where 𝐴 and 𝐵 are 𝑅-modules 

and 𝑓: 𝐴 → 𝑀 is an 𝑅-homomorphism. 

                                                                                                                                   

                                                                                           

                                                   (diagram (1))           

 

 

Since 𝐸 is an extension of 𝑀, there is an             

𝑅-monomorphism, say 𝛽: 𝑀 ⟶ 𝐸. Thus we 

have the diagram (2). 

 

 

 

                                                (diagram (2))           

 

 

 

Since 𝐸 is an injective 𝑅-module, there exists 

an 𝑅-homomorphism 𝑔: 𝐵 → 𝐸 such that               

(𝑔 ∘ 𝛼)(𝑎) = ( 𝛽 ∘ 𝑓)(𝑎) for all 𝑎 in 𝐴. Thus 

we have the commutative diagram (3) with 

exact rows.  

 

 

                                                    (diagram (3)) 

 

 

Since 𝑀 is a 𝜌-direct summand of 𝐸 (by 

hypothesis), thus there exists a homomorphism 

ℎ: 𝐵 → 𝑀 such that (ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎) 

∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. Thus, for the diagram 

(1), we get a homomorphism ℎ: 𝐵 → 𝑀 such 

that (ℎ ∘ 𝛼)(𝑎) − 𝑓(𝑎) ∈  𝜌(𝑀),  for all 𝑎 in 𝐴. 

Therefore, 𝑀 is 𝜌-injective.  

(𝟑) ⇒ (𝟓) This is clear. 

(𝟓) ⇒ (𝟏) Suppose that 𝑀 is a 𝜌-direct 

summand of E(𝑀). Since E(𝑀) is an injective 

extension of 𝑀, thus 𝑀 is a 𝜌-direct summand 

of at least, one injective extension of itself.  

                                                                                               

     In the following corollary we will give an 

inner characterization of 𝜌-injective modules, 

for the term inner see [7]. 

 

Corollary 2.15. An 𝑅-module 𝑀 is 𝜌-injective 

if and only if 𝑀 is a ρ-direct summand of an           

𝑅-module Homℤ(𝑅, 𝐵), with 𝐵 is a divisible 

Abelian group. 

Proof: (⇒) Suppose that 𝑀 is 𝜌-injective. By 

[7,  p.91], there is a ℤ-monomorphism        

𝑓: 𝑀 → 𝐵, where 𝐵 is a divisible Abelian 

group. Thus Lemma (5.5.2) in [7] implies that 

Homℤ(𝑅, 𝐵) is an injective 𝑅-module. 

Define 𝜃: 𝑀 → Homℤ(𝑅, 𝐵) by 𝜃(𝑚)(𝑟) =

𝑓(𝑟𝑚), for all 𝑚 ∈ 𝑀 and for all 𝑟 ∈ 𝑅. It is 

easy to see that 𝜃 is an 𝑅-monomorphism and 

hence Homℤ(𝑅, 𝐵) is an extension 𝑅-module of 

M. Since 𝑀 is a 𝜌-injective 𝑅-module, thus 

Theorem 2.14. implies that 𝑀 is a 𝜌-direct 

summand of an 𝑅-module Homℤ(𝑅, 𝐵). 

(⇐) Suppose that 𝑀 is a 𝜌-direct summand of 

an 𝑅-module Homℤ(𝑅, 𝐵) with 𝐵 is a divisible 

Abelian group. By [7, Lemma (5.5.2)], we have 

that Homℤ(𝑅, 𝐵) is an injective 𝑅-module. 

Thus 𝑀 is a 𝜌-direct summand of an injective 

extension 𝑅-module. Therefore, 𝑀 is a             

𝜌-injective 𝑅-module, by Theorem 2.14.   

 

    An R-monomorphism α: N → M (where N 

and M are R-modules) is called split, if there 

exists an R-homomorphism β: M → N such that  

β ∘ α = IN [7]. 

        

      An 𝑅-module 𝑀 is injective if and only if 

for every 𝑅-module 𝑁, each 𝑅-monomorphism 

𝛼: 𝑀 → 𝑁 is split [7]. 

𝑀 

0 M

                 

𝛼 
𝑀1 

𝐼𝑀 𝑓 

𝑀 

0 A                 
𝛼 

𝐵 

𝑓 

𝑔   

𝛽 

𝐵 𝐴   0

𝑓 

𝛼 

𝑀 

𝐸 

𝐸 

𝑔 

0

𝐵 𝐴 0

𝑓  

𝛼

= 𝐽 

𝑀 
𝛽

= 𝐽 

ℎ  
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     For analogous result for 𝜌-injective modules, 

we introduce the following concept. 

 

Definition 2.16. An 𝑅-monomorphism      

𝛼: 𝑁 → 𝑀 is said to be 𝜌-split, if there exists an 

𝑅-homomorphism 𝛽: 𝑀 → 𝑁 such that 

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈ 𝜌(𝑁), for all 𝑎 in 𝑁. 

 

          

 

 

 

          

           The following theorem gives and 

characterization of 𝜌-injectivity by using         

𝜌-split monomorphisms. 

 

Theorem 2.17.  The following statements are 

equivalent for an 𝑅-module 𝑀:  

(1) 𝑀 is 𝜌-injective; 

(2) for each 𝑅-module 𝑁, each                           

𝑅-monomorphism 𝛼: 𝑀 → 𝑁 is a 𝜌-split; 

(3) for each injective 𝑅-module 𝑁, each            

𝑅-monomorphism  𝛼: 𝑀 → 𝑁 is a 𝜌-split; 

(4) each 𝑅-monomorphism 𝛼: 𝑀 →E(𝑀) is       

𝜌-split. 

Proof: (𝟏) ⇒ (𝟐) Suppose that 𝑀 is a               

𝜌-injective 𝑅-module. Let 𝑁 be any 𝑅-module 

and let 𝛼: 𝑀 → 𝑁 be any 𝑅-monomorphism. 

Consider the following diagram. 

 

 

 

 

 

Since 𝑀 is 𝜌-injective, there exists an             

𝑅-homomorphism 𝛽: 𝑁 → 𝑀 such that         

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈  𝜌(𝑀), for all  𝑎 ∈  𝑀.    

Hence 𝛼 is a 𝜌-split.  

(𝟐) ⇒ (𝟑) and (𝟑) ⇒ (𝟒)  are obvious. 

(𝟒) ⇒ (𝟏) Suppose that each 𝑅-monomorphism 

𝛼: 𝑀 → 𝐸(𝑀) is a  𝜌-split. To prove that 𝑀 is a 

𝜌-injective. Consider the following diagram 

with exact row, where 𝐴 and 𝐵 are 𝑅-modules 

and 𝑔: 𝐴 → 𝑀 is any 𝑅-homomorphism.  

 

 

 

 

 

Since E(𝑀) is an extension of 𝑀, thus there is a 

monomorphism, say 𝛼: 𝑀 → E(𝑀) and hence 

we get the following diagram with exact row. 

  

                                                                                                                                                                                  

          

 

 

 

 

 

Since E(𝑀) is an injective module, there exists 

a homomorphism ℎ: 𝐵 → 𝐸(𝑀) such that 

(ℎ ∘ 𝑓)(𝑎) = (𝛼 ∘ 𝑔)(𝑎), for all 𝑎 ∈ 𝐴. By 

hypothesis, we have 𝛼: 𝑀 → E(𝑀)is a              

𝜌-split and hence there exists a 

homomorphism 𝛽: 𝐸(𝑀) → 𝑀 such that 

(𝛽 ∘ 𝛼)(𝑎) − 𝑎 ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝑀. 

Put ℎ1 = 𝛽 ∘ ℎ, it is clear that ℎ1 is an               

𝑅-homomorphism. For each 𝑎 in 𝐴, we have 

that (ℎ1 ∘ 𝑓)(𝑎) − 𝑔(𝑎) = ((𝛽 ∘ ℎ) ∘ 𝑓)(𝑎) −

𝑔(𝑎) = (𝛽(ℎ ∘ 𝑓))(𝑎) − 𝑔(𝑎) = 

  (𝛽(𝛼 ∘ 𝑔))(𝑎) − 𝑔(𝑎) = (𝛽 ∘ 𝛼)(𝑔(𝑎)) −

𝑔(𝑎) ∈  𝜌(𝑀). Thus (ℎ1 ∘ 𝑓)(𝑎) − 𝑔(𝑎) ∈

 𝜌(𝑀), for all 𝑎 ∈ 𝐴 and hence 𝑀 is a                

𝜌-injective module.         

     

        The following proposition gives a 

characterization of 𝜌-injective modules by 

using the class of injective modules. 

 

Proposition 2.18. The following statements are 

equivalent for an 𝑅-modules 𝑀: 

(1) 𝑀 is 𝜌-injective; 

(2) 𝑀 is 𝜌-𝐵-injective, for every injective 

module 𝐵; 

(3) for each diagram with 𝐵 is an injective        

𝑅-module and 𝐴 is an essential submodule in 𝐵, 

 

 

 

𝛽 

𝑁 𝑀   0

𝐼𝑀 

𝛼 

𝑀 

𝐵   𝐴   0

𝑔 

𝑓 

𝑀 

ℎ

   

𝛼 

ℎ1 

𝐵 𝐴   0

𝑔 

𝑓 

𝑀 

E(𝑀) 

𝛽 

𝛽 

𝑀 𝑁   0

𝐼𝑁 

𝛼 

𝑁 
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there exists a  homomorphism 𝑔: 𝐵 → 𝑀 such 

that (𝑔 ∘ 𝑖)(𝑎) − 𝑓(𝑎) ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. 

Proof: (𝟏) ⇒ (𝟐) and (𝟐) ⇒ (𝟑)  are obvious. 

(𝟑) ⇒ (𝟏)  Consider the following diagram 

with 𝐵 is any 𝑅-module and 𝐴 is any essential 

submodule in 𝐵.   

                                              

 

 

 

 

 

By [1], there exists an injective 𝑅-module say 

𝐸, such that 𝐵 is an essential submodule in 𝐸. 

Thus we have the following diagram, 

 

 

 

 

 

 

where  𝑖𝐴  and  𝑖𝐵  are inclusion                        

𝑅-homomorphisms. Since 𝐴 ≤𝑒 𝐵 (by 

hypothesis) and  𝐵 ≤𝑒 𝐸 it follows from [8] that 

𝐴 ≤𝑒 𝐸. By hypothesis, there exists an               

𝑅-homomorphism ℎ: 𝐸 → 𝑀 such that                

(ℎ ∘  𝑖𝐵 ∘ 𝑖𝐴)(𝑎) − 𝑓(𝑎) ∈ 𝜌(𝑀), for all 𝑎 ∈ 𝐴. 

Put  𝑔 = ℎ ∘  𝑖𝐵, thus (𝑔 ∘ 𝑖𝐴)(𝑎) − 𝑓(𝑎) ∈

𝜌(𝑀), for all 𝑎 ∈ 𝐴. By Proposition 2.4., 𝑀 is 

𝜌-𝐵-injective, for every 𝑅-module 𝐵 and hence 

𝑀 is a 𝜌-injective 𝑅-module.  

 

        In the following proposition, we will give 

another characterization of 𝜌-injectivity by 

using the class of free modules. 

 

Proposition 2.19.  An 𝑅-module 𝑀 is             

𝜌-injective if and only if 𝑀 is 𝜌-𝐹-injective, for 

every free 𝑅-module 𝐹. 

Proof: (⟹) This is obvious.  

(⟸) Suppose that 𝑀 is 𝜌-𝐹-injective, for every 

free 𝑅-module 𝐹. Consider the following 

diagram with exact row. 

 

 

 

 

 

Since 𝐵 is a set, thus there exists a free                

𝑅-module, say 𝐹,  such that 𝐵 is a basis of  𝐹 

[12, p.58]. By hypothesis, there exists an            

𝑅-homomorphism h1: F → M such that 

(ℎ1 ∘ (𝑖 ∘ 𝑓))(𝑎) − 𝑔(𝑎) ∈ 𝜌(𝑀), for all 

𝑎 ∈ 𝐴. Put ℎ =: ℎ1 ∘ 𝑖: B → M, it is clear that 

ℎ is an 𝑅-homomorphism. For every 𝑎 ∈ 𝐴, we 

have that 

(ℎ ∘ 𝑓)(𝑎) − 𝑔(𝑎) = ((ℎ1 ∘ 𝑖) ∘ 𝑓)(𝑎) −

𝑔(𝑎) ∈ 𝜌(𝑀) and hence 𝑀 is a 𝜌-injective        

𝑅-module.      

 

 

3. Endomorphism Ring of 𝝆-Injective 

Modules 

      

          Let 𝑀 be an 𝑅-module, 𝑆 = End𝑅(𝑀) 

and let  Δ = {𝑓 ∈ 𝑆 ker(𝑓) ≤𝑒 𝑀}. It is well-

known that ∆ is a two-sided ideal of 𝑆 [13] and 

if an 𝑅-module 𝑀 is injective, then the ring 𝑆/Δ 

is regular. Moreover, if  Δ = 0, then the ring 𝑆 

is a right self-injective ring [8]. 

   For analogous results for 𝜌-injective modules 

we consider the following. 

 

Let 𝑀 and 𝑁  be 𝑅-modules and 𝑓: 𝑀 → 𝑁 be 

an 𝑅-homomorphism. The set 𝑓−1(𝜌(𝑁)) =

{𝑥 ∈ 𝑀𝑓(𝑥) ∈ 𝜌(𝑁)} is said to be the kernel 

of 𝑓 relative to a preradical 𝜌 and denoted 

by 𝜌ker(𝑓). 

 

     Let 𝑀 be an 𝑅-module and 𝑆 = End𝑅(𝑀).    

We will use the notation 𝜌Δ for the set          

{𝑓 ∈ 𝑆𝜌ker(𝑓) ≤𝑒 𝑀}.   

𝑔 

𝐵 𝐴   0

𝑓 

𝑖 

𝑀 

𝐵 𝐴   0

𝑓 

𝑖𝐴 

𝑀 

𝐸 
𝑔 

𝐵 𝐴   0

𝑓 

𝑖𝐴 𝑖𝐵 

𝑀 

ℎ 

𝐹 
ℎ 

𝐵 𝐴   0

𝑔 

𝑓 𝑖 

𝑀 

ℎ1 
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Proposition 3.1. Let 𝑀 be an 𝑅-module 

and  𝑆 = End𝑅(𝑀). Then 𝜌Δ is a two-sided 

ideal of 𝑆. 

Proof. Since the zero function belong to Δ , 

thus 𝜌Δ is a non-empty set. Let 𝑓, 𝑔 ∈ 𝜌Δ, thus 

𝜌ker(𝑓) ≤𝑒 𝑀 and  𝜌ker(𝑔) ≤𝑒 𝑀 and hence 

Lemma 5.1.5(b) in [7] implies that  

𝜌ker(𝑓) ∩ 𝜌ker(𝑔) ≤𝑒 𝑀. Since       

𝜌ker(𝑓) ∩ 𝜌𝑘𝑒𝑟(𝑔) ⊆ 𝜌ker(𝑓 − 𝑔), thus 

𝜌ker(𝑓 − 𝑔) ≤𝑒 M (by [7, Lemma 5.1.5(a)]) 

and hence 𝑓 − 𝑔 ∈ 𝜌∆.  

Let 𝑓 ∈ 𝜌∆ and ℎ ∈ 𝑆, thus 𝜌ker(𝑓) ≤𝑒 𝑀. 

Since 𝜌ker(𝑓) ⊆ 𝜌ker(ℎ ∘ 𝑓), thus        

𝜌ker(ℎ ∘ 𝑓) ≤𝑒 𝑀 (by [7, Lemma 5.1.5(a)]) 

and hence  ℎ ∘ 𝑓 ∈ 𝜌∆. Now we will prove that 

𝑓 ∘ ℎ ∈ 𝜌∆. Since 𝜌ker(𝑓) ≤𝑒 𝑀, thus Lemma 

5.1.5(c) in [7] implies that 

ℎ−1(𝜌ker(𝑓)) ≤𝑒 𝑀. But ℎ−1(𝜌ker(𝑓)) ⊆

𝜌ker(𝑓 ∘ ℎ), therefore 𝜌ker(𝑓 ∘ ℎ) ≤𝑒 𝑀, by 

[7, Lemma 5.1.5(a)]. Thus 𝑓 ∘ ℎ ∈ 𝜌∆ and 

hence 𝜌∆ is a two-sided ideal of  𝑆.  

       Now, we are ready to state and prove the 

main result in this section.  

Theorem 3.2. Let 𝑀 be an 𝑅-module and 

𝑆 = End𝑅(𝑀). If 𝑀 is 𝜌-injective, then:  

(1)  𝑆/𝜌∆ is a regular ring; 

(2) if 𝜌∆= 0, then 𝑆 is a right self-injective 

ring.                                                                   

Proof.  Suppose that 𝑀 is a 𝜌-injective           

𝑅-module.                                                       

(1) Let 𝜆 + 𝜌Δ ∈ 𝑆/𝜌Δ, thus 𝜆 ∈ 𝑆.  Put 

𝐾 = ker(𝜆) and let 𝐿 be a relative complement 

of 𝐾 in 𝑀. Define 𝛼: 𝜆(𝐿) → 𝑀 by 𝛼(𝜆(𝑥)) =

𝑥, for all  𝑥 ∈ 𝐿. It is easy to prove that 𝛼 is a 

well-defined 𝑅-homomorphism. 

Thus we have the following diagram, where 𝑖 is 

the inclusion 𝑅-homomorphism. 

  

 

 

 

 

Since 𝑀 is 𝜌-injective (by hypothesis), there 

exists an 𝑅-homomorphism 𝛽: 𝑀 → 𝑀 such that 

𝛽(𝜆(𝑥)) − 𝛼(𝜆(𝑥)) ∈ 𝜌(𝑀) for each 𝑥 ∈ 𝐿. 

That is for each 𝑥 ∈ 𝐿, we have that  

 𝛽(𝜆(𝑥)) = 𝛼(𝜆(𝑥)) + 𝑚𝑥, for some 𝑚𝑥 ∈

𝜌(𝑀). Let 𝑢 ∈ 𝐾 ⊕ 𝐿, thus 𝑢 = 𝑥 + 𝑦 where 

𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐿 and hence (𝜆 − 𝜆𝛽𝜆)(𝑢) =

(𝜆 − 𝜆𝛽𝜆)(𝑥 + 𝑦) = 𝜆(𝑥) − 𝜆𝛽(𝜆(𝑥)) +

𝜆(𝑦) − 𝜆𝛽(𝜆(𝑦)) = 0 − 0 − 𝜆(𝑦) −

𝜆(𝛼𝜆(𝑦) + 𝑚𝑦) = 𝜆(𝑦) − 𝜆(𝑦) − 𝜆(𝑚𝑦) ∈

𝜌(𝑀) (because 𝜌 is a preradical) and hence  

𝑢 ∈ 𝜌ker(𝜆 − 𝜆𝛽𝜆). Thus for each 𝑢 ∈ 𝐾 ⊕ 𝐿, 

we have that  𝑢 ∈ 𝜌ker(𝜆 − 𝜆𝛽𝜆) and this 

implies that  𝐾 ⊕ 𝐿 ⊆ 𝜌ker(𝜆 − 𝜆𝛽𝜆).  Since 

𝐾 ⊕ 𝐿 ≤𝑒 𝑀 [8], thus Lemma 5.1.5(a) in [7]  

implies that   𝜌ker(𝜆 − 𝜆𝛽𝜆) ≤𝑒 𝑀 and hence 

𝜆 − 𝜆𝛽𝜆 ∈ 𝜌Δ. Thus 𝜆 + 𝜌Δ = (𝜆𝛽𝜆) + 𝜌Δ and 

hence 𝑆/𝜌Δ is a regular ring. 

 

(2) Suppose that 𝜌∆= 0, thus by (1) above, we 

have that  𝑆 is a regular ring. Let 𝐼 be any right 

ideal of 𝑆 and let  𝑓: 𝐼 → 𝑆  be any right             

𝑆-homomorphism. Consider the following 

diagram. 

 

 

 

 

 

Let 𝐼𝑀 be the 𝑅-submodule of 𝑀 generated by 

{𝜆𝑚| 𝜆 ∈ 𝐼, 𝑚 ∈ 𝑀}. Thus, if 𝑥 ∈ 𝐼𝑀, then 

𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1  for some 𝜆1, 𝜆2, ⋯ , 𝜆𝑛 ∈ 𝐼 and 

some 𝑚1, 𝑚2, ⋯ , 𝑚𝑛 ∈ 𝑀 where 𝑛 ∈ ℤ+. 

Define 𝜃: 𝐼𝑀 → 𝑀 as follows, for each                     

𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ∈ 𝐼𝑀, put 

𝜃(𝑥) = 𝜃(∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ) = ∑ 𝑓(𝜆𝑖)(𝑚𝑖)𝑛

𝑖=1 .  Let 

𝑥, 𝑦 ∈ 𝐼𝑀, thus 𝑥 = ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1  and                   

𝑦 = ∑ 𝛼𝑗𝑚𝑗
′𝑡

𝑗=1 ,  for some 𝜆𝑖, 𝛼𝑗 ∈ 𝐼 

and  𝑚𝑖, 𝑚𝑗
′ ∈ 𝑀, with 𝑖 = 1, ⋯ , 𝑛 and 𝑗 =

1, ⋯ , 𝑡 where 𝑛, 𝑡 ∈ ℤ+. Since 𝑆 is a regular 

ring, thus Proposition 4.14 in  [8] implies that 

each finitely generated right ideal of  𝑆 is 

generated by an idempotent. Hence the right 

ideal of a ring  𝑆 which is generated by 

𝜆1, ⋯ , 𝜆𝑛, 𝛼1, ⋯ , 𝛼𝑡 written as 𝑒𝑆, where 

𝑒 = 𝑒2 ∈ 𝐼 and hence 𝜆𝑖, 𝛼𝑗 ∈ 𝑒𝑆 for all 

𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑡 and this implies that 

𝑀 

0 λ(L)     

)            

𝑖 
𝑀 

𝛼 𝛽 

𝑆 

0 I                  
𝑖 

𝑆 

𝑓 
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𝜆𝑖 = 𝑒ℎ𝑖 and 𝛼𝑗 = 𝑒ℎ𝑗
′ for some ℎ𝑖, ℎ𝑗

′ ∈ 𝑆 and 

for all 𝑖 = 1, ⋯ , 𝑛, 𝑗 = 1, ⋯ , 𝑡. Hence 𝑒𝜆𝑖 =

𝑒(𝑒ℎ𝑖) = 𝑒2ℎ𝑖 = 𝑒ℎ𝑖 = 𝜆𝑖, for all 𝑖 = 1, ⋯ , 𝑛 

and 𝑒𝛼𝑗 = 𝑒(𝑒ℎ𝑗
′) = 𝑒2ℎ𝑗

′ = 𝑒ℎ𝑗
′ = 𝛼𝑗 for 

all 𝑗 = 1, ⋯ , 𝑡. Thus, 𝑓(𝜆𝑖) = 𝑓(𝑒)𝜆𝑖 and 

𝑓(𝛼𝑗) = 𝑓(𝑒)𝛼𝑗 for all 𝑖 = 1, ⋯ , 𝑛 and 

𝑗 = 1, ⋯ , 𝑡. Therefore, 𝜃(𝑥) = 𝜃(∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 ) =

∑ 𝑓(𝜆𝑖)(𝑚𝑖)𝑛
𝑖=1 = ∑ 𝑓(𝑒)𝜆𝑖𝑚𝑖

𝑛
𝑖=1 =

𝑓(𝑒) ∑ 𝜆𝑖𝑚𝑖
𝑛
𝑖=1 = 𝑓(𝑒)𝑥 and similarly we have 

that 𝜃(𝑦) = 𝑓(𝑒)𝑦. Clearly, 𝜃 is a well-defined                 

𝑅-homomorphism, since for all 𝑥, 𝑦 ∈ 𝐼𝑀, if 

𝑥 = 𝑦, then  𝑓(𝑒)𝑥 = 𝑓(𝑒)𝑦. Since 𝜃(𝑥) =

𝑓(𝑒)𝑥 and  𝜃(𝑦) = 𝑓(𝑒)𝑦 (as above), thus  

𝜃(𝑥) = 𝜃(𝑦). Let 𝑥, 𝑦 ∈ 𝐼𝑀 and 𝑟 ∈ 𝑅 , thus 

𝜃(𝑥 + 𝑦) = 𝑓(𝑒) (𝑥 + 𝑦) = 𝑓(𝑒)𝑥 + 𝑓(𝑒)𝑦 =

𝜃(𝑥) + 𝜃(𝑦) and 𝜃(𝑟𝑥) = 𝑓(𝑒)(𝑟𝑥) =

𝑟(𝑓(𝑒)(𝑥)) = 𝑟𝜃(𝑥). Therefore, 𝜃 is a well-

defined 𝑅-homomorphism. Thus we have the 

following diagram (where 𝑖 is the inclusion     

𝑅-homomorphism). 

 

 

    

 

 

 

Since 𝑀 is a 𝜌-injective,  there exists an           

𝑅-homomorphism 𝜑: 𝑀 → 𝑀 such that 

𝜑(𝑥) − 𝜃(𝑥) ∈ 𝜌(𝑀), for all 𝑥 ∈ 𝐼𝑀.  

Let 𝑚 ∈ 𝑀  and  𝜆 ∈ 𝐼. Thus (𝜑𝜆)(𝑚) =

𝜑(𝜆𝑚) = 𝜃(𝜆𝑚) + 𝑙𝑚 = 𝑓(𝜆)𝑚 + 𝑙𝑚,  for 

some 𝑙𝑚 ∈ 𝜌(𝑀) and hence (𝜑𝜆 − 𝑓(𝜆))(𝑚) 

∈ 𝜌(𝑀) and this implies that 𝑚 ∈ 𝜌ker(𝜑𝜆 −

𝑓(𝜆)). Thus  𝑀 = 𝜌ker(𝜑𝜆 − 𝑓(𝜆)), for each 

𝜆 ∈ 𝐼. Therefore 𝜌ker(𝜑𝜆 − 𝑓(𝜆)) ≤𝑒 𝑀 and 

hence  𝜑𝜆 − 𝑓(𝜆) ∈ 𝜌Δ, for all 𝜆 ∈ 𝐼. Since 

𝜌Δ = 0  (by hypothesis), thus 𝑓(𝜆) = 𝜑𝜆, for 

all 𝜆 ∈ 𝐼 and hence  𝑆 satisfied Baer's condition. 

Therefore, 𝑆 is a right self-injective ring, by [8, 

Theorem 1.6.].  

Proposition 3.3. Let 𝑀 be an 𝜌-injective               

𝑅-module and 𝑆 = End𝑅(𝑀). Then                  

𝐼 ∩ 𝐾 = 𝐼𝐾 + 𝜌Δ ∩ (𝐼 ∩ 𝐾), for every two-

sided ideals 𝐼 and 𝐾 of 𝑆. 

Proof. Suppose that 𝑀 is a 𝜌-injective              

𝑅-module, thus Theorem 3.2. implies that 

 𝑆/𝜌∆ is a regular. Let 𝐼 and 𝐾 be any two-

sided ideals of 𝑆. Let 𝛼 ∈ 𝐼 ∩ 𝐾, thus 𝛼 + 𝜌Δ ∈

 𝑆/𝜌∆. Since 𝑆/𝜌∆  is a regular ring, thus there 

exists an element 𝛽 + 𝜌Δ ∈ 𝑆/𝜌∆ such that 

𝛼 + 𝜌Δ = 𝛼𝛽𝛼 + 𝜌Δ and hence 𝛼 − 𝛼𝛽𝛼 ∈ 𝜌Δ. 

Since 𝛼 − 𝛼𝛽𝛼 ∈ 𝐼 ∩ 𝐾, thus  𝛼 − 𝛼𝛽𝛼 ∈ 𝜌𝛥 ∩

(𝐼 ∩ 𝐾). Put 𝛼1 = 𝛼 − 𝛼𝛽𝛼, thus 

𝛼 = 𝛼𝛽𝛼 +  𝛼1 ∈ 𝐼𝐾 + 𝜌𝛥 ∩ (𝐼 ∩ 𝐾) and 

hence  𝐼 ∩ 𝐾 ⊆ 𝐼𝐾 + 𝜌Δ ∩ (𝐼 ∩ 𝐾). Since 

𝐼𝐾 ⊆ 𝐼 and 𝐼𝐾 ⊆ 𝐾, thus 𝐼𝐾 ⊆ 𝐼 ∩ 𝐾. Since 

𝜌Δ ∩ (𝐼 ∩ 𝐾) ⊆ (𝐼 ∩ 𝐾), thus 𝐼𝐾 + 𝜌Δ ∩

(𝐼 ∩ 𝐾) ⊆ 𝐼 ∩ 𝐾. Therefore, 𝐼 ∩ 𝐾 = 𝐼𝐾 +

𝜌Δ ∩ (𝐼 ∩ 𝐾).    

    By applying Proposition 3.3. we have the 

following result. 

Corollary 3.4.  Let 𝑀 be a 𝜌-injective             

𝑅-module, 𝑆 = End𝑅(𝑀) and let 𝐾 be any   

two-sided ideal of 𝑆.Then 𝐾 = 𝐾2 + ( 𝜌Δ ∩ 𝐾) 

      In [14], Osofsky showed that, for an            

𝑅-module 𝑀, if 𝑍(𝑀) = 0, then the Jacobson 

radical of the ring 𝑆 = End𝑅(𝑀) is zero. Also, 

if 𝑀 is an injective 𝑅-module with 𝑍(𝑀) = 0, 

then the ring 𝑆 = End𝑅(𝑀) is a right self-

injective regular [8]. 

     In the following, we will state and prove  

analogous results for 𝜌-injective modules. 

Firsty, we need the following lemma. 

Lemma 3.5.  Let M  be an 𝑅-module and 

𝑆 = End𝑅(𝑀). Then for each 𝜆 ∈ 𝑆 and for 

each 𝑥 ∈ 𝑀 we have                     

[𝜌(𝑀): 𝜆(𝑥)]𝑅 = [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅. 

Proof.  Let 𝜆 ∈ 𝑆 and 𝑥 ∈ 𝑀. Thus if              

𝑟 ∈ [𝜌(𝑀): 𝜆(𝑥)], then 𝜆(𝑥)𝑟 ∈ 𝜌(𝑀) and 

hence  𝜆(𝑥𝑟) ∈ 𝜌(𝑀) and this implies that 

𝑥𝑟 ∈ 𝜌𝑘𝑒𝑟(𝜆) and so  𝑟 ∈ [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅. 

Therefore,  [𝜌(𝑀): 𝜆(𝑥)]𝑅 ⊆ [𝜌𝑘𝑒𝑟(𝜆): 𝑥]𝑅 and 

by similar way we can prove [𝜌ker(𝜆): 𝑥]𝑅 ⊆

[𝜌(𝑀): 𝜆(𝑥)]𝑅. Thus [𝜌(𝑀): 𝜆(𝑥)]𝑅 =

[𝜌ker(𝜆): 𝑥]𝑅.  

𝑀 

0 
𝑖 

𝑀 

𝜃 𝜑 

𝐼𝑀 
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        Let 𝑀 be an 𝑅-module. It is easy to prove 

that the set  {𝑚 ∈ 𝑀| [𝜌(𝑀): 𝑚]𝑅 is an essential 

ideal in 𝑅} is a submodule of 𝑀. This 

submodule is said to be the 𝜌-singular 

submodule of 𝑀 and denoted by 𝜌𝑍(𝑀). 

     The following proposition is an analogous 

result of  the Osofsky's result [14]. 

Proposition 3.6. Let 𝑀 be an 𝑅-module and 

𝑆 = End𝑅(𝑀). If 𝜌Z(𝑀) = 0, then 𝜌Δ = 0.    

Proof.  Suppose that  𝜌Z(𝑀) = 0 and let 

𝛼 ∈ 𝜌Δ, thus  𝜌ker(𝛼) ≤𝑒 𝑀 and hence  [8, 

Lemma 3, p. 46]  implies that 

[𝜌ker(𝛼): 𝑥]𝑅 ≤e 𝑅, for each 𝑥 ∈ 𝑀. Since 

[𝜌(𝑀): 𝛼(𝑥)]𝑅 = [𝜌ker(𝛼): 𝑥]𝑅 (by Lemma 

3.5.), thus [𝜌(𝑀): 𝛼(𝑥)]𝑅 ≤e 𝑅 and hence 

𝛼(𝑥) ∈  𝜌𝑍(𝑀). Since 𝜌𝑍(𝑀) = 0 (by 

hypothesis), thus 𝛼(𝑥) = 0, for all 𝑥 in 𝑀 (i.e 

𝛼 = 0) and hence 𝜌Δ = 0.  

     The following corollary (for 𝜌-injective 

modules) is analogous of the statement for 

injective modules [8]. 

Corollary 3.7. Let 𝑀 be a 𝜌-injective             

𝑅-module and  𝑆 = End𝑅(𝑀). If  𝜌Z(𝑀) = 0, 

then  𝑆 is a right self-injective regular ring.      

Proof. Suppose that 𝑀 is a 𝜌-injective module 

with 𝜌Z(𝑀) = 0. Thus Proposition 3.6.  implies 

that 𝜌Δ = 0. Therefore, 𝑆 is a right self-

injective regular ring, by Theorem 3.2.    

Corollary 3.8. If 𝑅 is a self 𝜌-injective ring and 

𝜌Z(𝑅) = 0, then  𝑅 is a right self-injective 

regular ring. 

Proof. Since 𝑅 ≅ End𝑅(𝑅), thus the result  

follows from Corollary 3.7.           

      Let 𝑅 be a ring and x ∈ R. Let  xL: R → R 

be the mapping defined by xL(r) = rx, for all 

r ∈ R. Then  𝑥𝐿  is an 𝑅-homomorphism and 

End𝑅(𝑅) = {𝑥𝐿| 𝑥 ∈ 𝑅} [8]. 

 

Lemma 3.9. Let 𝑅 be a ring and 𝑆 = End𝑅(𝑅). 

Define 𝛼: 𝑅 𝜌Z(𝑅)⁄ → 𝑆/𝜌Δ  as follows:  

𝛼(𝑥 + 𝜌Z(𝑅)) = 𝑥𝐿 + 𝜌Δ for each 𝑥 ∈ 𝑅. Then 

𝛼 is an 𝑅-isomorphism. 

Proof. It is easy.  

     The following proposition is an analogous 

result of the statement for self-injective rings 

[15]. 

Proposition 3.10.  If 𝑅 is a self 𝜌-injective ring, 

then 𝑅/𝜌Z(𝑅) is a regular ring.                         

Proof.  Let  𝛼: 𝑅/𝜌Z(𝑅) → 𝑆/𝜌Δ  be the         

𝑅-isomorphism as in Lemma 3.9., where   

𝑆 = End𝑅(𝑅). Let 𝑥 + 𝜌Z(𝑅) ∈ 𝑅/𝜌Z(𝑅), thus 

𝛼(𝑥 + 𝜌Z(𝑅)) = 𝑥𝐿 + 𝜌Δ ∈ 𝑆/𝜌Δ. Since 𝑅 is a 

self 𝜌-injective ring, thus 𝑆/𝜌Δ is a regular ring 

(by Theorem 3.2.) and this implies that there 

exists an element 𝑦𝐿 + 𝜌Δ ∈ 𝑆/𝜌Δ such that 

𝑥𝐿 + 𝜌Δ = 𝑥𝐿𝑦𝐿𝑥𝐿 + 𝜌Δ = (𝑥𝑦𝑥)𝐿 + 𝜌Δ. Since 

𝛼 is an 𝑅-isomorphism, thus 𝛼−1 exists and 

𝛼−1(𝑥𝐿 + 𝜌Δ) = 𝛼−1((𝑥𝑦𝑥)𝐿 + 𝜌Δ). Hence 

𝑥 + 𝜌Z(𝑅) =  𝑥𝑦𝑥 + 𝜌Z(𝑅) = (𝑥 + 𝜌Z(𝑅)) ∙

(𝑦 + 𝜌Z(𝑅)) ∙ (𝑥 + 𝜌Z(𝑅)). Since        

𝛼−1(𝑦𝐿 + 𝜌Δ) = 𝑦 + 𝜌Z(𝑅) ∈ 𝑅/𝜌Z(𝑅), thus 

we get an element 𝑦 + 𝜌Z(𝑅) in 𝑅/𝜌Z(𝑅) such 

that 𝑥 + 𝜌Z(𝑅) = (𝑥 + 𝜌Z(𝑅)) ∙ (𝑦 + 𝜌Z(𝑅)) ∙

(𝑥 + 𝜌Z(𝑅)). Therefore, 𝑅/𝜌Z(𝑅) is a regular 

ring.     
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 الخلاصة
)الموديولات الاغمارية مفهوم الموديولات الاغمارية نسبة الى جذر ابتدائي  (  طرحت في هذا العمل كتعميم للموديولات −

يوحد عدة تعريفات عن تعميمات الموديولات الاغمارية مثل  الاغمارية. تعريف الموديولات الاغمارية نسبة الى جذر ابتدائي 
لاغمارية تقريبا والموديولات الاغمارية الخاصة. العديد من التشخيصات وخواص الموديولات الاغمارية نسبة الى جذر الموديولات ا

. نتائج هذا العمل للموديولات الاغمارية نسبة الى جذر ابتدائي  الذاتية قد اعطيت. درسنا حلقات التماثلات الموديولية ابتدائي 
 الموجودة في المصادر. توحد وتوسع العديد من النتائج

 

 
  حلقات التماثلات الموديولية الذاتية. جذر الابتدائي،الموديولات الاغمارية تقريبا، ال الموديولات الاغمارية،الكلمات المفتاحية: 
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