*Injective Modules Relative To a Preradical

By

Akeel Ramadan Mehdi
Department of mathematics/ College of Education/ Al-Qadisiyah University/ Al-Diwaniya City/ Iraq
Email: akeel_math@yahoo.com

Dhuha Taima Adb Al-Kadhim
Department of mathematics/ College of Computer
Science and Mathematics / Al-Qadisiyah
University/ Al-Diwaniya City/ Iraq
Email: dhuha.taima@yahoo.com

Abstract

The concept of ρ-injective modules (where ρ is a preradical) is introduced in this work as a generalization of injective modules. The definition of ρ-injectivity unifies several definitions on generalizations of injectivity such as nearly injective modules and special injective modules. Many characterizations and properties of ρ-injectivity are given. We study the endomorphisms rings of ρ-injective modules. The results of this work unify and extend many results in the literature.

Keywords: Injective modules; nearly-injective modules; preradical; endomorphisms ring.

1. Introduction:

Throughout this work, R stands a commutative ring with identity element 1 and a module means a unitary left R-modules. The class of all R-module will be denoted by R-Mod and the symbol ρ means a preradical on $R-\operatorname{Mod}$ (A preradical ρ is defined to be a subfunctor of the identity functor of R-Mod). For an R-module M, the notations $\mathrm{J}(M), \mathrm{L}(M), \mathrm{E}(M)$ and $S=\operatorname{End}_{R}(M)$ will respectively stand for the Jacobson radical of M, the prime radical of M, the injective envelope of M and the endomorphism ring of M. The notation $\operatorname{Hom}_{R}(N, M)$ denoted to the set of all R-homomorphism from R-module N into R-module M. An R-module M is called injective, if for every R-monomorphism $f: A \rightarrow B$ (where A and B are R-modules) and every R-monomorphism $g: A \rightarrow M$, there exists an R-homomorphism $h: B \rightarrow M$ such that $g=h \circ f[1]$.

Injective modules have been studied extensively, and several generalizations for these modules are given, for example, quasiinjective modules [2], P-injective Modules [3], and S-injective module [4].

In 2000, nearly-injective modules were discussed in [5] as generalization of injective modules. An R-module M is said to be nearly injective if for each R-monomorphism $f: A \rightarrow B$ (where A and B are two R-modules), each R-homomorphism $g: A \rightarrow M$, there exists an R-homomorphism $h: B \rightarrow M$ such that $(h o f)(a)-g(a) \in \mathrm{J}(M)$, for all $a \in A[5]$.

Also, in [6] M. S. Abbas and Sh. N. AbdAlridha introduced the concept of special injective modules as a generalization of injectivity. An R-module M is said to be special injective if for each R-monomorphism $f: A \rightarrow B$ (where A and B are two R-modules), each R-homomorphism $g: A \rightarrow M$, there exists an R-homomorphism $h: B \rightarrow M$ such that $(h o f)(a)-g(a) \in \mathrm{L}(M)$, for all $a \in A[6]$. A ring R is called Von Neumann regular (in short, regular) if for each $a \in R$, there exsits $b \in R$ such that $a=a b a$. For a submodule N of an R-module M and $a \in M$, $\left[N:_{R} a\right]=\{r \in R \mid r a \in N\}$. For an R-module M and $a \in M$. A submodule N of an R-module M is called essential and denoted by $N \leq^{e} M$ if every non zero submodule of M has nonzero intersection with N.

[^0]
2. Injective Modules Relative to a Preradical

In this section, we will introduce a new generalization of injective module namely, injective module relative to a preradical. We will study some properties and characterizations of these modules.

We start by the following definition:-

Definition 2.1. Let ρ be a preradical on R-Mod and let M, N and K be R-modules. A module M is said to be N-injective relative to the preradical ρ (shortly, $\rho-N$-injective) if for each R-monomorphism $f: K \rightarrow N$ and each R-homomorphism $g: K \rightarrow M$ there is an R-homomorphism $h: N \rightarrow M$ such that (hof) $(x)-g(x) \in \rho(M)$, for each x in K.

An R-module M is said to be injective relative to the preradical ρ (shortly, ρ-injective) if M is ρ - N-injective for all R-modules N. A ring R is said to be ρ-injective ring, if R is a ρ-injective R-module.

Examples and Remarks 2.2.

(1) It is clear that injective modules and N-injective modules are ρ - N-injective for every R-module N.
(2) There are many types of preradical functors, for examples: the Jacobson radical functor (J), the socle functor (soc), the prime radical functor (L) and the torsion functor (T) [7]. Each one of these functors gives a special case of ρ-injective modules, for example a left R-module M is said to be (soc)-injective if M is ρ-injective, where $\rho=$ soc.
(3) The concept of nearly-injective module (which is introduced in [5]) is a special case of ρ-injective R-modules by taking $\rho=\mathrm{J}$, where J is the Jacobson radical functor.
(4) Special injective modules (which are introduced in [6]) are special case of ρ-injectivity by taking $\rho=\mathrm{L}$, where L is the prime radical functor.
(5) Let M be a module such that $\rho(M)=0$, thus M is injective if and only if M is ρ-injective.
(6) It is clear that if $\rho(M)=M$, then M is a ρ-injective module, in particular:
(a) Every module M which has no maximal submodule (i.e, $\mathrm{J}(M)=M$) is J -injective.
(b) Every semisimple module M (i.e., $\operatorname{soc}(M)=M$) is (soc)-injective. Thus ρ-injective modules may not be injective, for example: let $M=\mathbb{Z}_{p}$ as \mathbb{Z}-module, where p is a prime number. Since M is semisimple, thus $\operatorname{soc}(M)=M$ and hence M is (soc)-injective but M is not injective.
(7) Let M_{1} be an R-module. If M_{1} is a $\rho-N$ injective R-module and M_{1} is isomorphic to M_{2}, then M_{2} is a $\rho-N$-injective.
(8) Form (7) above we have that ρ-injectivity is an algebraic property.
(9) Every submodule of semisimple R-module is ρ-injective, where ρ is the socle functor.

Lemma 2.3. Let N and M be R-modules. Then the following statements are equivalent:
(1) M is ρ - N-injective;
(2) for any diagram,

where A is a submodule of an R-module N, $g: A \rightarrow M$ is any R-homomorphism and i is the inclusion mapping, there exists an R-homomorphism $h: N \rightarrow M$ such that $(h \circ i)(a)-g(a) \in \rho(M)$, for all a in A. Proof: The proof is obvious.

In the following proposition we show that the set of all essential submodules of N is a test set for $\rho-N$-injectivity.

Proposition 2.4. Let N be an R-module. Then an R-module M is $\rho-N$-injective if and only if for each essential submodule A of N and each R-homomorphism $f: A \rightarrow M$, there is an R-homomorphism $g: N \rightarrow M$ such that $(g \circ i)(a)-f(a) \in \rho(M)$ for each a in A.
Proof: (\Longrightarrow) This is obvious.
(\Longleftarrow) Let A be any essential submodule of N and $f: A \rightarrow M$ be any R-homomorphism.
Consider the diagram (1).

(diagram (1))

Let A^{c} be any complement submodule of A in N. By [8, p.16], we have that $A \oplus A^{c} \leq^{e} N$. Define $g: A \bigoplus A^{c} \rightarrow M$ by $g\left(a+a_{1}\right)=f(a)$, for all $a \in A$ and $a_{1} \in A^{c}$. It is easy to prove that g is a well-defined R-homomorphism. Therefore, we have the diagram (2).

By hypothesis, there exists an R-homomorphism h : $N \rightarrow M$ such that $(h \circ i)(x)-g(x) \epsilon \rho(M)$ for all x in $A \bigoplus A^{c}$. For the diagram (1), we get that $(h \circ i)(a)-f(a)=(h \circ i)(a)-g(a) \in \rho(M)$ for all a in A. Therefore, M is a ρ - N-injective R-module, by Lemma 2.3.

Now, we will study the direct product and the direct sum of $\rho-N$-injective modules.

Proposition 2.5. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of R-modules. Then :
(1) if $\prod_{\lambda \in \Lambda} M_{\lambda}$ is a $\rho-N$-injective (where N is an R-module), then each M_{λ} is ρ - N-injective.
(2) if $\rho\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=\prod_{\lambda \in \Lambda}\left(\rho\left(M_{\lambda}\right)\right)$, then the converse of (1) is true.
Proof: (1) Put $M=\prod_{\lambda \in \Lambda} M_{\lambda}$ and let $i_{\lambda}: M_{\lambda} \rightarrow M$ and $p_{\lambda}: M \rightarrow M_{\lambda}$ be the injections and projections associated with this direct
product respectively. Suppose that M is $\rho-N-$ injective. To prove that M_{λ} is $\rho-N$-injective for each $\lambda \in \Lambda$. Consider the following diagram where A is a submodule of N and α_{λ} is an R-homomorphism.

Since M is a ρ - N-injective module, thus there exists an R-homomorphism $h: N \rightarrow M$ such that $(h \circ i)(a)-\left(i_{\lambda} \circ \alpha_{\lambda}\right)(a) \in \rho(M)$ for all a in A. Put $g_{\lambda}=p_{\lambda} \circ h: N \rightarrow M_{\lambda}$. For every a in A, we have that $\left(g_{\lambda} \circ i\right)(a)-\alpha_{\lambda}(x)=g_{\lambda}(a)-$ $\alpha_{\lambda}(a)=\left(p_{\lambda} \circ h\right)(a)-\alpha_{\lambda}(a)=\left(p_{\lambda} \circ h\right)(a)-$ $\left(\left(p_{\lambda} \circ i_{\lambda}\right) \circ \alpha_{\lambda}\right)(a)=$
$p_{\lambda}\left(h(a)-\left(i_{\lambda} \circ \alpha_{\lambda}\right)(a)\right) \in \rho\left(M_{\lambda}\right)$.
Thus $\left(g_{\lambda} \circ i\right)(a)-\alpha_{\lambda}(a) \in \rho\left(M_{\lambda}\right)$, for each $\lambda \in \Lambda$ and for every $a \in A$ and hence M_{λ} is $\rho-N$-injective, for each $\lambda \in \Lambda$.
(2) Suppose that $\rho\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=$ $\prod_{\lambda \in \Lambda}\left(\rho\left(M_{\lambda}\right)\right)$ and consider the following diagram.

For each $\lambda \in \Lambda$, let $p_{\lambda}: M \rightarrow M_{\lambda}$ be the projection R-homomorphism. Since each M_{λ} is $\rho-N$-injective, thus there exists an R-homomorphism $g_{\lambda}: N \rightarrow M_{\lambda}$, for each $\lambda \in \Lambda$ such that $\left(g_{\lambda} \circ i\right)(a)-\left(p_{\lambda} \circ \alpha\right)(a) \in \rho\left(M_{\lambda}\right)$, for every a in A. Define $g: N \rightarrow M$ by $g(x)=$ $\left\{g_{\lambda}(x)\right\}_{\lambda \in \Lambda}$, for every $x \in N$. It is clear that g is an R-homomorphism. For every a in A, we have that
$(g \circ i)(a)-\alpha(a)=\left\{g_{\lambda}(i(a))\right\}_{\lambda \in \Lambda}-$
$\left\{\left(p_{\lambda} \circ \alpha\right)(a)\right\}_{\lambda \in \Lambda}=\left\{\left(g_{\lambda} \circ i\right)(a)-\right.$ $\left.\left(p_{\lambda} \circ \alpha\right)(a)\right\}_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda}\left(\rho\left(M_{\lambda}\right)\right)$. Since $\prod_{\lambda \in \Lambda}\left(\rho\left(M_{\lambda}\right)\right)=\rho\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)$ (by hypothesis) it follows that $(g \circ i)(a)-\alpha(a) \in \rho(M)$, for every a in A. Therefore, M is a $\rho-N$-injective module.

Corollary 2.6. Let R be a ring such that $R / J(R)$ is a semisimple R-module, let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of R-modules and let N be any R-module. Then $\prod_{\lambda \in \Lambda} M_{\lambda}$ is (soc)- N-injective if and only if M_{λ} is (soc)- N-injective, for each $\lambda \in \Lambda$.
Proof: Since $R / J(R)$ is a semisimple
R-module, $\operatorname{soc}\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=\prod_{\lambda \in \Lambda} \operatorname{soc}\left(M_{\lambda}\right)$ [7, Exercise (11), p.239]. Therefore, the result follows from Proposition 2.5.

Corollary 2.7. Let R be a ring and let I be a finitely generated ideal of R. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of R-modules and let N be R-module. Then $\prod_{\lambda \in \Lambda} M_{\lambda}$ is $\rho_{I}-N$-injective if and only if M_{λ} is $\rho_{I}-N$-injective.
Proof: Since I is a finitely generated ideal of R it follows from [9, Exercise 3(1), p.174] that $I\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=\prod_{\lambda \in \Lambda}\left(I M_{\lambda}\right)$ and hence $\rho_{I}\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=\prod_{\lambda \in \Lambda}\left(\rho_{I}\left(M_{\lambda}\right)\right)$. Therefore, the result follows from Proposition 2.5.

For any family $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ of R-modules, if $\oplus_{\lambda \in \Lambda} M_{\lambda}$ is an N-injective R-module, then each M_{λ} is an N-injective and the converse is true, if Λ is finite by [3, Proposition(1.11), p. 6].

The following proposition shows that this result is true in case of ρ - N -injectivity.

Proposition 2.8. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of R-modules, let $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$ and let N be any R-module.
(1) If M is $\rho-N$-injective, then each M_{λ} is $\rho-N$ injective.
(2) If Λ is a finite set, then the converse of (1) is true.
Proof: Suppose that M is a $\rho-N$-injective module. To prove that each M_{λ} is $\rho-N$-injective.
(1) Let $i_{\lambda}: M_{\lambda} \rightarrow M$ and $p_{\lambda}: M \rightarrow M_{\lambda}$ be the injections and projections associated with this direct product respectively. Consider the following diagram, where A is a submodule of N and α_{λ} is an R-homomorphism.

Since M is ρ - N-injective, there exists an R-homomorphism $h: N \rightarrow M$ such that $(h \circ i)(a)-\left(i_{\lambda} \circ \alpha_{\lambda}\right)(a) \in \rho(M)$, for all a in A. For each $\lambda \in \Lambda$, put $g_{\lambda}=p_{\lambda} \circ h: N \rightarrow M_{\lambda}$. For every a in A, we have that $\left(g_{\lambda} \circ i\right)(a)-$ $\alpha_{\lambda}(a)=g_{\lambda}(a)-\alpha_{\lambda}(a)=\left(p_{\lambda} \circ h\right)(a)-$ $\alpha_{\lambda}(a)=\left(p_{\lambda} \circ h\right)(a)-\left(\left(p_{\lambda} \circ i_{\lambda}\right) \circ \alpha_{\lambda}\right)(a)=$ $\left(p_{\lambda} \circ h\right)(a)-\left(p_{\lambda}\left(i_{\lambda} \circ \alpha_{\lambda}\right)(a)\right)=$ $p_{\lambda}\left(h(a)-\left(i_{\lambda} \circ \alpha_{\lambda}\right)(a)\right) \in \rho\left(M_{\lambda}\right)$ (because ρ is a preradical). Thus $g_{\lambda}(a)-\alpha_{\lambda}(a) \in \rho\left(M_{\lambda}\right)$, for each $\lambda \in \Lambda$ and for every $a \in A$. Therefore, M_{λ} is $\rho-N$-injective, for each $\lambda \in \Lambda$.
(2) Suppose that Λ is a finite set. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of ρ - N-injective modules. Since Λ is finite it follows from [7, p.82] that $\oplus_{\lambda \in \Lambda} M_{\lambda}=\prod_{\lambda \in \Lambda} M_{\lambda}$. Since $\rho\left(\oplus_{\lambda \in \Lambda} M_{\lambda}\right)=\oplus_{\lambda \in \Lambda} \rho\left(M_{\lambda}\right)$ (by [10,
Proposition 2, p.76]) it follows that $\rho\left(\prod_{\lambda \in \Lambda} M_{\lambda}\right)=\prod_{\lambda \in \Lambda} \rho\left(M_{\lambda}\right)$. By Proposition 2.5 (2), $\prod_{\lambda \in \Lambda} M_{\lambda}$ is ρ - N-injective and hence $\oplus_{\lambda \in \Lambda} M_{\lambda}$ is ρ - N-injective.

The following corollary is immediate from Proposition 2.8(1).

Corollary 2.9. Let M be a ρ - N-injective R-module and let K be a direct summand of M. Then K is a $\rho-N$-injective R-module.

Corollary 2.10. Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of R-modules and let $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$. Then
(i) (1) If ρ is a preradical and $M / \rho(M)$ is $\rho-N$ injective, then each $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is $\rho-N$-injective.
(2) If ρ is a radical and $M / \rho(M)$ is $\rho-N$ injective, then each $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is N-injective. (ii) (1) If ρ is a preradical, then $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is $\rho-N$-injective and Λ is a finite set, then $M / \rho(M)$ is $\rho-N$-injective.
(2) If ρ is a radical, each $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is $\rho-N-$ injective and Λ is a finite set, then $M / \rho(M)$ is N-injective.
Proof: (i)(1) Suppose that ρ is a preradical and $M / \rho(M)$ is a $\rho-N$-injective R-module. Since $M / \rho(M)=\bigoplus_{\lambda \in \Lambda}\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)$ and $M / \rho(M)$ is ρ - N-injective (by hypothesis) it follows that $\bigoplus_{\lambda \in \Lambda}\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)$ is $\rho-N$ injective. By Proposition 2.8(1) , $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is ρ - N-injective, for all $\lambda \in \Lambda$.
(i)(2) Suppose that ρ is a radical and $M / \rho(M)$ is a ρ - N-injective module. By (i)(1),
$M_{\lambda} / \rho\left(M_{\lambda}\right)$ is ρ - N-injective, for all $\lambda \in \Lambda$.
Since ρ is a radical, $\rho\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)=0$ and hence $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is N-injective, for all $\lambda \in \Lambda$.
(ii)(1) Suppose that ρ is a preradical, each $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is ρ - N-injective and Λ is a finite set. By Proposition 2.8(2), $\oplus_{\lambda \in \Lambda}\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)$ is ρ - N-injective. Since $\bigoplus_{\lambda \in \Lambda}\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)=$ $\oplus_{\lambda \in \Lambda} M_{\lambda} / \oplus_{\lambda \in \Lambda} \rho\left(M_{\lambda}\right)=M / \rho\left(\oplus_{\lambda \in \Lambda} M_{\lambda}\right)$ $=M / \rho(M)$ it follows that $M / \rho(M)$ is $\rho-N$ injective.
(ii(2)) Suppose that ρ is a radical, each $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is ρ - N-injective and Λ is a finite set. By (ii(1)), $M / \rho(M)$ is ρ - N-injective. Since ρ is
a radical, $\rho\left(M_{\lambda} / \rho\left(M_{\lambda}\right)\right)=0$ and hence $M_{\lambda} / \rho\left(M_{\lambda}\right)$ is N-injective.

Examples 2.11.

(1) The converse of Proposition 2.8(1) is not true in general. For example, let Λ be an infinite countable index set and let $T_{\lambda}=Q$ for all $\lambda \in \Lambda$ (where Q is the field of rational numbers). Let $R=\prod_{\lambda \in \Lambda} T_{\lambda}$ be the ring product of the family $\left\{T_{\lambda} \mid \lambda \in \Lambda\right\}$. It is easy to prove that R is a
regular ring. For $k \in \Lambda$, let e_{k} be the element of R whose kth-component is 1 and whose remaining components are 0 .
Let $A=\bigoplus_{\lambda \in \Lambda} R e_{\lambda}$, it is clear that A is a submodule of an R-module R. By [7, p.140], A is a direct sum of injective R-modules, but A is not injective R-module. Since every injective R-module is ρ-injective, thus A is a direct sum of ρ-injective R-modules. Let ρ be any J-preradical. Assume that A is ρ-injective. Since R is a regular ring, thus $\mathrm{J}(A)=0$ (by $[7$, p.272]). Since ρ is a J-preradical, thus $\rho(A)=$ 0 and hence A is injective and this is a contradiction. Thus A is not ρ-injective. Therefore, A is a direct sum of ρ-injective modules, but it is not ρ-injective.
(2) Let $M=Q \oplus \mathbb{Z}$. Thus M is not ρ-injective \mathbb{Z}-module, where ρ is a J-preradical. In fact, if M is ρ-injective, then by Proposition 2.8(1) we have \mathbb{Z} is ρ-injective \mathbb{Z}-module and hence \mathbb{Z} is an injective \mathbb{Z}-module (because $\rho(\mathbb{Z})=$ $J(\mathbb{Z})=0)$ and this is a contradiction. Thus M is not ρ-injective \mathbb{Z}-module.

In following, we will introduce further characterizations of ρ-injective modules.

Recall that a submodule N of an R-module M is said to be a direct summand of M if there exists a submodule K of M such that $M=N \oplus K$, (i.e., $M=N+K$ and $N \cap K=0$) [7]. This is equivalent to saying that, for every commutative diagram with exact rows,

(where A and B are two R-modules), there exists an R-homomorphism $h: B \rightarrow N$ such that $f=h \circ \alpha[11]$. It is well-known that an R-module M is injective if and only if M is a direct summand of every extension of it self [1, Theorem (2.1.5)].

For analogous result for ρ-injective R-modules, we introduce the following concept as a generalization of direct summands.

Definition 2.12. A submodule N of an R-module M is said to be ρ-direct summand of M if for every commutative diagram with exact rows,

(where A and B are two R-modules), there exists an R-homomorphism $h: B \rightarrow N$ such that $(h \circ \alpha)(a)-f(a) \epsilon \rho(N)$, for all a in A.

Proposition 2.13. Let N be a submodule of an R-module M. Then the following statements are equivalent:-
(1) N is ρ-direct summand of M;
(2) for each diagram with exact row,

where I_{N} is the identity homomorphism of N, there exists an R-homomorphism $h: M \rightarrow N$ such that $(h \circ \alpha)(a)-a \in \rho(N)$, for all $a \in N$. Proof: (1) \Rightarrow (2) Suppose that N is a ρ-direct summand of M and consider the following diagram with exact row.

Thus we have the following commutative diagram with exact rows.

By hypothesis, there exists a homomorphism $h: M \rightarrow N$ such that $(h \circ \alpha)(a)-I_{N}(a) \epsilon \rho(N)$,
for all a in A and hence $(h \circ \alpha)(a)-a \in$ $\rho(N)$, for all a in N.
(2) \Rightarrow (1) Consider the following commutative diagram with exact rows.

Thus we have the following diagram.

By hypothesis, there exists a homomorphism $h: M \rightarrow N$ such that $(h \circ \beta)(a)-a \in \rho(N)$, for all $a \in N$. Put $h_{1}=h \circ g: B \rightarrow N$. It is clear that h_{1} is a homomorphism. Let $a \in A$, thus $\left(h_{1} \circ \alpha\right)(a)-f(a)=((h \circ g) \circ \alpha)(a)-$ $f(a)=(h \circ(g \circ \alpha))(a)-f(a)=$ $(h \circ(\beta \circ f))(a)-f(a)=(h \circ \beta)(f(a))-$ $f(a) \in \rho(N)$. Hence $\left(h_{1} \circ \alpha\right)(a)-f(a) \in$ $\rho(N)$, for all a in A and this implies that N is a ρ-direct summand of M.

In the following theorem we will give a characterization of ρ-injective modules, by using ρ-direct summands.

Theorem 2.14. For an R-module M, the following statements are equivalent:
(1) M is ρ-injective.
(2) M is a ρ-direct summand of every extension of itself.
(3) M is a ρ-direct summand of every injective extension of itself.
(4) M is a ρ-direct summand of at least, one injective extension of itself.
(5) M is a ρ-direct summand of $\mathrm{E}(M)$, where $\mathrm{E}(M)$ is the injective hull of M.
Proof:- (1) \Rightarrow (2) Suppose that M is a ρ-injective R-module and let M_{1} be any extension R-module of M. We will prove that
M is ρ-direct summand of M_{1}. Consider the following diagram with exact row.

Since M is ρ-injective, there exists an R-homomorphism $f: M_{1} \rightarrow M$ such that $(f \circ \alpha)(a)-a \in \rho(M)$, for all $a \in M$. Thus Proposition 2.13. implies that M is a ρ-direct summand of M_{1}.
$(2) \Rightarrow(3)$ and $(3) \Rightarrow(4)$ are clear.
(4) \Rightarrow (1) Suppose that M is a ρ-direct
summand of at least, one injective extension R-module of M, say E. To prove that M is a ρ-injective module. Consider the diagram (1) with exact row, where A and B are R-modules and $f: A \rightarrow M$ is an R-homomorphism.

(diagram (1))

Since E is an extension of M, there is an R-monomorphism, say $\beta: M \rightarrow E$. Thus we have the diagram (2) α

(diagram (2))

Since E is an injective R-module, there exists an R-homomorphism $g: B \rightarrow E$ such that $(g \circ \alpha)(a)=(\beta \circ f)(a)$ for all a in A. Thus we have the commutative diagram (3) with

(diagram (3))

Since M is a ρ-direct summand of E (by hypothesis), thus there exists a homomorphism $h: B \rightarrow M$ such that $(h \circ \alpha)(a)-f(a)$
$\in \rho(M)$, for all $a \in A$. Thus, for the diagram (1), we get a homomorphism $h: B \rightarrow M$ such that $(h \circ \alpha)(a)-f(a) \in \rho(M)$, for all a in A. Therefore, M is ρ-injective.
$(3) \Rightarrow(5)$ This is clear.
(5) \Rightarrow (1) Suppose that M is a ρ-direct
summand of $\mathrm{E}(M)$. Since $\mathrm{E}(M)$ is an injective extension of M, thus M is a ρ-direct summand of at least, one injective extension of itself.

In the following corollary we will give an inner characterization of ρ-injective modules, for the term inner see [7].

Corollary 2.15. An R-module M is ρ-injective if and only if M is a ρ-direct summand of an R-module $\operatorname{Hom}_{\mathbb{Z}}(R, B)$, with B is a divisible Abelian group.
Proof: (\Rightarrow) Suppose that M is ρ-injective. By [7, p.91], there is a \mathbb{Z}-monomorphism $f: M \rightarrow B$, where B is a divisible Abelian group. Thus Lemma (5.5.2) in [7] implies that $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ is an injective R-module. Define $\theta: M \rightarrow \operatorname{Hom}_{\mathbb{Z}}(R, B)$ by $\theta(m)(r)=$ $f(r m)$, for all $m \in M$ and for all $r \in R$. It is easy to see that θ is an R-monomorphism and hence $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ is an extension R-module of M. Since M is a ρ-injective R-module, thus Theorem 2.14. implies that M is a ρ-direct summand of an R-module $\operatorname{Hom}_{\mathbb{Z}}(R, B)$. (\Leftarrow) Suppose that M is a ρ-direct summand of an R-module $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ with B is a divisible Abelian group. By [7, Lemma (5.5.2)], we have that $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ is an injective R-module. Thus M is a ρ-direct summand of an injective extension R-module. Therefore, M is a ρ-injective R-module, by Theorem 2.14.

An R-monomorphism α : $\mathrm{N} \rightarrow \mathrm{M}$ (where N and M are R -modules) is called split, if there exists an R-homomorphism $\beta: \mathrm{M} \rightarrow \mathrm{N}$ such that $\beta \circ \alpha=I_{N}$ [7].

An R-module M is injective if and only if for every R-module N, each R-monomorphism $\alpha: M \rightarrow N$ is split [7].

For analogous result for ρ-injective modules, we introduce the following concept.

Definition 2.16. An R-monomorphism $\alpha: N \rightarrow M$ is said to be ρ-split, if there exists an R-homomorphism $\beta: M \rightarrow N$ such that $(\beta \circ \alpha)(a)-a \in \rho(N)$, for all a in N.

The following theorem gives and characterization of ρ-injectivity by using ρ-split monomorphisms.

Theorem 2.17. The following statements are equivalent for an R-module M :
(1) M is ρ-injective;
(2) for each R-module N, each
R-monomorphism $\alpha: M \rightarrow N$ is a ρ-split;
(3) for each injective R-module N, each
R-monomorphism $\alpha: M \rightarrow N$ is a ρ-split;
(4) each R-monomorphism $\alpha: M \rightarrow \mathrm{E}(M)$ is ρ-split.
Proof: (1) \Rightarrow (2) Suppose that M is a ρ-injective R-module. Let N be any R-module and let $\alpha: M \rightarrow N$ be any R-monomorphism. Consider the following diagram.

Since M is ρ-injective, there exists an R-homomorphism $\beta: N \rightarrow M$ such that $(\beta \circ \alpha)(a)-a \in \rho(M)$, for all $a \in M$. Hence α is a ρ-split.
(2) $\Rightarrow(3)$ and $(3) \Rightarrow(4)$ are obvious.
(4) \Rightarrow (1) Suppose that each R-monomorphism $\alpha: M \rightarrow E(M)$ is a ρ-split. To prove that M is a ρ-injective. Consider the following diagram with exact row, where A and B are R-modules and $g: A \rightarrow M$ is any R-homomorphism.

Since $\mathrm{E}(M)$ is an extension of M, thus there is a monomorphism, say $\alpha: M \rightarrow \mathrm{E}(M)$ and hence we get the following diagram with exact row.

Since $\mathrm{E}(M)$ is an injective module, there exists a homomorphism $h: B \rightarrow E(M)$ such that $(h \circ f)(a)=(\alpha \circ g)(a)$, for all $a \in A$. By hypothesis, we have $\alpha: M \rightarrow \mathrm{E}(M)$ is a ρ-split and hence there exists a homomorphism $\beta: E(M) \rightarrow M$ such that $(\beta \circ \alpha)(a)-a \in \rho(M)$, for all $a \in M$. Put $h_{1}=\beta \circ h$, it is clear that h_{1} is an R-homomorphism. For each a in A, we have that $\left(h_{1} \circ f\right)(a)-g(a)=((\beta \circ h) \circ f)(a)-$ $g(a)=(\beta(h \circ f))(a)-g(a)=$ $(\beta(\alpha \circ g))(a)-g(a)=(\beta \circ \alpha)(g(a))-$ $g(a) \in \rho(M)$. Thus $\left(h_{1} \circ f\right)(a)-g(a) \in$ $\rho(M)$, for all $a \in A$ and hence M is a ρ-injective module.

The following proposition gives a characterization of ρ-injective modules by using the class of injective modules.

Proposition 2.18. The following statements are equivalent for an R-modules M :
(1) M is ρ-injective;
(2) M is ρ - B-injective, for every injective module B;
(3) for each diagram with B is an injective R-module and A is an essential submodule in B,

there exists a homomorphism $g: B \rightarrow M$ such that $(g \circ i)(a)-f(a) \in \rho(M)$, for all $a \in A$. Proof: (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious. (3) \Rightarrow (1) Consider the following diagram with B is any R-module and A is any essential submodule in B.

By [1], there exists an injective R-module say E, such that B is an essential submodule in E. Thus we have the following diagram,

where i_{A} and i_{B} are inclusion R-homomorphisms. Since $A \leq^{e} B$ (by hypothesis) and $B \leq^{e} E$ it follows from [8] that $A \leq^{e} E$. By hypothesis, there exists an R-homomorphism $h: E \rightarrow M$ such that $\left(h \circ i_{B} \circ i_{A}\right)(a)-f(a) \in \rho(M)$, for all $a \in A$. Put $g=h \circ i_{B}$, thus $\left(g \circ i_{A}\right)(a)-f(a) \in$ $\rho(M)$, for all $a \in A$. By Proposition 2.4., M is ρ - B-injective, for every R-module B and hence M is a ρ-injective R-module.

In the following proposition, we will give another characterization of ρ-injectivity by using the class of free modules.

Proposition 2.19. An R-module M is
ρ-injective if and only if M is ρ - F-injective, for every free R-module F.
Proof: (\Longrightarrow) This is obvious.
(\Longleftarrow) Suppose that M is ρ - F-injective, for every free R-module F. Consider the following diagram with exact row.

Since B is a set, thus there exists a free R-module, say F, such that B is a basis of F [12, p.58]. By hypothesis, there exists an R-homomorphism $\mathrm{h}_{1}: \mathrm{F} \rightarrow \mathrm{M}$ such that $\left(h_{1} \circ(i \circ f)\right)(a)-g(a) \in \rho(M)$, for all $a \in A$. Put $h=: h_{1} \circ i: B \rightarrow M$, it is clear that h is an R-homomorphism. For every $a \in A$, we have that
$(h \circ f)(a)-g(a)=\left(\left(h_{1} \circ i\right) \circ f\right)(a)-$ $g(a) \in \rho(M)$ and hence M is a ρ-injective R-module.

3. Endomorphism Ring of ρ-Injective Modules

Let M be an R-module, $S=\operatorname{End}_{R}(M)$ and let $\Delta=\left\{f \in S \mid \operatorname{ker}(f) \leq^{e} M\right\}$. It is wellknown that Δ is a two-sided ideal of $S[13]$ and if an R-module M is injective, then the ring S / Δ is regular. Moreover, if $\Delta=0$, then the ring S is a right self-injective ring [8].

For analogous results for ρ-injective modules we consider the following.

Let M and N be R-modules and $f: M \rightarrow N$ be an R-homomorphism. The set $f^{-1}(\rho(N))=$ $\{x \in M \mid f(x) \in \rho(N)\}$ is said to be the kernel of f relative to a preradical ρ and denoted by $\rho \operatorname{ker}(f)$.

Let M be an R-module and $S=\operatorname{End}_{R}(M)$. We will use the notation $\rho \Delta$ for the set $\left\{f \in S \mid \rho \operatorname{ker}(f) \leq^{e} M\right\}$.

Proposition 3.1. Let M be an R-module and $S=\operatorname{End}_{R}(M)$. Then $\rho \Delta$ is a two-sided ideal of S.
Proof. Since the zero function belong to Δ, thus $\rho \Delta$ is a non-empty set. Let $f, g \in \rho \Delta$, thus $\rho \operatorname{ker}(f) \leq^{e} M$ and $\rho \operatorname{ker}(g) \leq^{e} M$ and hence
Lemma 5.1.5(b) in [7] implies that
$\rho \operatorname{ker}(f) \cap \rho \operatorname{ker}(g) \leq^{e} M$. Since
$\rho \operatorname{ker}(f) \cap \rho \operatorname{ker}(g) \subseteq \rho \operatorname{ker}(f-g)$, thus $\rho \operatorname{ker}(f-g) \leq^{e} \mathrm{M}$ (by [7, Lemma 5.1.5(a)]) and hence $f-g \in \rho \Delta$.
Let $f \in \rho \Delta$ and $h \in S$, thus $\rho \operatorname{ker}(f) \leq^{e} M$.
Since $\rho \operatorname{ker}(f) \subseteq \rho \operatorname{ker}(h \circ f)$, thus $\rho \operatorname{ker}(h \circ f) \leq^{e} M$ (by [7, Lemma 5.1.5(a)]) and hence $h \circ f \in \rho \Delta$. Now we will prove that $f \circ h \in \rho \Delta$. Since $\rho \operatorname{ker}(f) \leq^{e} M$, thus Lemma 5.1.5(c) in [7] implies that $h^{-1}(\rho \operatorname{ker}(f)) \leq^{e} M$. But $h^{-1}(\rho \operatorname{ker}(f)) \subseteq$ $\rho \operatorname{ker}(f \circ h)$, therefore $\rho \operatorname{ker}(f \circ h) \leq^{e} M$, by [7, Lemma 5.1.5(a)]. Thus $f \circ h \in \rho \Delta$ and hence $\rho \Delta$ is a two-sided ideal of S.

Now, we are ready to state and prove the main result in this section.

Theorem 3.2. Let M be an R-module and $S=\operatorname{End}_{R}(M)$. If M is ρ-injective, then:
(1) $S / \rho \Delta$ is a regular ring;
(2) if $\rho \Delta=0$, then S is a right self-injective ring.
Proof. Suppose that M is a ρ-injective R-module.
(1) Let $\lambda+\rho \Delta \in S / \rho \Delta$, thus $\lambda \in S$. Put $K=\operatorname{ker}(\lambda)$ and let L be a relative complement of K in M. Define $\alpha: \lambda(L) \rightarrow M$ by $\alpha(\lambda(x))=$ x, for all $x \in L$. It is easy to prove that α is a well-defined R-homomorphism.
Thus we have the following diagram, where i is the inclusion R-homomorphism.

Since M is ρ-injective (by hypothesis), there exists an R-homomorphism $\beta: M \rightarrow M$ such that
$\beta(\lambda(x))-\alpha(\lambda(x)) \in \rho(M)$ for each $x \in L$.
That is for each $x \in L$, we have that
$\beta(\lambda(x))=\alpha(\lambda(x))+m_{x}$, for some $m_{x} \in$ $\rho(M)$. Let $u \in K \oplus L$, thus $u=x+y$ where $x \in K$ and $y \in L$ and hence $(\lambda-\lambda \beta \lambda)(u)=$ $(\lambda-\lambda \beta \lambda)(x+y)=\lambda(x)-\lambda \beta(\lambda(x))+$ $\lambda(y)-\lambda \beta(\lambda(y))=0-0-\lambda(y)-$ $\lambda\left(\alpha \lambda(y)+m_{y}\right)=\lambda(y)-\lambda(y)-\lambda\left(m_{y}\right) \in$ $\rho(M)$ (because ρ is a preradical) and hence $u \in \rho \operatorname{ker}(\lambda-\lambda \beta \lambda)$. Thus for each $u \in K \oplus L$, we have that $u \in \rho \operatorname{ker}(\lambda-\lambda \beta \lambda)$ and this implies that $K \oplus L \subseteq \rho \operatorname{ker}(\lambda-\lambda \beta \lambda)$. Since $K \oplus L \leq^{e} M$ [8], thus Lemma 5.1.5(a) in [7] implies that $\rho \operatorname{ker}(\lambda-\lambda \beta \lambda) \leq^{e} M$ and hence $\lambda-\lambda \beta \lambda \in \rho \Delta$. Thus $\lambda+\rho \Delta=(\lambda \beta \lambda)+\rho \Delta$ and hence $S / \rho \Delta$ is a regular ring.
(2) Suppose that $\rho \Delta=0$, thus by (1) above, we have that S is a regular ring. Let I be any right ideal of S and let $f: I \rightarrow S$ be any right S-homomorphism. Consider the following diagram.

Let $I M$ be the R-submodule of M generated by $\{\lambda m \mid \lambda \in I, m \in M\}$. Thus, if $x \in I M$, then $x=\sum_{i=1}^{n} \lambda_{i} m_{i}$ for some $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in I$ and some $m_{1}, m_{2}, \cdots, m_{n} \in M$ where $n \in \mathbb{Z}^{+}$. Define $\theta: I M \rightarrow M$ as follows, for each $x=\sum_{i=1}^{n} \lambda_{i} m_{i} \in I M$, put $\theta(x)=\theta\left(\sum_{i=1}^{n} \lambda_{i} m_{i}\right)=\sum_{i=1}^{n} f\left(\lambda_{i}\right)\left(m_{i}\right)$. Let $x, y \in I M$, thus $x=\sum_{i=1}^{n} \lambda_{i} m_{i}$ and $y=\sum_{j=1}^{t} \alpha_{j} m_{j}^{\prime}$, for some $\lambda_{i}, \alpha_{j} \in I$ and $m_{i}, m_{j}^{\prime} \in M$, with $i=1, \cdots, n$ and $j=$ $1, \cdots, t$ where $n, t \in \mathbb{Z}^{+}$. Since S is a regular ring, thus Proposition 4.14 in [8] implies that each finitely generated right ideal of S is generated by an idempotent. Hence the right ideal of a ring S which is generated by $\lambda_{1}, \cdots, \lambda_{n}, \alpha_{1}, \cdots, \alpha_{t}$ written as $e S$, where $e=e^{2} \in I$ and hence $\lambda_{i}, \alpha_{j} \in e S$ for all $i=1, \cdots, n, j=1, \cdots, t$ and this implies that
$\lambda_{i}=e h_{i}$ and $\alpha_{j}=e h_{j}^{\prime}$ for some $h_{i}, h_{j}^{\prime} \in S$ and for all $i=1, \cdots, n, j=1, \cdots, t$. Hence $e \lambda_{i}=$ $e\left(e h_{i}\right)=e^{2} h_{i}=e h_{i}=\lambda_{i}$, for all $i=1, \cdots, n$ and $e \alpha_{j}=e\left(e h_{j}^{\prime}\right)=e^{2} h_{j}^{\prime}=e h_{j}^{\prime}=\alpha_{j}$ for all $j=1, \cdots, t$. Thus, $f\left(\lambda_{i}\right)=f(e) \lambda_{i}$ and $f\left(\alpha_{j}\right)=f(e) \alpha_{j}$ for all $i=1, \cdots, n$ and $j=1, \cdots, t$. Therefore, $\theta(x)=\theta\left(\sum_{i=1}^{n} \lambda_{i} m_{i}\right)=$ $\sum_{i=1}^{n} f\left(\lambda_{i}\right)\left(m_{i}\right)=\sum_{i=1}^{n} f(e) \lambda_{i} m_{i}=$ $f(e) \sum_{i=1}^{n} \lambda_{i} m_{i}=f(e) x$ and similarly we have that $\theta(y)=f(e) y$. Clearly, θ is a well-defined R-homomorphism, since for all $x, y \in I M$, if $x=y$, then $f(e) x=f(e) y$. Since $\theta(x)=$ $f(e) x$ and $\theta(y)=f(e) y$ (as above), thus $\theta(x)=\theta(y)$. Let $x, y \in I M$ and $r \in R$, thus $\theta(x+y)=f(e)(x+y)=f(e) x+f(e) y=$ $\theta(x)+\theta(y)$ and $\theta(r x)=f(e)(r x)=$ $r(f(e)(x))=r \theta(x)$. Therefore, θ is a welldefined R-homomorphism. Thus we have the following diagram (where i is the inclusion R-homomorphism).

Since M is a ρ-injective, there exists an R-homomorphism $\varphi: M \rightarrow M$ such that $\varphi(x)-\theta(x) \in \rho(M)$, for all $x \in I M$. Let $m \in M$ and $\lambda \in I$. Thus $(\varphi \lambda)(m)=$ $\varphi(\lambda m)=\theta(\lambda m)+l_{m}=f(\lambda) m+l_{m}$, for some $l_{m} \in \rho(M)$ and hence $(\varphi \lambda-f(\lambda))(m)$ $\in \rho(M)$ and this implies that $m \in \rho \operatorname{ker}(\varphi \lambda-$ $f(\lambda))$. Thus $M=\rho \operatorname{ker}(\varphi \lambda-f(\lambda))$, for each $\lambda \in I$. Therefore $\rho \operatorname{ker}(\varphi \lambda-f(\lambda)) \leq^{e} M$ and hence $\varphi \lambda-f(\lambda) \in \rho \Delta$, for all $\lambda \in I$. Since $\rho \Delta=0$ (by hypothesis), thus $f(\lambda)=\varphi \lambda$, for all $\lambda \in I$ and hence S satisfied Baer's condition. Therefore, S is a right self-injective ring, by [8, Theorem 1.6.].

Proposition 3.3. Let M be an ρ-injective R-module and $S=\operatorname{End}_{R}(M)$. Then $I \cap K=I K+\rho \Delta \cap(I \cap K)$, for every twosided ideals I and K of S.

Proof. Suppose that M is a ρ-injective R-module, thus Theorem 3.2. implies that $S / \rho \Delta$ is a regular. Let I and K be any twosided ideals of S. Let $\alpha \in I \cap K$, thus $\alpha+\rho \Delta \in$ $S / \rho \Delta$. Since $S / \rho \Delta$ is a regular ring, thus there exists an element $\beta+\rho \Delta \in S / \rho \Delta$ such that $\alpha+\rho \Delta=\alpha \beta \alpha+\rho \Delta$ and hence $\alpha-\alpha \beta \alpha \in \rho \Delta$. Since $\alpha-\alpha \beta \alpha \in I \cap K$, thus $\alpha-\alpha \beta \alpha \in \rho \Delta \cap$ ($I \cap K$). Put $\alpha_{1}=\alpha-\alpha \beta \alpha$, thus $\alpha=\alpha \beta \alpha+\alpha_{1} \in I K+\rho \Delta \cap(I \cap K)$ and hence $I \cap K \subseteq I K+\rho \Delta \cap(I \cap K)$. Since $I K \subseteq I$ and $I K \subseteq K$, thus $I K \subseteq I \cap K$. Since $\rho \Delta \cap(I \cap K) \subseteq(I \cap K)$, thus $I K+\rho \Delta \cap$ $(I \cap K) \subseteq I \cap K$. Therefore, $I \cap K=I K+$ $\rho \Delta \cap(I \cap K)$.

By applying Proposition 3.3. we have the following result.

Corollary 3.4. Let M be a ρ-injective
R-module, $S=\operatorname{End}_{R}(M)$ and let K be any two-sided ideal of S.Then $K=K^{2}+(\rho \Delta \cap K)$

In [14], Osofsky showed that, for an R-module M, if $Z(M)=0$, then the Jacobson radical of the ring $S=\operatorname{End}_{R}(M)$ is zero. Also, if M is an injective R-module with $Z(M)=0$, then the ring $S=\operatorname{End}_{R}(M)$ is a right selfinjective regular [8].

In the following, we will state and prove analogous results for ρ-injective modules. Firsty, we need the following lemma.

Lemma 3.5. Let M be an R-module and $S=\operatorname{End}_{R}(M)$. Then for each $\lambda \in S$ and for each $x \in M$ we have $[\rho(M): \lambda(x)]_{R}=[\rho \operatorname{ker}(\lambda): x]_{R}$.
Proof. Let $\lambda \in S$ and $x \in M$. Thus if $r \in[\rho(M): \lambda(x)]$, then $\lambda(x) r \in \rho(M)$ and hence $\lambda(x r) \in \rho(M)$ and this implies that $x r \in \rho \operatorname{ker}(\lambda)$ and so $r \in[\rho \operatorname{ker}(\lambda): x]_{R}$. Therefore, $[\rho(M): \lambda(x)]_{R} \subseteq[\rho \operatorname{ker}(\lambda): x]_{R}$ and by similar way we can prove $[\rho \operatorname{ker}(\lambda): x]_{R} \subseteq$ $[\rho(M): \lambda(x)]_{R}$. Thus $[\rho(M): \lambda(x)]_{R}=$ $[\rho \operatorname{ker}(\lambda): x]_{R}$.

Let M be an R-module. It is easy to prove that the set $\left\{m \in M \mid[\rho(M): m]_{R}\right.$ is an essential ideal in $R\}$ is a submodule of M. This submodule is said to be the ρ-singular submodule of M and denoted by $\rho Z(M)$.

The following proposition is an analogous result of the Osofsky's result [14].

Proposition 3.6. Let M be an R-module and $S=\operatorname{End}_{R}(M)$. If $\rho \mathrm{Z}(M)=0$, then $\rho \Delta=0$. Proof. Suppose that $\rho \mathrm{Z}(M)=0$ and let $\alpha \in \rho \Delta$, thus $\rho \operatorname{ker}(\alpha) \leq^{e} M$ and hence [8, Lemma 3, p. 46] implies that $[\rho \operatorname{ker}(\alpha): x]_{R} \leq^{\mathrm{e}} R$, for each $x \in M$. Since $[\rho(M): \alpha(x)]_{R}=[\rho \operatorname{ker}(\alpha): x]_{R}$ (by Lemma 3.5.), thus $[\rho(M): \alpha(x)]_{R} \leq^{\mathrm{e}} R$ and hence $\alpha(x) \in \rho Z(M)$. Since $\rho Z(M)=0$ (by hypothesis), thus $\alpha(x)=0$, for all x in M (i.e $\alpha=0$) and hence $\rho \Delta=0$.

The following corollary (for ρ-injective modules) is analogous of the statement for injective modules [8].

Corollary 3.7. Let M be a ρ-injective R-module and $S=\operatorname{End}_{R}(M)$. If $\rho \mathrm{Z}(M)=0$, then S is a right self-injective regular ring. Proof. Suppose that M is a ρ-injective module with $\rho \mathrm{Z}(M)=0$. Thus Proposition 3.6. implies that $\rho \Delta=0$. Therefore, S is a right selfinjective regular ring, by Theorem 3.2.

Corollary 3.8. If R is a self ρ-injective ring and $\rho \mathrm{Z}(R)=0$, then R is a right self-injective regular ring.
Proof. Since $R \cong \operatorname{End}_{R}(R)$, thus the result follows from Corollary 3.7.

Let R be a ring and $\mathrm{x} \in \mathrm{R}$. Let $\mathrm{x}_{\mathrm{L}}: \mathrm{R} \rightarrow \mathrm{R}$ be the mapping defined by $x_{L}(r)=r x$, for all $\mathrm{r} \in \mathrm{R}$. Then x_{L} is an R-homomorphism and $\operatorname{End}_{R}(R)=\left\{x_{L} \mid x \in R\right\}[8]$.

Lemma 3.9. Let R be a ring and $S=\operatorname{End}_{R}(R)$. Define $\alpha: R / \rho \mathrm{Z}(R) \rightarrow S / \rho \Delta$ as follows:
$\alpha(x+\rho \mathrm{Z}(R))=x_{L}+\rho \Delta$ for each $x \in R$. Then α is an R-isomorphism.
Proof. It is easy.
The following proposition is an analogous result of the statement for self-injective rings [15].

Proposition 3.10. If R is a self ρ-injective ring, then $R / \rho Z(R)$ is a regular ring.
Proof. Let $\alpha: R / \rho \mathrm{Z}(R) \rightarrow S / \rho \Delta$ be the R-isomorphism as in Lemma 3.9., where $S=\operatorname{End}_{R}(R)$. Let $x+\rho \mathrm{Z}(R) \in R / \rho \mathrm{Z}(R)$, thus $\alpha(x+\rho \mathrm{Z}(R))=x_{L}+\rho \Delta \in S / \rho \Delta$. Since R is a self ρ-injective ring, thus $S / \rho \Delta$ is a regular ring (by Theorem 3.2.) and this implies that there exists an element $y_{L}+\rho \Delta \in S / \rho \Delta$ such that $x_{L}+\rho \Delta=x_{L} y_{L} x_{L}+\rho \Delta=(x y x)_{L}+\rho \Delta$. Since α is an R-isomorphism, thus α^{-1} exists and $\alpha^{-1}\left(x_{L}+\rho \Delta\right)=\alpha^{-1}\left((x y x)_{L}+\rho \Delta\right)$. Hence $x+\rho \mathrm{Z}(R)=x y x+\rho \mathrm{Z}(R)=(x+\rho \mathrm{Z}(R))$. $(y+\rho Z(R)) \cdot(x+\rho Z(R))$. Since $\alpha^{-1}\left(y_{L}+\rho \Delta\right)=y+\rho \mathrm{Z}(R) \in R / \rho \mathrm{Z}(R)$, thus we get an element $y+\rho Z(R)$ in $R / \rho Z(R)$ such that $x+\rho \mathrm{Z}(R)=(x+\rho \mathrm{Z}(R)) \cdot(y+\rho \mathrm{Z}(R))$. $(x+\rho \mathrm{Z}(R))$. Therefore, $R / \rho \mathrm{Z}(R)$ is a regular ring.

References:

[1] Sharpe, D. W., and Vamos, P. (1972). Injective Modules. Cambridge univ. press,

London.

[2] Jhonson, R. E. and Wong, E. T. (1961).
Quasi-injective modules and irreducible rings. J. London Math. Soc., 39: 260-268.
[3] Smith, P. F. (1997). Injective modules and their generalizations. University of Glasgowdepartment of Math., Preprint series No.(9707).
[4] Zeyada, N. A. (2014). S-injective modules and rings. Advances in pure Math., 4: 25-33.
[5] Mehdi, A. R. (2000), Nearly injective modules, MSc. Thesis, Univ. of Al-Mustansiriya.
[6] Abbas, M. S. and Abd-Alridha, Sh. N. (2010). Special injective modules and their endomorphisms ring. Al-Mustansiriya J. Sci, 21(6): 482-500.
[7] Kasch, F. (1982). Modules and Rings. Academic press, London, New York.
[8] Faith, C. (1967). Lectures on injective modules and quotient rings. No. 49, Springer-Verlag, Berlin, Heidelberg, NewYork.
[9] Anderson, F. W. and Fuller, K. R. (1974).
Rings and Categories of modules. Springer-
Verlag, Berlin, Heidelberg, New York.
[10] Bican, L., Jambor, P., Kepka, T. and Nemec, P. (1974). Preradicals. Comment.
Math. Univ. Carolinae, 15(1): 75-83.
[11] Naude, C. G., Naude, G. and Pertorius,
L. M. (1986). Equational characterizations of relative injectives. Commun. Algebra, 14(1): 39-48.
[12] Rotman, J. J. (1979). An Introduction to Homological Algebra. Academic press, New York.
[13] Mohamed, S. H. and Muller, B. (1990). Continuous and Discrete Modules. London Math. Soc., Cambridge Univ. press, New York.
[14] Osofsky, B. L. (1968). Endomophisms Rings of quasi-injective modules. Canadian J. Math., 20: 895-903.
[15] Utumi, Y. (1969). On continuous rings and self-injective rings. Trans. of Amer.

Math. Soc.138: 505-512.

*/الموديولات الأغمارية نسبة الى جذر ابتدائي

من قبل

الخلاصة

مفهوم الموديولات الاغمارية نسبة الى جذر ابتدائي $\rho\left(\begin{array}{l}\text { (الموديولات الاغمارية- } \rho) ~ ط ر ح ت ~ ف ي ~ ه ذ ا ~ ا ل ع م ل ~ ك ت ع م ي م ~ ل ل م و د ي و ل ا ت ~\end{array}\right.$ الاغمارية. تعريف الموديولات الاغمارية نسبة الى جذر ابتدائي م يوحد عدة تعريفات عن تعميمات الموديولات الاغمارية مثل الموديولات الاغمارية تقريبا والموديولات الاغمارية الخاصة. العديد من التشخيصات وخواص الموديولات الاغمارية نسبة الى جذر ابتدائي ρ ق اعطيت. درسنا حلقات التماثثلات الموديولية الذاتية للموديولات الاغماريـة نسبة الى جذر ابتدائي م. نتائيج هذا العمل توحد وتوسع العديد من النتائج الموجودة في المصادر.

الكلمات المفتاحية: الموديولات الاغمارية، الموديولات الاغمارية تقريبا، الجذر الابتائي، حلقات التماثلات الموديولية الذاتية.

[^0]: * The results of this paper will be part of a MSc thesis of the second author, under the supervision of the first author at the University of Al-Qadisiyah.

