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The concept of p-injective modules (where p is a preradical) is introduced in this work as a
generalization of injective modules. The definition of p-injectivity unifies several definitions on
generalizations of injectivity such as nearly injective modules and special injective modules. Many
characterizations and properties of p-injectivity are given. We study the endomorphisms rings of
p-injective modules. The results of this work unify and extend many results in the literature.
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1. Introduction:

Throughout this work, R stands a commutative
ring with identity element 1 and a module
means a unitary left R-modules. The class of all
R-module will be denoted by R-Mod and the
symbol p means a preradical on R-Mod (A
preradical p is defined to be a subfunctor of the
identity functor of R-Mod). For an R-module
M, the notations J(M), L(M), E(M) and

S = Endg (M) will respectively stand for the
Jacobson radical of M, the prime radical of M,
the injective envelope of M and the
endomorphism ring of M. The notation

Homp (N, M) denoted to the set of all
R-homomorphism from R-module N into
R-module M. An R-module M is called
injective, if for every R-monomorphism
f:A— B (where A and B are R-modules) and
every R-monomorphism g: A — M, there exists
an R-homomorphism h: B — M such that
g=hef[].

Injective modules have been studied
extensively, and several generalizations for
these modules are given, for example, quasi-
injective modules [2], P-injective Modules [3],
and S-injective module [4].
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In 2000, nearly-injective modules were
discussed in [5] as generalization of injective
modules. An R-module M is said to be nearly
injective if for each R-monomorphism
f+A - B (where A and B are two R-modules),
each R-homomorphism g: A — M , there exists
an R-homomorphism h: B - M such that
(hof)(a)—g(a) € J(M) (foralla € A[5].
Also, in [6] M. S. Abbas and Sh. N. Abd-
Alridha introduced the concept of special
injective modules as a generalization of
injectivity. An R-module M is said to be special
injective if for each R-monomorphism
f+A — B (where A and B are two R-modules),
each R-homomorphism g: A — M, there exists
an R-homomorphism h: B — M such that
(hof)(a) —g(a) € L(M) [foralla € A[6].
Aring R is called Von Neumann
regular (in short, regular) if foreacha € R,
there exsits b € R such that a = aba. For a
submodule N of an R-module M anda € M,
[N:ga] ={r € R Ira € N}. Foran
R-module M and a € M. A submodule N of
an R-module M is called essential and denoted
by N <¢ M if every non zero submodule of M
has nonzero intersection with N.

* The results of this paper will be part of a MSc thesis of the second author, under the supervision of the first author at the

University of Al-Qadisiyah.



2. Injective Modules Relative to a
Preradical

In this section, we will introduce a new
generalization of injective module namely,
injective module relative to a preradical.
We will study some properties and
characterizations of these modules.

We start by the following definition:-

Definition 2.1. Let p be a preradical on
R-Mod and let M, N and K be R-modules. A
module M is said to be N-injective relative to
the preradical p (shortly, p-N-injective) if for
each R-monomorphism f: K — N and each
R-homomorphism g: K — M there is an
R-homomorphism h: N - M such that

(hof)(x)-g(x) € p(M)_, foreach x in K.

[
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An R-module M is said to be injective relative
to the preradical p (shortly, p-injective) if M is
p-N-injective for all R-modules N. Aring R is
said to be p-injective ring, if R is a p-injective
R-module.

Examples and Remarks 2.2.

(2) It is clear that injective modules and
N-injective modules are p-N-injective for every
R-module N.

(2) There are many types of preradical functors,
for examples: the Jacobson radical functor (J),
the socle functor (soc), the prime radical functor
(L) and the torsion functor (T) [7]. Each one of
these functors gives a special case of p-injective
modules, for example a left R-module M is said
to be (soc)-injective if M is p-injective, where

p = soc.

(3) The concept of nearly-injective module
(which is introduced in [5]) is a special case of
p-injective R-modules by taking p = J, where J
is the Jacobson radical functor.

(4) Special injective modules (which are
introduced in [6]) are special case of
p-injectivity by taking p =L, where L is the
prime radical functor.

(5) Let M be a module such that p(M) = 0, thus
M is injective if and only if M is p-injective.
(6) Itis clear that if p(M) = M, then M is a
p-injective module, in particular:

(a) Every module M which has no maximal
submodule (i.e, J(M) = M) is J-injective.

(b) Every semisimple module M (i.e.,

soc(M) = M) is (soc)-injective. Thus
p-injective modules may not be injective, for
example: let M = Z,, as Z-module, where p is a
prime number. Since M is semisimple, thus
soc(M) = M and hence M is (soc)-injective but
M is not injective.

(7) Let M, be an R-module. If M;isa p-N-
injective R-module and M; is isomorphic to M,,
then M, isa p-N-injective.

(8) Form (7) above we have that p-injectivity is
an algebraic property.

(9) Every submodule of semisimple R-module
is p-injective, where p is the socle functor.

Lemma 2.3. Let N and M be R-modules. Then
the following statements are equivalent:
(1) M is p-N-injective;
(2) for any diagram, ]
0—» A —l—b’N
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where A is a submodule of an R-module N,
g:A = M is any R-homomorphism and i is the
inclusion mapping, there exists an
R-homomorphism h: N - M such that
(heoi)(a) —g(a) € p(M), forall ainA.
Proof: The proof is obvious. O

In the following proposition we show that
the set of all essential submodules of N is a test
set for p-N-injectivity.



Proposition 2.4. Let N be an R-module. Then
an R-module M is p-N-injective if and only if
for each essential submodule A of N and each
R-homomorphism f: A — M, there is an
R-homomorphism g: N = M such that
(gei)(a)— f(a) € p(M) foreach a in A.
Proof: (=) This is obvious.

(&) Let A be any essential submodule of N
and f: A = M be any R-homomorphism.
Consider the diagram (1).

i
O0—>» A —»N

f l (diagram (1))
M

Let A¢ be any complement submodule of 4 in
N. By [8, p.16], we have that A @ A€ <° N.
Define g:A @ A° > M by g(a + a,) = f(a),
forall a € Aand a,; € A°. It is easy to prove
that g is a well-defined R-homomorphism.
Therefore, we have the diagram (2).

0—> ABA—» N

By hypothesis, there exists an
R-homomorphism h: N - M such that
(hoi)(x) —gx)e p(M) forall x in A @ A€.
For the diagram (1), we get that

(he)(a) — f(a) = (hei)(a) — g(a) € p(M)
for all a in A. Therefore, M is a p-N-injective
R-module, by Lemma 2.3. 0

Now, we will study the direct product and
the direct sum of p-N-injective modules.

Proposition 2.5. Let {M;},c, be afamily of
R-modules. Then :

(1) if [1aea M, is a p-N-injective (where N is
an R-module), then each M, is p-N-injective.

(2)if p(TTaeaMa) = Maca(p(My)), then the

converse of (1) is true.

Proof: (1) PutM = [] e M; and let

iy:M, —» M and p,: M — M, be the injections
and projections associated with this direct

product respectively. Suppose that M is p-N-
injective. To prove that M, is p-N-injective for
each A € A. Consider the following diagram
where A is a submodule of N and a; is
an R-homomorphism.
{
0—P»rA —» {V

’

a; «gl,z’,,/

Since M is a p-N-injective module, thus there
exists an R-homomorphism h: N - M such that
(heoi)(a) — (iyo ay)(a) € p(M) for all a in
A. Putg/1 =paoh:N— M, ForeveryainA,
we have that (g; ci)(a) — a;(x) = ga(a) —
a;(a) = (pa o h)(a) —az(a) = (pa o W)(a) -
((paeip) e ay)(a) =

pi(h(@) — (iz > 1) (@) € p(My).

Thus (g ci)(a) —a,(a) € p(M,), for each
A € Aand for every a € A and hence M, is
p-N-injective, for each 1 € A.

(2) Suppose that p(I1xea Mz) =

[T1e4(p(My)) and consider the following

diagram. i
o—»A4A —»N
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4 ,/
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Foreach A € A, letp;: M — M, be the
projection R-homomorphism. Since each M; is
p-N-injective, thus there exists an
R-homomorphism g;: N - M,, foreach1 € A
such that (g3 e )(a) — (pa ° @)(a) € p(My),
for every a in A. Define g: N - M by g(x) =
{91(x)}1ea, forevery x € N. Itis clear that g is
an R-homomorphism. For every a in A, we
have that

(g0 D@ —al@ = {g.(i@)},, ~



{(pr°a)(@}iea ={(gr°1)(a) —

(P2 ° @) (@} res € [Trea(p(Myp)). Since
[Taea(p(Mz)) = p(ITaea M2) (by hypothesis) it
follows that (g o i)(a) — a(a) € p(M), for
every a in A. Therefore, M is a p-N-injective
module. O

Corollary 2.6. Let R be a ring such that
R/J(R) is a semisimple R-module, let {M;} ¢4
be a family of R-modules and let N be any
R-module. Then [;e4 M, is (soc)-N-injective if
and only if M, is (soc)-N-injective, for each

A€ A

Proof: Since R/J(R) is a semisimple
R-module, soc([Iyea My) = [1seas0c(My)

[7, Exercise (11), p.239]. Therefore, the result
follows from Proposition 2.5. OO

Corollary 2.7. Let R be aring and let I be a
finitely generated ideal of R. Let {M;},c, be a
family of R-modules and let N be

R-module. Then [[3¢4 M; is p;-N-injective if
and only if M, is p;-N-injective.

Proof: Since I is a finitely generated ideal of R
it follows from [9, Exercise 3(1), p.174] that

I(TTaea Ma) = [1aea(IM;) and hence

piITaea Ma) = Iaea(pi(My)). Therefore, the
result follows from Proposition 2.5. O

For any family {M;};c, of R-modules, if
@ ,e4 M, is an N-injective R-module, then each
M, is an N-injective and the converse is true, if
A is finite by [3, Proposition(1.11), p. 6].

The following proposition shows that this
result is true in case of p-N-injectivity.

Proposition 2.8. Let {M;};c, be a family of
R-modules, let M = @<, M, and let N be any
R-module.

(1) If M is p-N-injective, then each M, is p-N-
injective.

(2) If A is afinite set, then the converse of (1) is
true.

Proof: Suppose that M is a p-N-injective
module. To prove that each M, is p-N-injective.

(1) Letiz: My —» M and py: M — M, be the
injections and projections associated with this
direct product respectively. Consider the
following diagram, where A is a submodule of
N and a; is an R-homomorphism.

i
o—»A —»N
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Since M is p-N-injective, there exists an
R-homomorphism h: N — M such that
(hei)(a) — (iyo ap)(a) € p(M), forall ain
A.ForeachA € A,put g, =pyeoh:N - M,.
For every a in A, we have that (g; o i)(a) —
a,(a) = ga(a) — ay(a) = (pr o h)(a) -
a;(@) = (paeh)(@) — ((paoip) o ay)(a) =
(pa o W) (@) — (pa(ir e @) (@) =

pa(h(@) = (iz e @) (@) € p(M,) (because p is
a preradical). Thus g, (a) — a;(a) € p(M,),
for each 1 € A and for every a € A.

Therefore, M, is p-N-injective, for each 1 € A.

(2) Suppose that A is a finite set. Let {M;} e
be a family of p-N-injective modules. Since A
is finite it follows from [7, p.82] that

@1ea Ma = [1rea My. Since

p(Daca Ma) =@ 2e4 p(M;) (by [10,
Proposition 2, p.76]) it follows that

p(ITrea Ma) = [Taeap(M;). By Proposition 2.5
(2), [11ea M, is p-N-injective and hence

@ ea M; is p-N-injective. O

The following corollary is immediate from
Proposition 2.8(1).

Corollary 2.9. Let M be a p-N-injective
R-module and let K be a direct summand of M.
Then K is a p-N-injective R-module. O

Corollary 2.10. Let {M;} ;¢ be a family of
R-modules and let M =@ ;4 M; .Then



(i) (1) If p is a preradical and M /p(M) is p-N-
injective, then each M, /p(M,) is p-N-injective.
(2) If pis aradical and M/p(M) is p-N-
injective, then each M, /p(M,) is N-injective.
(ii) (1) If p is a preradical, then M;/p(M,) is

p-N-injective and A is a finite set, then
M /p(M) is p-N-injective.

(2) If p is aradical, each M, /p(M;) is p-N-
injective and A is a finite set, then M /p(M) is
N-injective.

Proof: (i)(1) Suppose that p is a preradical
and M/p(M) is a p-N-injective R-module.
Since M/p(M) =@ e (Ma/p(My)) and

M /p(M) is p-N-injective (by hypothesis)

it follows that @c,4 (Ma/p(M)) is p-N-
injective. By Proposition 2.8(1) , M, /p(M,) is
p-N-injective, for all 1 € A.

(1)(2) Suppose that p is a radical and M /p (M)
is a p-N-injective module. By (i)(1),

M, /p(M,) is p-N-injective, for all 1 € A.
Since p is a radical, p(M;/p(M;)) = 0 and
hence M, /p(M;) is N-injective, for all 1 € A.

(ii)(1) Suppose that p is a preradical, each

M, /p(M,) is p-N-injective and A is a finite set.
By Proposition 2.8(2), @se4 (Ma/p(My)) is
p-N-injective. Since @4 (Ma/p(My)) =
Diea Ma/Drea p(M3) = M/p(Drea M)

= M/p(M) it follows that M /p(M) is p-N-
injective.

(ii(2)) Suppose that p is a radical, each
M;/p(M,) is p-N-injective and A is a finite set.
By (ii(1)), M/p(M) is p-N-injective. Since p is
aradical, p(M;/p(M,)) = 0 and hence
M;/p(M,) is N-injective. O

Examples 2.11.

(1) The converse of Proposition 2.8(1) is not
true in general. For example, let A be an infinite
countable index setand let 7, = Q forall A1 € A
(where Q is the field of rational numbers).
Let R =[] e Ty be the ring product of the
family {T;|A € A}. Itis easy to prove that R is a

regular ring. For k € A, let e, be the element of
R whose kth-component is 1 and whose
remaining components are 0.

Let A =@, Rey, itisclearthat Aisa
submodule of an R-module R. By [7, p.140], A
is a direct sum of injective R-modules, but A is
not injective R-module. Since every injective
R-module is p-injective, thus A is a direct sum
of p-injective R-modules. Let p be any
J-preradical. Assume that A is p-injective. Since
R isaregular ring, thus J(4) = 0 (by [7,
p.272] ). Since p is a J-preradical, thus p(A4) =
0 and hence A is injective and this is a
contradiction. Thus A is not p-injective.
Therefore, A is a direct sum of p-injective
modules, but it is not p-injective.

(2) Let M = QZ. Thus M is not p-injective
Z-module, where p is a J-preradical. In fact, if
M is p-injective, then by Proposition 2.8(1) we
have Z is p-injective Z-module and hence Z

is an injective Z-module (because p(Z) =

J(Z) = 0) and this is a contradiction. Thus M is
not p-injective Z-module.

In following, we will introduce further
characterizations of p-injective modules.

Recall that a submodule N of an R-module M
is said to be a direct summand of M if there
exists a submodule K of M such that
M=N@K,(.e.M=N+KandNNnK =0)
[7]. This is equivalent to saying that, for every

commutative diagram with exact rows,
a
O0—>» A —» B

v

fl h.” lg
‘,I

o—> v —Loy

(where A and B are two R-modules), there
exists an R-homomorphism h: B — N such that
f = hoa[ll]. It is well-known that an
R-module M is injective if and only if M is a
direct summand of every extension of it self [1,
Theorem (2.1.5)].



For analogous result for p-injective
R-modules, we introduce the following concept
as a generalization of direct summands.

Definition 2.12. A submodule N of an
R-module M is said to be p-direct summand of
M if for every commutative diagram with exact
rows,

[04
00— A —» B

.

fl h,. lg
‘/

0o—> N —L»u

(where A and B are two R-modules), there
exists an R-homomorphism h: B — N such that
(hea)(a) — f(a)e p(N), forall ain A.

Proposition 2.13. Let N be a submodule of an
R-module M. Then the following statements are
equivalent:-

(1) N is p-direct summand of M;

(2) for each diagram with exact row,

a
0—>» N —>M

I N l //' h
X

N
where Iy, is the identity homomorphism of N,

there exists an R-homomorphism h: M - N
such that (he a)(a) —a € p(N),forall a € N.
Proof: (1) = (2) Suppose that N is a p-direct
summand of M and consider the following
diagram with exact row.

a
0O—» N —» M

INl

N
Thus we have the following commutative
diagram with exact rows.
O—>» N —» M

INl h’/,/ l IM
‘,/
0o—>n —I»y

By hypothesis, there exists a homomorphism
h: M — N such that (h o @)(a) — Iy(a)e p(N),

forall ain Aand hence (hoa)(a) —a €
p(N), forall ain N.
(2) = (1) Consider the following

commutative diagram with exact rows.
[04
0—> A — B

R

O0—>» N —» M

Thus we have the following diagram.

By hypothesis, there exists a homomorphism
h:M — N suchthat (ho 8)(a) —a € p(N),
foralla € N.Puth =hog:B — N.ltis
clear that h, is a homomorphism. Let a € A4,
thus (hy ° a@)(a) — f(a) = ((ho g) o a)(a) —
f@=(ho(gea)(@~f(a)=
(heBo)@~f@ = (hep)(f(@) -
f(a) € p(N). Hence (hy c a)(a) — f(a) €
p(N), for all a in A and this implies that N is a
p-direct summand of M. O

In the following theorem we will give a
characterization of p-injective modules, by
using p-direct summands.

Theorem 2.14. For an R-module M, the
following statements are equivalent:

(1) M is p-injective.

(2) M is a p-direct summand of every extension
of itself.

(3) M is a p-direct summand of every injective
extension of itself.

(4) M isa p-direct summand of at least, one
injective extension of itself.

(5) M is a p-direct summand of E(M), where
E(M) is the injective hull of M.

Proof:- (1) = (2) Suppose that M is a
p-injective R-module and let M, be any
extension R-module of M. We will prove that



M is p-direct summand of M;. Consider the
following diagram with exact row.

a
0O—» M —>,M1

I Ml f
X

M

Since M is p-injective, there exists an
R-homomorphism f: M; — M such that
(fea)(a) —a € p(M), forall a € M. Thus
Proposition 2.13. implies that M is a p-direct
summand of M;.

(2)=(@3) and (3) = (4) areclear.

(4) = (1) Suppose that M is a p-direct
summand of at least, one injective extension
R-module of M, say E. To prove that M is a
p-injective module. Consider the diagram (1)
with exact row, where A and B are R-modules
and f: A = M is an R-homomorphism.

a
0—» A4 —» B

f l (diagram (1))

M
Since E is an extension of M, there is an
R-monomorphism, say f: M — E. Thus we

have the diagram (2) ,
0o—»a4 —»B

(diagram (2))

Since E is an injective R-module, there exists
an R-homomorphism g: B — E such that
(gea)(@) = (B f)(a)forall ainA. Thus
we have the commutative diagram (3) with
exact rows. o

00— A —» B

f l o lg (diagram (3))
¥ B
0o—>y —L» g

Since M is a p-direct summand of E (by
hypothesis), thus there exists a homomorphism
h:B - M such that (he a)(a) — f(a)

€ p(M), for all a € A. Thus, for the diagram
(1), we get a homomorphism h: B — M such
that (ho a)(a) — f(a) € p(M), forall ain A.
Therefore, M is p-injective.

(3) = (5) Thisis clear.

(5) = (1) Suppose that M is a p-direct
summand of E(M). Since E(M) is an injective
extension of M, thus M is a p-direct summand
of at least, one injective extension of itself. [

In the following corollary we will give an
inner characterization of p-injective modules,
for the term inner see [7].

Corollary 2.15. An R-module M is p-injective
if and only if M is a p-direct summand of an
R-module Homy(R, B), with B is a divisible
Abelian group.

Proof: (=) Suppose that M is p-injective. By
[7, p.91], there is a Z-monomorphism

f:M — B, where B is a divisible Abelian
group. Thus Lemma (5.5.2) in [7] implies that
Homgy(R, B) is an injective R-module.

Define 8: M - Homy(R, B) by 8(m)(r) =
f(rm), forallm € M and forall r € R. Itis
easy to see that 6 is an R-monomorphism and
hence Homy(R, B) is an extension R-module of
M. Since M is a p-injective R-module, thus
Theorem 2.14. implies that M is a p-direct
summand of an R-module Homy(R, B).

(<) Suppose that M is a p-direct summand of
an R-module Homy(R, B) with B is a divisible
Abelian group. By [7, Lemma (5.5.2)], we have
that Homy(R, B) is an injective R-module.
Thus M is a p-direct summand of an injective
extension R-module. Therefore, M is a
p-injective R-module, by Theorem 2.14. [0

An R-monomorphism a: N - M (where N
and M are R-modules) is called split, if there
exists an R-homomorphism 3: M — N such that

BO(X:IN [7]

An R-module M is injective if and only if
for every R-module N, each R-monomorphism
a:M — Nissplit [7].



For analogous result for p-injective modules,
we introduce the following concept.

Definition 2.16. An R-monomorphism
a:N — M is said to be p-split, if there exists an
R-homomorphism §: M — N such that
(Bea)(a)—a€p(N), forallainN.

a
0o—»N —>»M

INl /’/ﬂ
A/
N

The following theorem gives and
characterization of p-injectivity by using
p-split monomorphisms.

Theorem 2.17. The following statements are
equivalent for an R-module M:

(1) M is p-injective;

(2) for each R-module N, each
R-monomorphism a: M — N is a p-split;

(3) for each injective R-module N, each
R-monomorphism a: M — N is a p-split;

(4) each R-monomorphism a: M —-E(M) is
p-split.

Proof: (1) = (2) Suppose that M is a
p-injective R-module. Let N be any R-module
and let a: M - N be any R-monomorphism.
Consider the following diagram.

a
o—»M—>N

Iu l ﬁ
‘/

M
Since M is p-injective, there exists an
R-homomorphism #: N - M such that
(Boa)(a)—a€e p(M),forall ae M.
Hence «a is a p-split.
(2) = (3)and (3) = (4) are obvious.
(4) = (1) Suppose that each R-monomorphism
a:M — E(M)isa p-split. To prove that M is a
p-injective. Consider the following diagram
with exact row, where A and B are R-modules
and g: A - M is any R-homomaorphism.

0—»A—B

M
Since E(M) is an extension of M, thus there is a
monomorphism, say a: M — E(M) and hence
we get the following diaaram with exact row.
f

0—»A —»B

R
’
g hl z’, /
Pt ,/
/, 4 h

Y
M K
o £/
>

E(M)

Since E(M) is an injective module, there exists
a homomorphism h: B —» E(M) such that
(he f)(a) = (aog)(a), forall a € A. By
hypothesis, we have a: M — E(M)is a
p-split and hence there exists a
homomorphism S: E(M) — M such that
(Boa)(a) —a € p(M), foralla € M.
Put hy = B o h, itis clear that h; isan
R-homomorphism. For each a in A, we have
that (hy o f)(a) — g(@) = ((Boh) o f)(a) -
g(@ = (Bhof))(@—gla) =

(Bla°g))(@) - g(a) = (B = a)(g(a)) —
g(a) € p(M). Thus (hy o f)(a) — g(a) €
p(M), for all a € A and hence M is a
p-injective module. O

The following proposition gives a
characterization of p-injective modules by
using the class of injective modules.

Proposition 2.18. The following statements are
equivalent for an R-modules M:

(1) M is p-injective;

(2) M is p-B-injective, for every injective
module B;

(3) for each diagram with B is an injective
R-module and A is an essential submodule in B,



there exists a homomorphism g: B — M such
that (g o i)(a) — f(a) € p(M), forall a € A.
Proof: (1) = (2) and (2) = (3) are obvious.
(3) = (1) Consider the following diagram
with B is any R-module and A is any essential
submodule in B.
in
o—»A —»B

f

M

By [1], there exists an injective R-module say
E, such that B is an essential submodule in E.
Thus we have the following diagram,
Iy ip
0—»A —>»B—>»F

-
-

.
’ PR h
r'y -
.
.
.
.

M &«
where i, and ig are inclusion
R-homomorphisms. Since A <¢ B (by
hypothesis) and B <° E it follows from [8] that
A <¢ E. By hypothesis, there exists an
R-homomorphism h: E — M such that
(hoigoiy)(a)—f(a) € p(M), forall a € A.
Put g =ho ig, thus(geiy)(a) —f(a) €
p(M), for all a € A. By Proposition 2.4., M is
p-B-injective, for every R-module B and hence
M is a p-injective R-module. O

In the following proposition, we will give
another characterization of p-injectivity by
using the class of free modules.

Proposition 2.19. An R-module M is
p-injective if and only if M is p-F-injective, for
every free R-module F.

Proof: (=) This is obvious.

(&) Suppose that M is p-F-injective, for every
free R-module F. Consider the following
diagram with exact row.
i
0—»A —>B—>F

h // .
q e -7
h , -
R4 .- h
K - L

-

M &
Since B is a set, thus there exists a free
R-module, say F, such that B is a basis of F
[12, p.58]. By hypothesis, there exists an
R-homomorphism h;: F — M such that
(hyo (o ))(@) — g(a) € p(M), for all
a € A.Puth=:h;oi:B— M,itisclear that
h is an R-homomorphism. For every a € A, we
have that
(hof)a)—g@) = ((hyei)ef)(a) -
g(a) € p(M) and hence M is a p-injective
R-module. O

3. Endomorphism Ring of p-Injective
Modules

Let M be an R-module, S = Endgz (M)
and let A = {f € S| ker(f) <¢ M}. Itis well-
known that A is a two-sided ideal of S [13] and
if an R-module M is injective, then the ring S/A
is regular. Moreover, if A = 0, then the ring S
is a right self-injective ring [8].

For analogous results for p-injective modules
we consider the following.

Let M and N be R-modules and f: M — N be
an R-homomorphism. The set f~1(p(N)) =
{x € M| f(x) € p(N)} is said to be the kernel
of f relative to a preradical p and denoted

by pker(f).

Let M be an R-module and S = Endg(M).
We will use the notation pA for the set

{fe S| pker(f) <¢ M}.



Proposition 3.1. Let M be an R-module

and S = Endgz(M). Then pA is a two-sided
ideal of S.

Proof. Since the zero function belong to A ,
thus pA is a non-empty set. Let f, g € pA, thus
pker(f) <¢ M and pker(g) < M and hence
Lemma 5.1.5(b) in [7] implies that

pker(f) N pker(g) <® M. Since

pker(f) n pker(g) € pker(f — g), thus
pker(f — g) <¢ M (by [7, Lemma 5.1.5(a)])
and hence f — g € pA.

Let f € pAand h € S, thus pker(f) <¢ M.
Since pker(f) < pker(h o f), thus

pker(ho f) <¢ M (by [7, Lemma 5.1.5(a)])
and hence ho f € pA. Now we will prove that
f o h € pA. Since pker(f) <® M, thus Lemma
5.1.5(c) in [7] implies that

h~1(pker(f)) <¢ M. But h*(pker(f)) €
pker(f o h), therefore pker(f o h) <¢ M, by
[7, Lemma 5.1.5(a)]. Thus f o h € pA and
hence pA is a two-sided ideal of S. O

Now, we are ready to state and prove the
main result in this section.

Theorem 3.2. Let M be an R-module and

S = Endgz(M). If M is p-injective, then:

(1) S/pA isaregular ring;

(2) if pA= 0, then S is a right self-injective
ring.

Proof. Suppose that M is a p-injective
R-module.

(1) Let A + pA € S/pA, thus 1 € S. Put

K = ker(A) and let L be a relative complement
of K in M. Define a: A(L) » M by a(A(x)) =
x, forall x € L. Itis easy to prove that « is a
well-defined R-homomorphism.

Thus we have the following diagram, where i is
the inclusion R-homomorphism.

i
00— AL)—> M

I"
p
.
a B
P
I'd

M
Since M is p-injective (by hypothesis), there
exists an R-homomorphism g: M — M such that
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B(A(x)) — a(/l(x)) € p(M) foreach x € L.
That is for each x € L, we have that

BA(x)) = a(A(x)) + m,, for some m, €
p(M). Letu € K @ L, thusu = x + y where
x € Kandy € L and hence (1 — ABA)(u) =
A=) (x+y) = Alx) — Aﬂ()l(x)) +

AW) = 2AB(A(») =0—0—A(y) —

A(a/l(y) + my) =Aly) —Ay) — A(my) €
p(M) (because p is a preradical) and hence

u € pker(4 — ApA). Thus foreachu e K P L,
we have that u € pker(4 — A1) and this
implies that K @ L < pker(A — A8A4). Since
K @ L <° M [8], thus Lemma 5.1.5(a) in [7]
implies that pker(4 — A84) <® M and hence
A—ABA € pA. Thus A + pA = (ABA) + pA and
hence S/pA is a regular ring.

(2) Suppose that pA= 0, thus by (1) above, we
have that S is a regular ring. Let I be any right
ideal of S and let f:1 — S be any right
S-homomorphism. Consider the following
diagram.

i
0O—» [ —>»S

|

S
Let IM be the R-submodule of M generated by
{Am| A1 € I,m € M}. Thus, if x € IM, then
x = )i, Aym; for some A4, 4,,++, 1, € [ and
some my;, m,, -+, m, € M where n € Z™.
Define 8: IM — M as follows, for each
x =X, Aym; € IM, put
0(x) = 8T, my) = Ty F(A)(my). Let
x,y € IM, thus x = };I-, A;m; and
y = X5 aym/, forsome 1;,a; €1
and m;, m; € M,withi =1,--,nandj =
1,---,t where n,t € Z*. Since S is a regular
ring, thus Proposition 4.14 in [8] implies that
each finitely generated right ideal of S is
generated by an idempotent. Hence the right
ideal of aring S which is generated by
Aq, 0, A, aq, o+, g Written as eS, where
e = e? € ] and hence 4;, a; € eS for all
i=1,-,nj=1,--,tand this implies that



A; = eh; and a; = eh; for some h;, h; € S and
foralli =1,---,n, j =1,--,t. Hence eA; =
e(eh;) = e?h; = eh; = A;, foralli =1,---,n
and ea; = e(ehj) = e?h} = eh; = q; for
allj=1,--,t. Thus, f(4;) = f(e)4; and
f(a;) = f(e)a; foralli =1,--,nand
j=1,-,t Therefore, 6(x) = X, Aim;) =
=1 fAD(my) =Xz, f(e)Am; =
f(e) Xiz; Aym; = f(e)x and similarly we have
that 6(y) = f(e)y. Clearly, 0 is a well-defined
R-homomorphism, since for all x,y € IM, if
x =y, then f(e)x = f(e)y. Since 6(x) =
f(e)xand 6(y) = f(e)y (as above), thus
0(x) =0(y). Letx,y e IMandr € R , thus
0x+y)=f(e)(x+y)=f(e)x+f(e)y =
O(x)+0(y)and 8(rx) = f(e)(rx) =
r(f(e)(x)) = rf(x). Therefore, 0 is a well-
defined R-homomorphism. Thus we have the
following diagram (where i is the inclusion
R-homomorphism).

{
0O—» IM—>» M

.
y
6
,
S P
,
y
X

M

Since M is a p-injective, there exists an
R-homomorphism ¢: M — M such that

p(x) —0(x) € p(M), forall x € IM.

Letm e M and A € 1. Thus (pAd)(m) =
p(Am)=60(Am)+ 1L, = fA)m+ L, for
some L,,, € p(M) and hence (@A — f(1))(m)
€ p(M) and this implies that m € pker(pA —
f(A). Thus M = pker(pa — f(1)), for each
A € I. Therefore pker(pA — f(1)) <¢ M and
hence @A — f(1) € pA, forall 1 € I. Since
pA = 0 (by hypothesis), thus f (1) = @A, for

all A € I and hence S satisfied Baer's condition.

Therefore, S is a right self-injective ring, by [8,
Theorem 1.6.]. O

Proposition 3.3. Let M be an p-injective
R-module and S = Endgz (M). Then

INK =IK + pAn (I nK), for every two-
sided ideals I and K of S.
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Proof. Suppose that M is a p-injective
R-module, thus Theorem 3.2. implies that
S/pAisaregular. Let I and K be any two-
sided idealsof S. Leta e I N K, thus @ + pA €
S/pA. Since S/pA is a regular ring, thus there
exists an element 8 + pA € S/pA such that

a + pA = afa + pA and hence a — affa € pA.
Sincea —afa €lInNK,thus a — afa € pA N
(INK).Puta; = a — afa, thus

a=afa + a; €EIK +pAn (INnK)and
hence INK S IK + pA n (I n K). Since
IKclandIK € K, thusIK € I n K. Since
pAN(INK)<S (INnK),thusIK + pAn
(INnK)<InK.Therefore, I NK = IK +
pAN(INnK). O

By applying Proposition 3.3. we have the
following result.

Corollary 3.4. Let M be a p-injective
R-module, S = Endz (M) and let K be any
two-sided ideal of S.Then K = K? + (pAN K)

In [14], Osofsky showed that, for an
R-module M, if Z(M) = 0, then the Jacobson
radical of the ring S = Endgz (M) is zero. Also,
if M is an injective R-module with Z(M) = 0,
then the ring S = Endg (M) is a right self-
injective regular [8].

In the following, we will state and prove
analogous results for p-injective modules.
Firsty, we need the following lemma.

Lemma 3.5. Let M be an R-module and

S = Endg(M). Then for each 1 € S and for
each x € M we have

[p(M): A(x)]r = [pker(A): x]g.

Proof. Let A € Sand x € M. Thus if

r € [p(M): A(x)], then A(x)r € p(M) and
hence A(xr) € p(M) and this implies that
xr € pker(A) and so r € [pker(A): x]g.
Therefore, [p(M): A(x)]g S [pker(A): x]g and
by similar way we can prove [pker(1): x|z S
[p(M): 2(x)]g- Thus [p(M): A(x) ] =
[pker(1): x]g. O



Let M be an R-module. It is easy to prove
that the set {m € M| [p(M): m]y is an essential
ideal in R} is a submodule of M. This
submodule is said to be the p-singular
submodule of M and denoted by pZ(M).

The following proposition is an analogous
result of the Osofsky's result [14].

Proposition 3.6. Let M be an R-module and
S = Endz(M). If pZ(M) = 0, then pA = 0.
Proof. Suppose that pZ(M) = 0 and let

a € pA, thus pker(a) <® M and hence [8,
Lemma 3, p. 46] implies that

[pker(a): x]g <® R, for each x € M. Since
[p(M): a(x)]r = [pker(a): x]g (by Lemma
3.5.), thus [p(M): a(x)]g <® R and hence
a(x) € pZ(M).Since pZ(M) = 0 (by
hypothesis), thus a(x) = 0, for all x in M (i.e
a = 0) and hence pA = 0. O

The following corollary (for p-injective
modules) is analogous of the statement for
injective modules [8].

Corollary 3.7. Let M be a p-injective
R-module and S = Endz(M). If pZ(M) =0,
then S is a right self-injective regular ring.
Proof. Suppose that M is a p-injective module
with pZ(M) = 0. Thus Proposition 3.6. implies
that pA = 0. Therefore, S is a right self-
injective regular ring, by Theorem 3.2. O

Corollary 3.8. If R is a self p-injective ring and
pZ(R) = 0, then R is aright self-injective
regular ring.

Proof. Since R = Endg(R), thus the result
follows from Corollary 3.7. O

LetR bearingand x € R. Let x;:R—>R
be the mapping defined by x; (r) = rx, for all
r € R. Then x; is an R-homomorphism and
Endiz(R) = {x;| x € R} [8].

Lemma 3.9. Let R be aring and S = Endg(R).
Define a: R/pZ(R) — S/pA as follows:
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a(x + pZ(R)) = x;, + pA for each x € R. Then
a is an R-isomorphism.
Proof. It is easy. O

The following proposition is an analogous
result of the statement for self-injective rings
[15].

Proposition 3.10. If R is a self p-injective ring,
then R/pZ(R) is a regular ring.

Proof. Let a:R/pZ(R) = S/pA be the
R-isomorphism as in Lemma 3.9., where

S = Endg(R). Let x + pZ(R) € R/pZ(R), thus
a(x + pZ(R)) = x, + pA € S/pA. Since R is a
self p-injective ring, thus S/pA is a regular ring
(by Theorem 3.2.) and this implies that there
exists an element y, + pA € §/pA such that

x;, + pA = x,y.x;, + pA = (xyx);, + pA. Since
a is an R-isomorphism, thus a~?! exists and
at(x, + pA) = a”((xyx), + pA). Hence

x + pZ(R) = xyx + pZ(R) = (x + pZ(R)) .
(y + pZ(R)) . (x + pZ(R)). Since

a 1y, + pA) = y + pZ(R) € R/pZ(R), thus
we get an element y + pZ(R) in R/pZ(R) such
that x + pZ(R) = (x + pZ(R)) - (¥ + pZ(R)) -
(x + pZ(R)). Therefore, R/pZ(R) is a regular
ring. O
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