*Injective Modules Relative To a Preradical By

Akeel Ramadan Mehdi

Department of mathematics/ College of Education/ Al-Qadisiyah University/ Al-Diwaniya City/ Iraq Email: akeel_math@yahoo.com

Dhuha Taima Adb Al-Kadhim

Department of mathematics/ College of Computer Science and Mathematics / Al-Qadisiyah University/ Al-Diwaniya City/ Iraq Email: dhuha.taima@yahoo.com

Abstract

The concept of ρ -injective modules (where ρ is a preradical) is introduced in this work as a generalization of injective modules. The definition of ρ -injectivity unifies several definitions on generalizations of injectivity such as nearly injective modules and special injective modules. Many characterizations and properties of ρ -injectivity are given. We study the endomorphisms rings of ρ -injective modules. The results of this work unify and extend many results in the literature.

Keywords: Injective modules; nearly-injective modules; preradical; endomorphisms ring.

1. Introduction:

Throughout this work, R stands a commutative ring with identity element 1 and a module means a unitary left R-modules. The class of all *R*-module will be denoted by *R*-Mod and the symbol ρ means a preradical on *R*-Mod (A preradical ρ is defined to be a subfunctor of the identity functor of R-Mod). For an R-module M, the notations J(M), L(M), E(M) and $S = \operatorname{End}_{R}(M)$ will respectively stand for the Jacobson radical of *M*, the prime radical of *M*, the injective envelope of M and the endomorphism ring of M. The notation $\operatorname{Hom}_{R}(N, M)$ denoted to the set of all *R*-homomorphism from *R*-module *N* into *R*-module *M*. An *R*-module *M* is called injective, if for every *R*-monomorphism $f: A \rightarrow B$ (where A and B are R-modules) and every *R*-monomorphism $g: A \to M$, there exists an *R*-homomorphism $h: B \to M$ such that $g = h \circ f$ [1].

Injective modules have been studied extensively, and several generalizations for these modules are given, for example, quasiinjective modules [2], P-injective Modules [3], and *S*-injective module [4]. In 2000, nearly-injective modules were discussed in [5] as generalization of injective modules. An *R*-module *M* is said to be nearly injective if for each *R*-monomorphism $f: A \to B$ (where *A* and *B* are two *R*-modules), each *R*-homomorphism $g: A \to M$, there exists an *R*-homomorphism $h: B \to M$ such that $(h \circ f)(a) - g(a) \in J(M)$, for all $a \in A$ [5].

Also, in [6] M. S. Abbas and Sh. N. Abd-Alridha introduced the concept of special injective modules as a generalization of injectivity. An *R*-module *M* is said to be special injective if for each *R*-monomorphism $f: A \rightarrow B$ (where A and B are two R-modules), each *R*-homomorphism $g: A \rightarrow M$, there exists an *R*-homomorphism $h: B \to M$ such that $(h \circ f)(a) - g(a) \in L(M)$, for all $a \in A$ [6]. A ring R is called Von Neumann regular (in short, regular) if for each $a \in R$, there exsits $b \in R$ such that a = aba. For a submodule *N* of an *R*-module *M* and $a \in M$, $[N_{:R}a] = \{r \in R \mid ra \in N\}$. For an *R*-module *M* and $a \in M$. A submodule *N* of an R-module M is called essential and denoted by $N \leq^{e} M$ if every non zero submodule of M has nonzero intersection with N.

1

^{*} The results of this paper will be part of a MSc thesis of the second author, under the supervision of the first author at the University of Al-Qadisiyah.

2. Injective Modules Relative to a Preradical

In this section, we will introduce a new generalization of injective module namely, injective module relative to a preradical. We will study some properties and characterizations of these modules.

We start by the following definition:-

Definition 2.1. Let ρ be a preradical on R-Mod and let M, N and K be R-modules. A module M is said to be N-injective relative to the preradical ρ (shortly, ρ -N-injective) if for each R-monomorphism $f: K \to N$ and each R-homomorphism $g: K \to M$ there is an R-homomorphism $h: N \to M$ such that $(hof)(x)-g(x) \in \rho(M)$, for each x in K.

An *R*-module *M* is said to be injective relative to the preradical ρ (shortly, ρ -injective) if *M* is ρ -*N*-injective for all *R*-modules *N*. A ring *R* is said to be ρ -injective ring, if *R* is a ρ -injective *R*-module.

Examples and Remarks 2.2.

(1) It is clear that injective modules and N-injective modules are ρ -N-injective for every R-module N.

(2) There are many types of preradical functors, for examples: the Jacobson radical functor (J), the socle functor (soc), the prime radical functor (L) and the torsion functor (T) [7]. Each one of these functors gives a special case of ρ -injective modules, for example a left *R*-module *M* is said to be (soc)-injective if *M* is ρ -injective, where $\rho = \text{soc.}$

(3) The concept of nearly-injective module (which is introduced in [5]) is a special case of ρ -injective *R*-modules by taking $\rho = J$, where J is the Jacobson radical functor. (4) Special injective modules (which are introduced in [6]) are special case of ρ -injectivity by taking $\rho = L$, where L is the prime radical functor. (5) Let *M* be a module such that $\rho(M) = 0$, thus *M* is injective if and only if *M* is ρ -injective. (6) It is clear that if $\rho(M) = M$, then M is a ρ -injective module, in particular: (a) Every module *M* which has no maximal submodule (i.e, J(M) = M) is J-injective. (b) Every semisimple module M (i.e., soc(M) = M) is (soc)-injective. Thus ρ -injective modules may not be injective, for example: let $M = \mathbb{Z}_p$ as \mathbb{Z} -module, where p is a prime number. Since M is semisimple, thus soc(M) = M and hence M is (soc)-injective but *M* is not injective.

(7) Let M_1 be an *R*-module. If M_1 is a ρ -*N*-injective *R*-module and M_1 is isomorphic to M_2 , then M_2 is a ρ -*N*-injective.

(8) Form (7) above we have that ρ -injectivity is an algebraic property.

(9) Every submodule of semisimple *R*-module is ρ -injective, where ρ is the socle functor.

Lemma 2.3. Let *N* and *M* be *R*-modules. Then the following statements are equivalent:

- (1) *M* is ρ -*N*-injective;
- (2) for any diagram,

where *A* is a submodule of an *R*-module *N*, $g: A \to M$ is any *R*-homomorphism and *i* is the inclusion mapping, there exists an *R*-homomorphism $h: N \to M$ such that $(h \circ i)(a) - g(a) \in \rho(M)$, for all *a* in *A*. **Proof:** The proof is obvious. \Box

In the following proposition we show that the set of all essential submodules of N is a test set for ρ -N-injectivity. **Proposition 2.4.** Let *N* be an *R*-module. Then an *R*-module *M* is ρ -*N*-injective if and only if for each essential submodule *A* of *N* and each *R*-homomorphism $f: A \to M$, there is an *R*-homomorphism $g: N \to M$ such that $(g \circ i)(a) - f(a) \in \rho(M)$ for each *a* in *A*. **Proof:** (\Rightarrow) This is obvious. (\Leftarrow) Let *A* be any essential submodule of *N* and $f: A \to M$ be any *R*-homomorphism. Consider the diagram (1).

$$0 \longrightarrow A \xrightarrow{i} N$$

$$f \downarrow \qquad (diagram (1))$$

$$M$$

Let A^c be any complement submodule of A in N. By [8, p.16], we have that $A \oplus A^c \leq^e N$. Define $g: A \oplus A^c \to M$ by $g(a + a_1) = f(a)$, for all $a \in A$ and $a_1 \in A^c$. It is easy to prove that g is a well-defined R-homomorphism. Therefore, we have the diagram (2).

By hypothesis, there exists an *R*-homomorphism $h: N \to M$ such that $(h \circ i)(x) - g(x) \in \rho(M)$ for all x in $A \bigoplus A^c$. For the diagram (1), we get that $(h \circ i)(a) - f(a) = (h \circ i)(a) - g(a) \in \rho(M)$ for all a in A. Therefore, M is a ρ -N-injective *R*-module, by Lemma 2.3. \Box

Now, we will study the direct product and the direct sum of ρ -*N*-injective modules.

Proposition 2.5. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules. Then :

(1) if $\prod_{\lambda \in \Lambda} M_{\lambda}$ is a ρ -*N*-injective (where *N* is an *R*-module), then each M_{λ} is ρ -*N*-injective. (2) if $\rho(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} (\rho(M_{\lambda}))$, then the converse of (1) is true.

Proof: (1) Put $M = \prod_{\lambda \in \Lambda} M_{\lambda}$ and let $i_{\lambda}: M_{\lambda} \to M$ and $p_{\lambda}: M \to M_{\lambda}$ be the injections and projections associated with this direct

product respectively. Suppose that *M* is ρ -*N*-injective. To prove that M_{λ} is ρ -*N*-injective for each $\lambda \in \Lambda$. Consider the following diagram where *A* is a submodule of *N* and α_{λ} is an *R*-homomorphism.

Since *M* is a ρ -*N*-injective module, thus there exists an *R*-homomorphism $h: N \to M$ such that $(h \circ i)(a) - (i_{\lambda} \circ \alpha_{\lambda})(a) \in \rho(M)$ for all *a* in *A*. Put $g_{\lambda} = p_{\lambda} \circ h : N \to M_{\lambda}$. For every *a* in *A*, we have that $(g_{\lambda} \circ i)(a) - \alpha_{\lambda}(x) = g_{\lambda}(a) - \alpha_{\lambda}(a) = (p_{\lambda} \circ h)(a) - \alpha_{\lambda}(a) = (p_{\lambda} \circ h)(a) - ((p_{\lambda} \circ i_{\lambda}) \circ \alpha_{\lambda})(a)) \in \rho(M_{\lambda})$. Thus $(g_{\lambda} \circ i)(a) - \alpha_{\lambda}(a) \in \rho(M_{\lambda})$, for each $\lambda \in \Lambda$ and for every $a \in A$ and hence M_{λ} is ρ -*N*-injective, for each $\lambda \in \Lambda$. (2) Suppose that $\rho(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} (\rho(M_{\lambda}))$ and consider the following diagram. $0 \longrightarrow A \xrightarrow{q} M \xrightarrow{q} M_{\lambda}$

For each $\lambda \in \Lambda$, let $p_{\lambda}: M \to M_{\lambda}$ be the projection *R*-homomorphism. Since each M_{λ} is

 ρ -*N*-injective, thus there exists an *R*-homomorphism $g_{\lambda}: N \to M_{\lambda}$, for each $\lambda \in \Lambda$ such that $(g_{\lambda} \circ i)(a) - (p_{\lambda} \circ \alpha)(a) \in \rho(M_{\lambda})$, for every *a* in *A*. Define $g: N \to M$ by $g(x) = \{g_{\lambda}(x)\}_{\lambda \in \Lambda}$, for every $x \in N$. It is clear that *g* is an *R*-homomorphism. For every *a* in *A*, we have that

 $(g \circ i)(a) - \alpha(a) = \{g_{\lambda}(i(a))\}_{\lambda \in \Lambda} -$

 $\{(p_{\lambda} \circ \alpha)(a)\}_{\lambda \in \Lambda} = \{(g_{\lambda} \circ i)(a) - (p_{\lambda} \circ \alpha)(a)\}_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} (\rho(M_{\lambda})). \text{ Since } \prod_{\lambda \in \Lambda} (\rho(M_{\lambda})) = \rho(\prod_{\lambda \in \Lambda} M_{\lambda}) \text{ (by hypothesis) it follows that } (g \circ i)(a) - \alpha(a) \in \rho(M), \text{ for every } a \text{ in } A. \text{ Therefore, } M \text{ is a } \rho\text{-}N\text{-injective module. } \Box$

Corollary 2.6. Let *R* be a ring such that R/J(R) is a semisimple *R*-module, let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules and let *N* be any *R*-module. Then $\prod_{\lambda \in \Lambda} M_{\lambda}$ is (soc)-*N*-injective if and only if M_{λ} is (soc)-*N*-injective, for each $\lambda \in \Lambda$.

Proof: Since R/J(R) is a semisimple *R*-module, $\operatorname{soc}(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} \operatorname{soc}(M_{\lambda})$ [7, Exercise (11), p.239]. Therefore, the result follows from Proposition 2.5. \Box

Corollary 2.7. Let *R* be a ring and let *I* be a finitely generated ideal of *R*. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules and let *N* be *R*-module. Then $\prod_{\lambda \in \Lambda} M_{\lambda}$ is ρ_I -*N*-injective if and only if M_{λ} is ρ_I -*N*-injective. **Proof:** Since *I* is a finitely generated ideal of *R* it follows from [9, Exercise 3(1), p.174] that $I(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} (IM_{\lambda})$ and hence $\rho_I(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} (\rho_I(M_{\lambda}))$. Therefore, the result follows from Proposition 2.5. \Box

For any family $\{M_{\lambda}\}_{\lambda \in \Lambda}$ of *R*-modules, if $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is an *N*-injective *R*-module, then each M_{λ} is an *N*-injective and the converse is true, if Λ is finite by [3, Proposition(1.11), p. 6].

The following proposition shows that this result is true in case of ρ -*N*-injectivity.

Proposition 2.8. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules, let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$ and let *N* be any *R*-module.

(1) If *M* is ρ -*N*-injective, then each M_{λ} is ρ -*N*-injective.

(2) If Λ is a finite set, then the converse of (1) is true.

Proof: Suppose that *M* is a ρ -*N*-injective module. To prove that each M_{λ} is ρ -*N*-injective.

(1) Let $i_{\lambda}: M_{\lambda} \to M$ and $p_{\lambda}: M \to M_{\lambda}$ be the injections and projections associated with this direct product respectively. Consider the following diagram, where *A* is a submodule of *N* and α_{λ} is an *R*-homomorphism.

Since *M* is ρ -*N*-injective, there exists an *R*-homomorphism $h: N \to M$ such that $(h \circ i)(a) - (i_{\lambda} \circ \alpha_{\lambda})(a) \in \rho(M)$, for all *a* in *A*. For each $\lambda \in \Lambda$, put $g_{\lambda} = p_{\lambda} \circ h: N \to M_{\lambda}$. For every *a* in *A*, we have that $(g_{\lambda} \circ i)(a) - \alpha_{\lambda}(a) = g_{\lambda}(a) - \alpha_{\lambda}(a) = (p_{\lambda} \circ h)(a) - \alpha_{\lambda}(a) = (p_{\lambda} \circ h)(a) - ((p_{\lambda} \circ i_{\lambda}) \circ \alpha_{\lambda})(a) = (p_{\lambda} \circ h)(a) - (p_{\lambda}(i_{\lambda} \circ \alpha_{\lambda})(a)) = p_{\lambda}(h(a) - (i_{\lambda} \circ \alpha_{\lambda})(a)) \in \rho(M_{\lambda})$ (because ρ is a preradical). Thus $g_{\lambda}(a) - \alpha_{\lambda}(a) \in \rho(M_{\lambda})$, for each $\lambda \in \Lambda$ and for every $a \in A$. Therefore, M_{λ} is ρ -*N*-injective, for each $\lambda \in \Lambda$.

(2) Suppose that Λ is a finite set. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of ρ -*N*-injective modules. Since Λ is finite it follows from [7, p.82] that $\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \prod_{\lambda \in \Lambda} M_{\lambda}$. Since $\rho(\bigoplus_{\lambda \in \Lambda} M_{\lambda}) = \bigoplus_{\lambda \in \Lambda} \rho(M_{\lambda})$ (by [10, Proposition 2, p.76]) it follows that $\rho(\prod_{\lambda \in \Lambda} M_{\lambda}) = \prod_{\lambda \in \Lambda} \rho(M_{\lambda})$. By Proposition 2.5 (2), $\prod_{\lambda \in \Lambda} M_{\lambda}$ is ρ -*N*-injective and hence $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is ρ -*N*-injective. \Box

The following corollary is immediate from Proposition 2.8(1).

Corollary 2.9. Let *M* be a ρ -*N*-injective *R*-module and let *K* be a direct summand of *M*. Then *K* is a ρ -*N*-injective *R*-module. \Box

Corollary 2.10. Let $\{M_{\lambda}\}_{\lambda \in \Lambda}$ be a family of *R*-modules and let $M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}$. Then

(i) (1) If ρ is a preradical and $M/\rho(M)$ is ρ -*N*-injective, then each $M_{\lambda}/\rho(M_{\lambda})$ is ρ -*N*-injective.

(2) If ρ is a radical and M/ρ(M) is ρ-N-injective, then each M_λ/ρ(M_λ) is N-injective.
(ii) (1) If ρ is a preradical, then M_λ/ρ(M_λ) is ρ-N-injective and Λ is a finite set, then M/ρ(M) is ρ-N-injective.

(2) If ρ is a radical, each $M_{\lambda}/\rho(M_{\lambda})$ is ρ -*N*-injective and Λ is a finite set, then $M/\rho(M)$ is *N*-injective.

Proof: (i)(1) Suppose that ρ is a preradical and $M/\rho(M)$ is a ρ -N-injective R-module. Since $M/\rho(M) = \bigoplus_{\lambda \in \Lambda} (M_{\lambda}/\rho(M_{\lambda}))$ and $M/\rho(M)$ is ρ -N-injective (by hypothesis) it follows that $\bigoplus_{\lambda \in \Lambda} (M_{\lambda}/\rho(M_{\lambda}))$ is ρ -Ninjective. By Proposition 2.8(1), $M_{\lambda}/\rho(M_{\lambda})$ is ρ -N-injective, for all $\lambda \in \Lambda$.

(i)(2) Suppose that ρ is a radical and $M/\rho(M)$ is a ρ -*N*-injective module. By (i)(1), $M_{\lambda}/\rho(M_{\lambda})$ is ρ -*N*-injective, for all $\lambda \in \Lambda$. Since ρ is a radical, $\rho(M_{\lambda}/\rho(M_{\lambda})) = 0$ and hence $M_{\lambda}/\rho(M_{\lambda})$ is *N*-injective, for all $\lambda \in \Lambda$.

(ii)(1) Suppose that ρ is a preradical, each $M_{\lambda}/\rho(M_{\lambda})$ is ρ -*N*-injective and Λ is a finite set. By Proposition 2.8(2), $\bigoplus_{\lambda \in \Lambda} (M_{\lambda}/\rho(M_{\lambda}))$ is ρ -*N*-injective. Since $\bigoplus_{\lambda \in \Lambda} (M_{\lambda}/\rho(M_{\lambda})) = \bigoplus_{\lambda \in \Lambda} M_{\lambda}/\bigoplus_{\lambda \in \Lambda} \rho(M_{\lambda}) = M/\rho(\bigoplus_{\lambda \in \Lambda} M_{\lambda})$ $= M/\rho(M)$ it follows that $M/\rho(M)$ is ρ -*N*-injective.

(ii(2)) Suppose that ρ is a radical, each $M_{\lambda}/\rho(M_{\lambda})$ is ρ -*N*-injective and Λ is a finite set. By (ii(1)), $M/\rho(M)$ is ρ -*N*-injective. Since ρ is a radical, $\rho(M_{\lambda}/\rho(M_{\lambda})) = 0$ and hence $M_{\lambda}/\rho(M_{\lambda})$ is *N*-injective. \Box

Examples 2.11.

(1) The converse of Proposition 2.8(1) is not true in general. For example, let Λ be an infinite countable index set and let $T_{\lambda} = Q$ for all $\lambda \in \Lambda$ (where Q is the field of rational numbers). Let $R = \prod_{\lambda \in \Lambda} T_{\lambda}$ be the ring product of the family $\{T_{\lambda} | \lambda \in \Lambda\}$. It is easy to prove that R is a

regular ring. For $k \in \Lambda$, let e_k be the element of R whose kth-component is 1 and whose remaining components are 0. Let $A = \bigoplus_{\lambda \in A} Re_{\lambda}$, it is clear that A is a submodule of an *R*-module *R*. By [7, p.140], *A* is a direct sum of injective R-modules, but A is not injective *R*-module. Since every injective *R*-module is ρ -injective, thus *A* is a direct sum of ρ -injective *R*-modules. Let ρ be any J-preradical. Assume that A is ρ -injective. Since R is a regular ring, thus J(A) = 0 (by [7, p.272]). Since ρ is a J-preradical, thus $\rho(A) =$ 0 and hence A is injective and this is a contradiction. Thus A is not ρ -injective. Therefore, A is a direct sum of ρ -injective modules, but it is not ρ -injective. (2) Let $M = Q \oplus \mathbb{Z}$. Thus *M* is not ρ -injective \mathbb{Z} -module, where ρ is a J-preradical. In fact, if *M* is ρ -injective, then by Proposition 2.8(1) we have \mathbb{Z} is ρ -injective \mathbb{Z} -module and hence \mathbb{Z} is an injective \mathbb{Z} -module (because $\rho(\mathbb{Z}) =$ $J(\mathbb{Z}) = 0$) and this is a contradiction. Thus *M* is not ρ -injective \mathbb{Z} -module.

In following, we will introduce further characterizations of ρ -injective modules.

Recall that a submodule *N* of an *R*-module *M* is said to be a direct summand of *M* if there exists a submodule *K* of *M* such that $M = N \bigoplus K$, (i.e., M = N + K and $N \cap K = 0$) [7]. This is equivalent to saying that, for every commutative diagram with exact rows,

(where *A* and *B* are two *R*-modules), there exists an *R*-homomorphism $h: B \rightarrow N$ such that $f = h \circ \alpha$ [11]. It is well-known that an *R*-module *M* is injective if and only if *M* is a direct summand of every extension of it self [1, Theorem (2.1.5)].

For analogous result for ρ -injective *R*-modules, we introduce the following concept as a generalization of direct summands.

Definition 2.12. A submodule *N* of an

R-module *M* is said to be ρ -direct summand of *M* if for every commutative diagram with exact rows,

(where *A* and *B* are two *R*-modules), there exists an *R*-homomorphism $h: B \to N$ such that $(h \circ \alpha)(a) - f(a) \in \rho(N)$, for all *a* in *A*.

Proposition 2.13. Let *N* be a submodule of an *R*-module *M*. Then the following statements are equivalent:-

(1) *N* is ρ -direct summand of *M*;

(2) for each diagram with exact row,

where I_N is the identity homomorphism of N, there exists an R-homomorphism $h: M \to N$ such that $(h \circ \alpha)(a) - a \in \rho(N)$, for all $a \in N$. **Proof:** (1) \Rightarrow (2) Suppose that N is a ρ -direct summand of M and consider the following diagram with exact row.

Thus we have the following commutative diagram with exact rows.

By hypothesis, there exists a homomorphism $h: M \to N$ such that $(h \circ \alpha)(a) - I_N(a)\epsilon \rho(N)$,

for all *a* in *A* and hence $(h \circ \alpha)(a) - a \in \rho(N)$, for all *a* in *N*.

 $(2) \Rightarrow (1)$ Consider the following commutative diagram with exact rows.

Thus we have the following diagram.

By hypothesis, there exists a homomorphism $h: M \to N$ such that $(h \circ \beta)(a) - a \in \rho(N)$, for all $a \in N$. Put $h_1 = h \circ g: B \to N$. It is clear that h_1 is a homomorphism. Let $a \in A$, thus $(h_1 \circ a)(a) - f(a) = ((h \circ g) \circ a)(a) - f(a) = (h \circ (g \circ a))(a) - f(a) = (h \circ (\beta \circ f))(a) - f(a) = (h \circ \beta)(f(a)) - f(a) \in \rho(N)$. Hence $(h_1 \circ a)(a) - f(a) \in \rho(N)$, for all *a* in *A* and this implies that *N* is a ρ -direct summand of *M*. \Box

In the following theorem we will give a characterization of ρ -injective modules, by using ρ -direct summands.

Theorem 2.14. For an *R*-module *M*, the following statements are equivalent:

(1) *M* is ρ -injective.

(2) *M* is a ρ -direct summand of every extension of itself.

(3) *M* is a ρ -direct summand of every injective extension of itself.

(4) *M* is a ρ -direct summand of at least, one injective extension of itself.

(5) *M* is a ρ -direct summand of E(*M*), where E(*M*) is the injective hull of *M*.

Proof:- (1) \Rightarrow (2) Suppose that *M* is a ρ -injective *R*-module and let M_1 be any extension *R*-module of *M*. We will prove that

M is ρ -direct summand of M_1 . Consider the following diagram with exact row.

Since *M* is ρ -injective, there exists an *R*-homomorphism $f: M_1 \to M$ such that $(f \circ \alpha)(a) - a \in \rho(M)$, for all $a \in M$. Thus Proposition 2.13. implies that *M* is a ρ -direct summand of M_1 . (2) \Rightarrow (3) and (3) \Rightarrow (4) are clear.

(4) \Rightarrow (1) Suppose that *M* is a ρ -direct summand of at least, one injective extension *R*-module of *M*, say *E*. To prove that *M* is a ρ -injective module. Consider the diagram (1) with exact row, where *A* and *B* are *R*-modules and $f: A \rightarrow M$ is an *R*-homomorphism.

$$0 \longrightarrow A \xrightarrow{\alpha} B$$

$$f \downarrow \qquad (diagram (1))$$

$$M$$

Since *E* is an extension of *M*, there is an *R*-monomorphism, say $\beta: M \to E$. Thus we have the diagram (2) α

Since *E* is an injective *R*-module, there exists an *R*-homomorphism $g: B \to E$ such that $(g \circ \alpha)(a) = (\beta \circ f)(a)$ for all *a* in *A*. Thus we have the commutative diagram (3) with exact rows.

Since *M* is a ρ -direct summand of *E* (by hypothesis), thus there exists a homomorphism $h: B \to M$ such that $(h \circ \alpha)(a) - f(a)$

 $\in \rho(M)$, for all $a \in A$. Thus, for the diagram (1), we get a homomorphism $h: B \to M$ such that $(h \circ \alpha)(a) - f(a) \in \rho(M)$, for all a in A. Therefore, M is ρ -injective. (3) \Rightarrow (5) This is clear.

(5) ⇒ (1) Suppose that *M* is a ρ -direct summand of E(*M*). Since E(*M*) is an injective extension of *M*, thus *M* is a ρ -direct summand of at least, one injective extension of itself. □

In the following corollary we will give an inner characterization of ρ -injective modules, for the term inner see [7].

Corollary 2.15. An *R*-module *M* is ρ -injective if and only if *M* is a ρ -direct summand of an *R*-module Hom_{\mathbb{Z}}(*R*, *B*), with *B* is a divisible Abelian group.

Proof: (\Rightarrow) Suppose that *M* is ρ -injective. By [7, p.91], there is a \mathbb{Z} -monomorphism $f: M \to B$, where B is a divisible Abelian group. Thus Lemma (5.5.2) in [7] implies that Hom_{\mathbb{Z}}(*R*, *B*) is an injective *R*-module. Define $\theta: M \to \operatorname{Hom}_{\mathbb{Z}}(R, B)$ by $\theta(m)(r) =$ f(rm), for all $m \in M$ and for all $r \in R$. It is easy to see that θ is an *R*-monomorphism and hence $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ is an extension *R*-module of M. Since M is a ρ -injective R-module, thus Theorem 2.14. implies that M is a ρ -direct summand of an *R*-module $\operatorname{Hom}_{\mathbb{Z}}(R, B)$. (\Leftarrow) Suppose that *M* is a ρ -direct summand of an *R*-module Hom_{\mathbb{Z}}(*R*, *B*) with *B* is a divisible Abelian group. By [7, Lemma (5.5.2)], we have that $\operatorname{Hom}_{\mathbb{Z}}(R, B)$ is an injective *R*-module. Thus *M* is a ρ -direct summand of an injective extension R-module. Therefore, M is a ρ -injective *R*-module, by Theorem 2.14. \Box

An R-monomorphism $\alpha: N \to M$ (where N and M are R-modules) is called split, if there exists an R-homomorphism $\beta: M \to N$ such that $\beta \circ \alpha = I_N$ [7].

An *R*-module *M* is injective if and only if for every *R*-module *N*, each *R*-monomorphism $\alpha: M \rightarrow N$ is split [7]. For analogous result for ρ -injective modules, we introduce the following concept.

Definition 2.16. An *R*-monomorphism

 $\alpha: N \to M$ is said to be ρ -split, if there exists an *R*-homomorphism $\beta: M \to N$ such that $(\beta \circ \alpha)(a) - a \in \rho(N)$, for all *a* in *N*.

The following theorem gives and characterization of ρ -injectivity by using ρ -split monomorphisms.

Theorem 2.17. The following statements are equivalent for an *R*-module *M*:

(1) *M* is ρ -injective;

(2) for each R-module N, each

R-monomorphism $\alpha: M \to N$ is a ρ -split; (3) for each injective *R*-module *N*, each *R*-monomorphism $\alpha: M \to N$ is a ρ -split; (4) each *R*-monomorphism $\alpha: M \to E(M)$ is ρ -split.

Proof: (1) \Rightarrow (2) Suppose that *M* is a ρ -injective *R*-module. Let *N* be any *R*-module and let $\alpha: M \rightarrow N$ be any *R*-monomorphism. Consider the following diagram.

Since *M* is ρ -injective, there exists an *R*-homomorphism $\beta: N \to M$ such that $(\beta \circ \alpha)(a) - a \in \rho(M)$, for all $a \in M$. Hence α is a ρ -split.

 $(2) \Rightarrow (3) \text{ and } (3) \Rightarrow (4) \text{ are obvious.}$

(4) \Rightarrow (1) Suppose that each *R*-monomorphism $\alpha: M \rightarrow E(M)$ is a ρ -split. To prove that *M* is a ρ -injective. Consider the following diagram with exact row, where *A* and *B* are *R*-modules and $g: A \rightarrow M$ is any *R*-homomorphism.

$$0 \xrightarrow{} A \xrightarrow{f} B$$

$$g \downarrow \qquad M$$

Since E(M) is an extension of M, thus there is a monomorphism, say $\alpha: M \to E(M)$ and hence we get the following diagram with exact row.

Since E(M) is an injective module, there exists a homomorphism $h: B \to E(M)$ such that $(h \circ f)(a) = (\alpha \circ g)(a)$, for all $a \in A$. By hypothesis, we have $\alpha: M \to E(M)$ is a ρ -split and hence there exists a homomorphism $\beta: E(M) \to M$ such that $(\beta \circ \alpha)(a) - a \in \rho(M)$, for all $a \in M$. Put $h_1 = \beta \circ h$, it is clear that h_1 is an *R*-homomorphism. For each *a* in *A*, we have that $(h_1 \circ f)(a) - g(a) = ((\beta \circ h) \circ f)(a) - g(a) = (\beta(h \circ f))(a) - g(a) = (\beta(\alpha \circ g))(a) - g(a) = (\beta \circ \alpha)(g(a)) - g(a) \in \rho(M)$. Thus $(h_1 \circ f)(a) - g(a) \in \rho(M)$, for all $a \in A$ and hence *M* is a ρ -injective module. \Box

The following proposition gives a characterization of ρ -injective modules by using the class of injective modules.

Proposition 2.18. The following statements are equivalent for an *R*-modules *M*:

(1) *M* is ρ -injective;

(2) *M* is ρ -*B*-injective, for every injective module *B*;

(3) for each diagram with *B* is an injective *R*-module and *A* is an essential submodule in *B*,

$$0 \longrightarrow A \xrightarrow{i} B$$

$$f \downarrow g$$

$$M$$

there exists a homomorphism $g: B \to M$ such that $(g \circ i)(a) - f(a) \in \rho(M)$, for all $a \in A$. **Proof:** (1) \Rightarrow (2) and (2) \Rightarrow (3) are obvious. (3) \Rightarrow (1) Consider the following diagram with *B* is any *R*-module and *A* is any essential submodule in *B*.

$$0 \longrightarrow A \xrightarrow{i_A} B$$

$$f \downarrow \qquad M$$

By [1], there exists an injective R-module say E, such that B is an essential submodule in E. Thus we have the following diagram,

where i_A and i_B are inclusion *R*-homomorphisms. Since $A \leq^e B$ (by hypothesis) and $B \leq^e E$ it follows from [8] that $A \leq^e E$. By hypothesis, there exists an *R*-homomorphism $h: E \to M$ such that $(h \circ i_B \circ i_A)(a) - f(a) \in \rho(M)$, for all $a \in A$. Put $g = h \circ i_B$, thus $(g \circ i_A)(a) - f(a) \in \rho(M)$, for all $a \in A$. By Proposition 2.4., *M* is ρ -*B*-injective, for every *R*-module *B* and hence *M* is a ρ -injective *R*-module. \Box

In the following proposition, we will give another characterization of ρ -injectivity by using the class of free modules.

Proposition 2.19. An *R*-module *M* is

 ρ -injective if and only if *M* is ρ -*F*-injective, for every free *R*-module *F*. **Proof:** (\Rightarrow) This is obvious. (\Leftarrow) Suppose that *M* is ρ -*F*-injective, for every free *R*-module *F*. Consider the following diagram with exact row.

Since *B* is a set, thus there exists a free *R*-module, say *F*, such that *B* is a basis of *F* [12, p.58]. By hypothesis, there exists an *R*-homomorphism $h_1: F \to M$ such that $(h_1 \circ (i \circ f))(a) - g(a) \in \rho(M)$, for all $a \in A$. Put $h =: h_1 \circ i: B \to M$, it is clear that *h* is an *R*-homomorphism. For every $a \in A$, we have that

 $(h \circ f)(a) - g(a) = ((h_1 \circ i) \circ f)(a) - g(a) \in \rho(M)$ and hence *M* is a ρ -injective *R*-module. \Box

3. Endomorphism Ring of *ρ*-Injective Modules

Let *M* be an *R*-module, $S = \text{End}_R(M)$ and let $\Delta = \{f \in S \mid \text{ker}(f) \leq^e M\}$. It is wellknown that Δ is a two-sided ideal of *S* [13] and if an *R*-module *M* is injective, then the ring S/Δ is regular. Moreover, if $\Delta = 0$, then the ring *S* is a right self-injective ring [8].

For analogous results for ρ -injective modules we consider the following.

Let *M* and *N* be *R*-modules and $f: M \to N$ be an *R*-homomorphism. The set $f^{-1}(\rho(N)) =$ $\{x \in M \mid f(x) \in \rho(N)\}$ is said to be the kernel of *f* relative to a preradical ρ and denoted by $\rho \operatorname{ker}(f)$.

Let *M* be an *R*-module and $S = \text{End}_R(M)$. We will use the notation $\rho\Delta$ for the set $\{f \in S \mid \rho \text{ker}(f) \leq^e M\}$. **Proposition 3.1.** Let *M* be an *R*-module and $S = \operatorname{End}_R(M)$. Then $\rho\Delta$ is a two-sided ideal of S. **Proof.** Since the zero function belong to Δ , thus $\rho\Delta$ is a non-empty set. Let $f, g \in \rho\Delta$, thus $\rho \ker(f) \leq^e M$ and $\rho \ker(g) \leq^e M$ and hence Lemma 5.1.5(b) in [7] implies that $\rho \operatorname{ker}(f) \cap \rho \operatorname{ker}(g) \leq^{e} M$. Since $\rho \operatorname{ker}(f) \cap \rho \operatorname{ker}(g) \subseteq \rho \operatorname{ker}(f - g)$, thus $\rho \operatorname{ker}(f - g) \leq^{e} \operatorname{M}(\operatorname{by}[7, \operatorname{Lemma} 5.1.5(a)])$ and hence $f - g \in \rho \Delta$. Let $f \in \rho \Delta$ and $h \in S$, thus $\rho \operatorname{ker}(f) \leq^{e} M$. Since $\rho \ker(f) \subseteq \rho \ker(h \circ f)$, thus $\rho \operatorname{ker}(h \circ f) \leq^{e} M$ (by [7, Lemma 5.1.5(a)]) and hence $h \circ f \in \rho \Delta$. Now we will prove that $f \circ h \in \rho \Delta$. Since $\rho \ker(f) \leq^{e} M$, thus Lemma 5.1.5(c) in [7] implies that $h^{-1}(\rho \operatorname{ker}(f)) \leq^{e} M.$ But $h^{-1}(\rho \operatorname{ker}(f)) \subseteq$ $\rho \ker(f \circ h)$, therefore $\rho \ker(f \circ h) \leq^{e} M$, by [7, Lemma 5.1.5(a)]. Thus $f \circ h \in \rho \Delta$ and hence $\rho\Delta$ is a two-sided ideal of S. \Box

Now, we are ready to state and prove the main result in this section.

Theorem 3.2. Let *M* be an *R*-module and $S = \text{End}_R(M)$. If *M* is ρ -injective, then: (1) $S/\rho\Delta$ is a regular ring; (2) if $\rho\Delta = 0$, then *S* is a right self-injective ring.

Proof. Suppose that *M* is a ρ -injective *R*-module.

(1) Let $\lambda + \rho \Delta \in S/\rho \Delta$, thus $\lambda \in S$. Put $K = \ker(\lambda)$ and let *L* be a relative complement of *K* in *M*. Define $\alpha: \lambda(L) \to M$ by $\alpha(\lambda(x)) = x$, for all $x \in L$. It is easy to prove that α is a well-defined *R*-homomorphism.

Thus we have the following diagram, where i is the inclusion *R*-homomorphism.

Since *M* is ρ -injective (by hypothesis), there exists an *R*-homomorphism $\beta: M \to M$ such that

 $\beta(\lambda(x)) - \alpha(\lambda(x)) \in \rho(M)$ for each $x \in L$. That is for each $x \in L$, we have that $\beta(\lambda(x)) = \alpha(\lambda(x)) + m_x$, for some $m_x \in$ $\rho(M)$. Let $u \in K \oplus L$, thus u = x + y where $x \in K$ and $y \in L$ and hence $(\lambda - \lambda \beta \lambda)(u) =$ $(\lambda - \lambda\beta\lambda)(x + y) = \lambda(x) - \lambda\beta(\lambda(x)) +$ $\lambda(y) - \lambda\beta(\lambda(y)) = 0 - 0 - \lambda(y) - 0$ $\lambda(\alpha\lambda(y) + m_{\nu}) = \lambda(y) - \lambda(y) - \lambda(m_{\nu}) \in$ $\rho(M)$ (because ρ is a preradical) and hence $u \in \rho \ker(\lambda - \lambda \beta \lambda)$. Thus for each $u \in K \bigoplus L$, we have that $u \in \rho \ker(\lambda - \lambda \beta \lambda)$ and this implies that $K \oplus L \subseteq \rho \ker(\lambda - \lambda \beta \lambda)$. Since $K \bigoplus L \leq^{e} M$ [8], thus Lemma 5.1.5(a) in [7] implies that $\rho \ker(\lambda - \lambda \beta \lambda) \leq^{e} M$ and hence $\lambda - \lambda \beta \lambda \in \rho \Delta$. Thus $\lambda + \rho \Delta = (\lambda \beta \lambda) + \rho \Delta$ and hence $S/\rho\Delta$ is a regular ring.

(2) Suppose that $\rho\Delta = 0$, thus by (1) above, we have that *S* is a regular ring. Let *I* be any right ideal of *S* and let $f: I \rightarrow S$ be any right *S*-homomorphism. Consider the following diagram.

Let *IM* be the *R*-submodule of *M* generated by $\{\lambda m \mid \lambda \in I, m \in M\}$. Thus, if $x \in IM$, then $x = \sum_{i=1}^{n} \lambda_i m_i$ for some $\lambda_1, \lambda_2, \dots, \lambda_n \in I$ and some $m_1, m_2, \dots, m_n \in M$ where $n \in \mathbb{Z}^+$. Define $\theta: IM \to M$ as follows, for each $x = \sum_{i=1}^{n} \lambda_i m_i \in IM$, put $\theta(x) = \theta(\sum_{i=1}^{n} \lambda_i m_i) = \sum_{i=1}^{n} f(\lambda_i)(m_i)$. Let $x, y \in IM$, thus $x = \sum_{i=1}^{n} \lambda_i m_i$ and $y = \sum_{i=1}^{t} \alpha_i m'_i$, for some $\lambda_i, \alpha_i \in I$ and $m_i, m'_i \in M$, with $i = 1, \dots, n$ and j =1, \cdots , t where $n, t \in \mathbb{Z}^+$. Since S is a regular ring, thus Proposition 4.14 in [8] implies that each finitely generated right ideal of S is generated by an idempotent. Hence the right ideal of a ring S which is generated by $\lambda_1, \dots, \lambda_n, \alpha_1, \dots, \alpha_t$ written as *eS*, where $e = e^2 \in I$ and hence $\lambda_i, \alpha_i \in eS$ for all $i = 1, \dots, n, j = 1, \dots, t$ and this implies that

 $\lambda_i = eh_i$ and $\alpha_j = eh'_j$ for some $h_i, h'_j \in S$ and for all $i = 1, \dots, n$, $j = 1, \dots, t$. Hence $e\lambda_i =$ $e(eh_i) = e^2 h_i = eh_i = \lambda_i$, for all $i = 1, \dots, n$ and $e\alpha_i = e(eh'_i) = e^2h'_i = eh'_i = \alpha_i$ for all $j = 1, \dots, t$. Thus, $f(\lambda_i) = f(e)\lambda_i$ and $f(\alpha_i) = f(e)\alpha_i$ for all $i = 1, \dots, n$ and $j = 1, \dots, t$. Therefore, $\theta(x) = \theta(\sum_{i=1}^{n} \lambda_i m_i) =$ $\sum_{i=1}^{n} f(\lambda_i)(m_i) = \sum_{i=1}^{n} f(e)\lambda_i m_i =$ $f(e) \sum_{i=1}^{n} \lambda_i m_i = f(e) x$ and similarly we have that $\theta(y) = f(e)y$. Clearly, θ is a well-defined *R*-homomorphism, since for all $x, y \in IM$, if x = y, then f(e)x = f(e)y. Since $\theta(x) =$ f(e)x and $\theta(y) = f(e)y$ (as above), thus $\theta(x) = \theta(y)$. Let $x, y \in IM$ and $r \in R$, thus $\theta(x+y) = f(e) (x+y) = f(e)x + f(e)y =$ $\theta(x) + \theta(y)$ and $\theta(rx) = f(e)(rx) =$ $r(f(e)(x)) = r\theta(x)$. Therefore, θ is a welldefined *R*-homomorphism. Thus we have the following diagram (where i is the inclusion *R*-homomorphism).

Since *M* is a ρ -injective, there exists an *R*-homomorphism $\varphi: M \to M$ such that $\varphi(x) - \theta(x) \in \rho(M)$, for all $x \in IM$. Let $m \in M$ and $\lambda \in I$. Thus $(\varphi\lambda)(m) = \varphi(\lambda m) = \theta(\lambda m) + l_m = f(\lambda)m + l_m$, for some $l_m \in \rho(M)$ and hence $(\varphi\lambda - f(\lambda))(m) \in \rho(M)$ and this implies that $m \in \rho \ker(\varphi\lambda - f(\lambda))$. Thus $M = \rho \ker(\varphi\lambda - f(\lambda))$, for each $\lambda \in I$. Therefore $\rho \ker(\varphi\lambda - f(\lambda)) \leq^e M$ and hence $\varphi\lambda - f(\lambda) \in \rho\Delta$, for all $\lambda \in I$. Since $\rho\Delta = 0$ (by hypothesis), thus $f(\lambda) = \varphi\lambda$, for all $\lambda \in I$ and hence *S* satisfied Baer's condition. Therefore, *S* is a right self-injective ring, by [8, Theorem 1.6.]. \Box

Proposition 3.3. Let *M* be an ρ -injective *R*-module and *S* = End_{*R*}(*M*). Then $I \cap K = IK + \rho \Delta \cap (I \cap K)$, for every two-sided ideals *I* and *K* of *S*.

Proof. Suppose that *M* is a ρ -injective *R*-module, thus Theorem 3.2. implies that $S/\rho\Delta$ is a regular. Let *I* and *K* be any twosided ideals of *S*. Let $\alpha \in I \cap K$, thus $\alpha + \rho\Delta \in S/\rho\Delta$. Since $S/\rho\Delta$ is a regular ring, thus there exists an element $\beta + \rho\Delta \in S/\rho\Delta$ such that $\alpha + \rho\Delta = \alpha\beta\alpha + \rho\Delta$ and hence $\alpha - \alpha\beta\alpha \in \rho\Delta$. Since $\alpha - \alpha\beta\alpha \in I \cap K$, thus $\alpha - \alpha\beta\alpha \in \rho\Delta \cap (I \cap K)$. Put $\alpha_1 = \alpha - \alpha\beta\alpha$, thus $\alpha = \alpha\beta\alpha + \alpha_1 \in IK + \rho\Delta \cap (I \cap K)$ and hence $I \cap K \subseteq IK + \rho\Delta \cap (I \cap K)$. Since $IK \subseteq I$ and $IK \subseteq K$, thus $IK \subseteq I \cap K$. Since $\rho\Delta \cap (I \cap K) \subseteq (I \cap K)$, thus $IK + \rho\Delta \cap (I \cap K) \subseteq I \cap K$. Therefore, $I \cap K = IK + \rho\Delta \cap (I \cap K)$. \Box

By applying Proposition 3.3. we have the following result.

Corollary 3.4. Let *M* be a ρ -injective *R*-module, $S = \text{End}_R(M)$ and let *K* be any two-sided ideal of *S*.Then $K = K^2 + (\rho \Delta \cap K)$

In [14], Osofsky showed that, for an R-module M, if Z(M) = 0, then the Jacobson radical of the ring $S = \text{End}_R(M)$ is zero. Also, if M is an injective R-module with Z(M) = 0, then the ring $S = \text{End}_R(M)$ is a right self-injective regular [8].

In the following, we will state and prove analogous results for ρ -injective modules. Firsty, we need the following lemma.

Lemma 3.5. Let *M* be an *R*-module and $S = \operatorname{End}_R(M)$. Then for each $\lambda \in S$ and for each $x \in M$ we have $[\rho(M): \lambda(x)]_R = [\rho \ker(\lambda): x]_R$. **Proof.** Let $\lambda \in S$ and $x \in M$. Thus if $r \in [\rho(M): \lambda(x)]$, then $\lambda(x)r \in \rho(M)$ and hence $\lambda(xr) \in \rho(M)$ and this implies that $xr \in \rho \ker(\lambda)$ and so $r \in [\rho \ker(\lambda): x]_R$. Therefore, $[\rho(M): \lambda(x)]_R \subseteq [\rho \ker(\lambda): x]_R$ and by similar way we can prove $[\rho \ker(\lambda): x]_R \subseteq [\rho(M): \lambda(x)]_R$. Thus $[\rho(M): \lambda(x)]_R = [\rho \ker(\lambda): x]_R$. \Box Let *M* be an *R*-module. It is easy to prove that the set $\{m \in M | [\rho(M): m]_R \text{ is an essential} ideal in$ *R* $\}$ is a submodule of *M*. This submodule is said to be the ρ -singular submodule of *M* and denoted by $\rho Z(M)$.

The following proposition is an analogous result of the Osofsky's result [14].

Proposition 3.6. Let *M* be an *R*-module and $S = \text{End}_R(M)$. If $\rho Z(M) = 0$, then $\rho \Delta = 0$. **Proof.** Suppose that $\rho Z(M) = 0$ and let $\alpha \in \rho \Delta$, thus $\rho \ker(\alpha) \leq^e M$ and hence [8, Lemma 3, p. 46] implies that $[\rho \ker(\alpha): x]_R \leq^e R$, for each $x \in M$. Since $[\rho(M): \alpha(x)]_R = [\rho \ker(\alpha): x]_R$ (by Lemma 3.5.), thus $[\rho(M): \alpha(x)]_R \leq^e R$ and hence $\alpha(x) \in \rho Z(M)$. Since $\rho Z(M) = 0$ (by hypothesis), thus $\alpha(x) = 0$, for all *x* in *M* (i.e $\alpha = 0$) and hence $\rho \Delta = 0$. \Box

The following corollary (for ρ -injective modules) is analogous of the statement for injective modules [8].

Corollary 3.7. Let *M* be a ρ -injective *R*-module and $S = \text{End}_R(M)$. If $\rho Z(M) = 0$, then *S* is a right self-injective regular ring. **Proof.** Suppose that *M* is a ρ -injective module with $\rho Z(M) = 0$. Thus Proposition 3.6. implies that $\rho \Delta = 0$. Therefore, *S* is a right self-injective regular ring, by Theorem 3.2. \Box

Corollary 3.8. If *R* is a self ρ -injective ring and $\rho Z(R) = 0$, then *R* is a right self-injective regular ring.

Proof. Since $R \cong \text{End}_R(R)$, thus the result follows from Corollary 3.7. \Box

Let *R* be a ring and $x \in R$. Let $x_L: R \to R$ be the mapping defined by $x_L(r) = rx$, for all $r \in R$. Then x_L is an *R*-homomorphism and $End_R(R) = \{x_L | x \in R\}$ [8].

Lemma 3.9. Let *R* be a ring and $S = \text{End}_R(R)$. Define $\alpha: R/\rho Z(R) \rightarrow S/\rho \Delta$ as follows: $\alpha(x + \rho Z(R)) = x_L + \rho \Delta$ for each $x \in R$. Then α is an *R*-isomorphism. **Proof.** It is easy. \Box

The following proposition is an analogous result of the statement for self-injective rings [15].

Proposition 3.10. If *R* is a self ρ -injective ring, then $R/\rho Z(R)$ is a regular ring. **Proof.** Let $\alpha: R/\rho Z(R) \to S/\rho \Delta$ be the *R*-isomorphism as in Lemma 3.9., where $S = \operatorname{End}_{R}(R)$. Let $x + \rho Z(R) \in R/\rho Z(R)$, thus $\alpha(x + \rho Z(R)) = x_L + \rho \Delta \in S/\rho \Delta$. Since R is a self ρ -injective ring, thus $S/\rho\Delta$ is a regular ring (by Theorem 3.2.) and this implies that there exists an element $y_L + \rho \Delta \in S/\rho \Delta$ such that $x_L + \rho \Delta = x_L y_L x_L + \rho \Delta = (xyx)_L + \rho \Delta$. Since α is an *R*-isomorphism, thus α^{-1} exists and $\alpha^{-1}(x_L + \rho \Delta) = \alpha^{-1}((xyx)_L + \rho \Delta)$. Hence $x + \rho Z(R) = xyx + \rho Z(R) = (x + \rho Z(R)).$ $(y + \rho Z(R)) \cdot (x + \rho Z(R))$. Since $\alpha^{-1}(y_L + \rho \Delta) = y + \rho Z(R) \in R/\rho Z(R)$, thus we get an element $y + \rho Z(R)$ in $R/\rho Z(R)$ such that $x + \rho Z(R) = (x + \rho Z(R)) \cdot (y + \rho Z(R))$. $(x + \rho Z(R))$. Therefore, $R/\rho Z(R)$ is a regular ring. 🛛

References:

[1] Sharpe, D. W., and Vamos, P. (1972).Injective Modules. Cambridge univ. press, London.

[2] Jhonson, R. E. and Wong, E. T. (1961).
Quasi-injective modules and irreducible rings. J. London Math. Soc., 39: 260-268.
[3] Smith, P. F. (1997). Injective modules and their generalizations. University of Glasgowdepartment of Math., Preprint series No.(97-07).

[4] Zeyada, N. A. (2014). S-injective modules and rings. Advances in pure Math., 4: 25-33. [5] Mehdi, A. R. (2000), Nearly injective modules, MSc. Thesis, Univ. of Al-Mustansiriya. [6] Abbas, M. S. and Abd-Alridha, Sh. N. (2010). Special injective modules and their endomorphisms ring. Al-Mustansiriya J. Sci, 21(6): 482-500. [7] Kasch, F. (1982). Modules and Rings. Academic press, London, New York. [8] Faith, C. (1967). Lectures on injective modules and quotient rings. No. 49, Springer-Verlag, Berlin, Heidelberg, NewYork. [9] Anderson, F. W. and Fuller, K. R. (1974). Rings and Categories of modules. Springer-Verlag, Berlin, Heidelberg, New York. [10] Bican, L., Jambor, P., Kepka, T. and Nemec, P. (1974). Preradicals. Comment. Math. Univ. Carolinae, 15(1): 75-83. [11] Naude, C. G., Naude, G. and Pertorius, L. M. (1986). Equational characterizations of relative injectives. Commun. Algebra, 14(1): 39-48. [12] Rotman, J. J. (1979). An Introduction to Homological Algebra. Academic press, New York. [13] Mohamed, S. H. and Muller, B. (1990). **Continuous and Discrete Modules. London** Math. Soc., Cambridge Univ. press, New York. [14] Osofsky, B. L. (1968). Endomophisms Rings of quasi-injective modules. Canadian J. Math., 20: 895-903. [15] Utumi, Y. (1969). On continuous rings and self-injective rings. Trans. of Amer. Math. Soc.138: 505-512.

*الموديولات الأغمارية نسبة الى جذر ابتدائي

من قبل

ضحى طعيمة عبد الكاظم قسم الرياضيات/ كلية علوم الحاسوب والرياضيات/ جامعة القادسية/ مدينة الديوانية/ العراق. Email: <u>dhuha.taima@yahoo.com</u> عقيل رمضان مهدي قسم الرياضيات/ كلية التربية/ جامعة القادسية/ مدينة الديوانية/ العراق. Email: <u>akeel_math@yahoo.com</u>

الخلاصة

مفهوم الموديولات الاغمارية نسبة الى جذر ابتدائي ρ (الموديولات الاغمارية – ρ) طرحت في هذا العمل كتعميم للموديولات الاغمارية. تعريف الموديولات الاغمارية نسبة الى جذر ابتدائي ρ يوحد عدة تعريفات عن تعميمات الموديولات الاغمارية مثل الموديولات الاغمارية تقريبا والموديولات الاغمارية الخاصة. العديد من التشخيصات وخواص الموديولات الاغمارية نسبة الى جذر ابتدائي ρ قد اعطيت. درسنا حلقات التماثلات الموديولية الذاتية للموديولات الاغمارية نسبة الى جذر العمل توحد وتوسع العديد من النتائج الموجودة في المصادر.

الكلمات المفتاحية: الموديولات الاغمارية، الموديولات الاغمارية تقريبا، الجذر الابتدائي، حلقات التماثلات الموديولية الذاتية.

* نتائج هذا البحث ستكون جزء من رسالة الماجستير للباحث الثاني وتحت اشراف الباحث الاول في جامعة القادسية.