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Abstract

In The present paper, we introduce and discuss a new subclass of meromorphic
univalent functions defined by Liu-Srivastava linear operator, we obtain various important
properties, like, coefficient inequalities, extreme points, closure theorems, (n,0)-

neighhborhoods of a functions f e A4 and partial sums. We also consider integral

transforms of functions in the class 4 (g,7,k,A) and obtain some results.
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1. Introduction
Let A* denote the class of functions of the form:

Which are analytic andmeromorphic univalent in the punctured unit disk
U ={zeC:0<|7|<1}=U{0}.
Let A" (y)and A, (y),(0 < y < 1).denote the subclass of A" that

(1)

arc

meromorphicallystalikefunctions of order y and meromorphically convex functions of order vy

respectively. Analytically, f € 4" (y) if and only if, f is of the form (1) and satisfy
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—Re{zf (Z)} >y,zeU,
(2
Similarly, f € 4,(y), if and only if, f is of the form (1) and satisfies

Re{ Zf (Z)} y, zeU,
/(@

and similar other classes of meromorphically univalent functions have been extensively studied

by (for example) Altintas et al. [ 2 [,Aouf [ 3 ] ,Mogra et al. [ 13 ], Uralegadi et al.[18,19, 20 ] and
others (see [7,14,15 ]).

Let f,ge A", where f is given by (1) and g is defined by

1 & ;
g(x)=—~ Dbz (2)
n=1
Then the Hadamad product (or convolution) f*g of the functions f and g is defined by
1 & "
(/¥ =2 ab2"=(g*/)z). (3)
n=l

For complex parameters «,,...,a,and B,,.... 5, (f#0,-1,...;j=1,2,...,m)
The generalized hypergeometric function ¢f, (z) is defined by

(F,(2) = 1F, (@ 1) oo B, Zggl E;f))zn @

(t=m+1;e,me Ny=NuU{0};Z €U),
Where (8), is the pochhammer symbol defined by

r@+n | n=0;0 e C\{0}, (5)
r@) |0(6+1)(0+2)...(0+n-1),neN;0eC.

), =

Corresponding to a function F, («,,...,a,; B,,..., B,;z) defined by
O(Aysees @3 Bryeis B32) = 2 UE, (O yerer Q5 By B,52) (6)

Liu and Srivastava[11 ] considered a linear operator
L(a,yer @ Byes B,): A > A,
Defined by the following Hadamard product (or convolution):
L(ay,....a; B B, (2) = Qs s 3 B0 B, 2) * [ (2)
z| (@)pn-(@), | a2 (7)
(Bt (B, | (4D
Where, a,>0,0= 1,2,...,1),ﬁj >0,(j=12,...,m),[ <m+1;me N,=NuU{0}.For notional
simplicity, we use a shorter notations L[¢, ] for

Ay ) By, B,) and

T ((Z ) =| (al)’”l"'(a/)nﬂ 1
”1 |(181)n+1"'(18m)n+1 (n+1!

Unless otherwise stated in the sequel. We note that the linear operator H'[a,] was earlier

(8)

defined for multivalent functions by Dziok and Srivastava [ 8 ] and was investigated by Liu and
Srivastava [ 11 ]. Motivated by Ravichandaran et al.[17 ] and Atshan et al.[6], making use of the

operator L[a,], now defined a new subclass 4" (g,7,k,A)of 4.
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Definition 1: For 0<y <1,k>0 and OS/I<§, we let 4 (g,7,k,A) by the subclass of A

consisting of functions of the form (1) and satisfying the analytic criterion
2 % " 3 % "
R { (Ul *8()" 2 Ul *g()" | y}
Liey]f*g(2) Liey1f *g(2)
> k|Zz(L[a1]f*g(Z))” +ﬂ Z3(L[al]f*g(z))m +1 .
Liey1f *g(2) Liey1f *g(2)
Also by suitably choosing g(z) involved in the class, the class 4 (g,7,k, 1) reduces to various

)

new subclasses. These considerations canfruitfully be worked out and we skip the details in the regard
The main object of this paper is to study some usual properties of the geometric function theory
such as the coefficient inequalities, extreme points, closure theorems, neighborhoods of a function

f e A, partial sums and integral transforms of functions in the class 4 (g, 7.k, A).

2. Cofficient Inequalities
In the following theorem, we obtain necessary and sufficient condition for a function f to be in the

class e A (g,7,k,2). In this connection, we need and state the following lemmas:

Lemma 1 [ 4 ]: If y is a real number and w=—(u+iv) is a complex number, then
Re(w) > yif and 0nlyif|w+ ( —}/)| —|w—(l + 7)| >0.

Lemma 2 [ 6 ]: If w =u + 2 is a complex number and y,k are real numbers, then
—Re(w) 2 k|w+1| +yif and onlyif —Re(w(l+ ke ) +ke®)>y,—n <0<

Theorem 1: Let f e 4" be given by (1). Then 4'(g,,k,A) if and only if

3101+ 1+ A1)+ 7T (1), (10)

<3(k(1-22)=22)+(2+ ).
Proof: By Definition 1, we obtain
“Re {ZZ(L[aI TATE) PERCCAVATIC) y}
L]/ *g(2) L]/ *g(2)
RV CATAT(E) P U CATATC) ) H‘
| L] *g(2) L, 1f *g(2)

Then by Lemma 2, we have

_Re {zz@[al If*2@) 2 (Ua)f *g(z))”’} (Lt ke + ke,-e} e rcon (11
Len)f *g(2) Hey)f *g(2)

For convenience, we let

A(z) =2 (Lley 1/ *2(2)"+ 22° (L[, 1f * g(2)) "1 (1 + ke") — ke L[y 1 f * g (2).
B(z) =Ll f*g(2).

That is, the equation (11) is equivalent to

Re Az) >y.

B(2)
In view of Lemma 1, we only need to prove that
|4(z) +(1-y)B(2)|-|4(z) - (1+ y)B(2)| > 0.

Therefore
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|4(2) +(1-7)B(2)| =
| 1
|- (3ke®?(1—22) — 61+ (1 + y));

+ Z (n(n —D(1+ke®)(1+ An—2)) + ke

— (1= 7)) T (@)@, b,z"]

>(Bk(1—-2D)—6A+(1+ y))%

=) (= DA+ O+ A - D) +
n=1
—(1

— 1)) Lu(@)a,bylzl™.

And
|A(z) — (1 +vy)B(2)|

1
=1B21-DA+k) -y~

+ Z(n(n —1(1+ke®)(1+An—2)) + ke'®
=
+ (1 + y))rn(al)anbnznl

1
<@BR2A-1)A+k) - y)m

+ Z(n(n — DA+ K1+ -2) +k
=1

+ @+ YL (a)ay by 2]
It is now easy to show that
|4(2)+ (1= 7)B(2)| -| 4(z) + (1+ 7)B(2)|

>2C@k(1-2)+2+y) - 6/1)%

-2 nn—1D1+k)(1+ A(n—2))
2.

+ (k +)) Tu(@)aybylzl" = 0,
Which is equivalent to
Z (n(v = DA+ K)(1+ A = 2)) + (k + 7)) Tu(ar)a,b, < 3(k(1 —22) —22) + 2 +7).

n=1
Conversely, suppose that (10) hold true. Then we must show

[ 2(L[ay]f = g(z)) + 223 (L[ If g(z)) ](1 +ke®) + ke Llay1f * g(2) N
he alf + 9@ =
Upon choosing the values of z on the positive real axis, where 0<z=r<1, the above
inequality reduces to
{(3 ((1 —2)ke' — 2/1) + 2+ ]/))le —Yinn—1D(1+ke®)(1+An—2)) + ke +y)I, (al)anbnznl}
Re

1 o _
722 Y1 o (ag)ay bzt !

> 0.
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Since Re(—e") > —‘e’y‘ = —1, the above inequality reduce to

1

{(3((1 — 20k —22) + (2 + y)) rlz Y= DA+ k)(1+ A —2)) + k + 1)L, (ay)a,byr™ !
Re

rZ - ;.10=1 I (a’l)anbnzn_1

= 0.

Letting » — 1" and by the mean value theorem, we have desired inequality (10).

Corollary 1: If fe A'(g,7,k,A), then
B 3(k(1=22) =20 + (2 +7y)
a

" (- DA+ A+ 2 - 2) + (ke + 1) Tu(a)b,

In the next theorem, we obtain the extreme points for the class 4 (g,7,k,A).
Theorem?2: Let

fo(2)= land

JYINES 3(k(1—24) — 20) + (2 +) )
Tz (- DA+ A+ A= 2) + k+ 7)) L@db,

n

Where (n>1,ne N,OS)/<1,k20,0S/I<% and I', (er)) isgiven by (8))

Then fis in the class A (g,7,k,A) if and only if it can be expressed in the form

[o2]

f) =) ouful@),

n=0
Where
o, = 0and o, =1lorl=0p+ an>
Proof: Let
@ =) ahi@
n=0
1 i (3(k(1=224) = 22) + (2 +1))oy -
Z H(nn- DA+ KA+ A0 —2) + (k+71))Tu(a)b,

Then

3(k(1—24) —20) + (2 +7)
i 3(k(1—24) —24) + (2 +7)
" (nn - DA+ (1 + A - 2)) + (k+ 1)) Lu(a)b,

=Zan=1—a()£1.
n=1

Using Theorem 1, we easily get f € 4 (g,7,k,1).

Conversely, let f € A (g,7,k,A) is of the form (1). Then

. 3(k(1—221)—2) + (2+7) ,(neN,n=>1).

T (- DA+ A+ A0 - 2)) + (k+7)) L (@b,
Setting

i ((n(n DA+ R(1+A0n—2)) + (k+7)) Fn(al)bn>

n=1

(12)

|
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(n(n = DA+ ) (1+A(n = 2)) + (k +7)) T (@b,

o= 3(k(1=20)=-2D)+2+7v) a,,forn=123,..
And
oo=1— ) a, . Then
[ =Y 0ufu@ = 00fo + Y Gufu2).
n=0 n=1

Now, we shall prove that the class A*(g, v,k,A) is closed under arithmetic mean and convex

linear combinations.
Let the function

1 [o¢]
fi(2)(i =1,2,...,m) be defined by f;(z) = P Z az",(a,; 20,n€N,n=>1). (13)

n=1
Theorem 3: Let the function f,(z) defined by (13) be in the class 4" (g,7,k, )
For every i=1,2,...,m. Then the function h(z) defined by

1
h(Z)=E—ZCnZ”,(cnZO,nEN,nzl)

n=1

Also belongs to the class 4°(g, 7.k, A), where

m
1
Chp = % Api -
i=1

Proof: Since f,(z)e A (g,7,k, 1), therefore from Theorem 1, we obtain

> (= DA+ R)(1+ 20 = 2)) + U + 1)) Ty (@)ag b,
n=1

<3k =20 -2+ 2 +y).

(14)

Hence
(0o}

> (0= DA+ (1 + 20— 2) + (k + 1) T (@)eyby
=1

o] 1 m
= nn— 1)(1+k)(1+/1(n—2))+(k+y) L, (ay)b, [— an,il
2 e 52
<3k(@-21)-2)+2+7y)

(By (14)) which shows that 4(z) € 4'(g.7.k, ).
Theorem 4: Letthe function f,(z) deined by (13) be in the class 4 (g,y,k,A) for every
i=1,2,...,m. Then the function h(z) defined by

h(z) = Zdifi(z) and Zdi =1,(d; = 0).
i=1 i=1

In the class 4 (g,7,k,A)
Proof: By definition of h(z), we have

h(z) = [i di] % - i i d;an,;
i i=1

i=1 n=1

z".

Since f;(z) are in the class A (g,7,k,A) for every i=1,2,...,m, we obtain
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NgE

(n(n = DA+ (1 + A0 = 2)) + (k + 1)) Tu(@)an b,

3
I
SN

<3k(1—=20) -2+ 2+7)
For every i=1,2,...,m. Hence we can see that

D (nr = DA + (1 + 200 = D) + (k + 7)) T (@b, [Z dl-an‘i]
n=1 i=1

= i d; [i (n(n= DA+ (1 + A = 2)) + (k+ )T, (al)an_ibn]
i=1 n=1

< (3k(1—22) —22) + (2 + 7)) Z d =3k(1=22) =20 + (2 +7) .
i=1
Thus h(z)e A (g,7,k,A).
Theorem 5: The class 4 (g,7,k, ) is closed under convex linear combination.
Proof: Let the function f,(z) (i=1,2) defined by (13) be in the class A™(g, ¥,k .
We show the function
h(z) =cfi(z) + (1 —0)fr,(2), (0<o=<1)

Is also in the class 4 (g,7,k,A). Since for 0< o <1,
1 (o)
h(z) = o + Z[aam +(1—0)ay,]z".
n=1

Therefor by Theorem 1, we have

[ee)

> (0= DA+ (1 + A0 = 2) + Gk + 1) T (@b [0, + (1= ey ]

n=1

=0 ) (1= DA+ K1+ 201 = 2)) + Gk + 1) T @by s
n=1

+(1-o0) Z (n(n -+ k)(l +A(n — 2)) + (k+ y)) I(a))bya,,
n=1
<3(k(1-24)=20)+(2+7)
Hence by Theorem 1, we obtain 4(z) € A (g,7,k,A) and this completes the proof.
The concept of neighborhood of analytic functions was first introduced by Goodman [9] and

Ruscheweyh [16] investigated concept for the elements of severalfamous subclasses of analytic
functions and Altintas and Owa [1] considered for a certain family of analytic functions with negative
coefficients, also Liu and Srivastava [12] and Atshan [5] extended this concept for a certain subclass of
meromorphically univalent and multivalent functions.

Now, we defined the (n,8) -neighborhood of a function f € A by:

Ny s(f) = {h €A :h(z) =§— Z ¢, z" and anan el <60<68< 1}. (15)
n=1

n=1

For the identity function e(z) =z, we have

1 oo [0¢]
N,s(e) = {h €A h(z) = P Z c,z" and Z nlc,| < 6}.

n=1 n=1

Definition 2: A function fe A is said to be in the class A (g,y,k,A) if there exists a

function A € A*(g, v,k,A) such that
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f(@) |
—-1{<1—n, zeU,0<n<1).
7@ n o ( n<1)
Theorem 6:If he A (g,7,k,A) and
(k +Mhi(a)aBk(1 —24) —2) + (2 +y) (16)

(et h(a)a =3k -20) - 20+ 2+7)’
Thus N, ;(h) < A"(g,7,k, ).
Proof: Let /€N, ;(h). We want to find from (15) that

[e0]

anan —c,l <6,

n=1
Which readily implies the following coefficient inequality

Zlan —c,| <8, (n€N).
n=1

Next, Since e A (g,7,k, 1), we have from Theorem 1

c, <
(k + ) (a)ay

n

n=1
So that
f@) | < Yn=1lan — ¢l < (k +)i(a)a; B3(k(1 —24) —2) + (2+y)
9(2) T 1= T (k+y)h(a)a —3k(1-20) -20) + (2 +y)
=1-n.
Thus by Definition2, f € A" (g,r,k,A) for n given by (16).
Now, we introduce the partial sums and the same property has been found for other class in [10].
Theorem 7: Let f e 4" begiven by (1) and define the partial sums S1(z) and S,(z) by:
1 1 -1
Si(z)=— and S,(z) =—- Z a,z",
z z

n=1

Suppose also that

ZdnanSL

n=1

(dn _ (n(n— DA+ KL+ —2)) + (k+7)) Fn(al)bn) )

3(k(1—=22)-20)+ 2 +vy)

Then, We have

f@oy_, 1 (19)
ke {Sl(z)} )
And

f(2) d, (20)
ke {Sl(z)} 1+d,

Each of the bounds in (19) and (20) is the best possible for neN

Proof: For the coefficients d, given by (18), it is not difficult to verify that
dyy1>d,>1, n=1.2, ...

Therefore, by using hypothesis (18), we have
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-1 © °)
SasaSasS i o
By setting

_ f(Z) 1 _ dt Z;.f:t anzn-l_1 22
912 =d (&(z) - (“z)) BT =Ry =
And applying (21), we find that

gl(z) -1 d Z;.lo—L an

<1 23

g1(2)+1 Z_ZZn 1an dZ%oqan_ ' ( )
Which readlly yields the assertion (19).if we take

fz2)==— z (24)

d’

Then

fz) .z 1 -

Sl(z)—l—d—t —)l—d—L(Z—)l )’
Which shows that the bound in (19) is the best possible for each 1 €N .
Similarly, if we put

S(z)  d, (1+d)r= anz"™)

- LA = 25
= (a5 - ] =1 IR =
And make use of (21), we have

92 (Z) -1 (1 + dt)(zzo:t an)
< > e (26)
gZ(Z) +1 2 —ZZn:1 an + (1+d1)2n=t an
Which leads us to the assertion (20) . The bound in (20) is sharp for each n e N
With function given by (24).The proof of the theorem is complete.
In the below, we consider integral transforms of functions in the class A'( g, 7.k, ),
Some of these integral transforms was studied by Atshan on the other class in [5 ].
Theorem 8: Let the function f given by (1) be in the class 4°(g,7,k,A). Then the integral
operator

1
F(z)=cfucf(uz)du, O<u<1, 0<c<m) (27)

0
is in the class 4 (g,7,k, 1), where

_ew(k+ nn—1A+k)(1+An—-2))—y(c+n+1)(2+3(k(1—21) — 2,1)
yc+n+1)—cw

The result is sharp for the function
1 3(k(1=22) =20 + (2 +7)

[@ = =&+ PGk,
Proof: Let
f(z) = % - Z a,z".

n=1

In the class A*(g,}/,k,ﬂ,). Then
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1

F(z) = cfucf(uz)du

0

1 )
c—1
u +c._n
=c - a,u* cz" |du =
z
0 =

n=1

It is sufficient to show that

[ee)

[o¢]

2
V4
1

n=

——a,z".
c+n+1"

Cc
n

n=1

Since f e A (g,7,k,A), We have

cnin— DA+ k)(1+ A(n —2)) + (k + Q)T (ay)bya, -
Z (c+n+DBKA-2D) -2+ 2 +Q)

i (n(n = DA+ K)(1+ A0 = 2)) + (k + 1)) T (@)a b,

P! 3(k(1—22) =24+ (
Note that (27) it satisfied if

2+7y)

cnn— 1A+ k(1 +An—2)) + (k + Q))TL(ay)bna,

(c+n+1DBKA-21) -2 +

2+9)

(n(n = DA+ (1 +2(n = 2)) + (k + 1)) Ty (a)ayb,

3(k(1=20)-20)+ 2 +vy)

Rewriting the inequality, we have

(c+n+1)BKkA =21 -2+ 2+ Q) (n(n -DA+)(1+2n—-2)) + (k+ y))

< Bk —2) = 2) + @ +7))c (n( = DA+ K1+ A(n = 2)) + (k + Q).

Solving for Q, we have

0 <

cwlk +n(n—1)(1 + k)(l + Aln — 2)) —y(c+n+ 12 +3(k(1—-21)—-21)

ylc+n+1) —cw

=F(n),
Where

w=3kl-2D)-2D)+2+y) ,y=nn—-DA+K)(1+2(n—2))+ 2 +7y).
A simple computation will show that F'(n) is increasing F(n)> F(1).

Using this, the results follows

Theorem 9: Let the function f given by (1) be in the class 4'(g,7,k, ).
Then the function F defined by (28) is convex in the disk |z| <R, , where

cn(n+1D)BkA-20)-20)+ 2 +7vy)

1
{(c +n+1) (n(n— DA+ K1+ A —2)) + (k+7)T, (al)bn}"“
Rl =in n '

Proof: We show that
ZHOIN P 2| <R
F,(Z) = mn VA 1)

2

" ) ® cn
zF (2) + 2F (2) _anlman

Zn+1

F'(2)

= - cn
1+Z"“c+n+1a
2
. cn
L1 T n T 1 <1

= - Tn =
1_Zn+1c+n+ 1an|Z|n+1

a, |Z|n+1

n+1
nZ

R, is given by (31) . In view of (28), we have

378

(28)

(29)

(30)

€1y

(32)
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Hence

[oe]

2
cn

a,|lz|I"tt < 1.
Zc+n+1 nlzl

Tl_liS is enough to consider
(c+n+1) (nt— DA +E)(1+20 - 2) + (k +7)) Tula)b,
en(n+1)(3k(1-22) —20) + (2 +7))

|Z|n+1 <

Therefore,

1
(c+n+1) (nt—DA+E)(1+ A0 - 2)) + (k+7)) Tyla)b, )"
2l < en(n+ DEKA—20) - 22) + 2 +) ‘

For n>1,n € N . The result follows by setting |z| =R

Theorem 10: Let f € 4 (g,7,k,A) . Then the integral operator
1

F(z)=cfucf(uz)du, O<u<1, 0 <c < o),
0

o 1+y
is in the class A* (g, e k /1)

The result is sharp for

) 3(k(1—24) —20) + (2 + 12*];)
fa(2) = P z".

<n(n ~ DA+ R+ A -2) + (k+ 1;;”;)) T, (@b,

Proof: By definition of F, we obtain
1

cn

1 (0e]
= 4 — — - n
F(z) cfu f(uz)du > E C+n+1anz .
0 n+1

By Theorem 1, it is sufficient to show that

o (n(n—l)(1+k)(1+/1(n—2))+ k+ 1 ” )r (ay)b,
a, <1, (33)
= (c+n+1)BKA-21) —22) + (2 + o *yc )
Since, If f e A (g,7,k,A), then (33) satisfied if
c 1

(c+n+ DEEA-22) =200 + @ + 5L S3kA-2D - 2D+ @ +7)

or equivalent, when

B(nc.k,Ay) = cBk(1—22) = 21) + (2+7))

(c+n+ DEKA - 22) — 22) + (2 + 5519)
Since D(n,c,k,A,y) is a decreasing function of n(n>1), then the proof is completed . The

result is sharp for the function

3(k(1—24) — 20) + (2 + S+ Y€

ROEEE Z¥c) .
‘ <n(n -DA+K(1+An—-2))+ (k 41t VC))b

2+c
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