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Abstract 

 

            In this paper , we  used  the  concept of generalized  closed  (g-closed) and generalized 

compact (g-compact) sets to construct a new types of compact spaces and functions which are 

compactly  generalized  closed  space  (cgc-space) , generalized compactly generalized closed 

space and  generalized  coercive  function  (g-coercive) and investigate the properties of these 

concepts . 
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Introduction  

            This concept of generalized closed  (g-closed) set was introduced by Levin N. [1]  and 

studied its properties. Selvarani S. [2] gave the definition of g-neighborhood of a point      

,     -space  and  g-compact  space .  The  generalized  closure  of        is  the intersection 

of  all  g-closed  sets  which  contain     and  denoted  by     ( )  [1] .  In  [4]   Balachandran 

K. , Sundaram P. and Maki H. introduced the certain types of continuous  functions. Finally in 

[3]  Ali J. H.  and Mohammed J. A. defined certain type of compact functions.  We use      to  

denote the indiscrete topology on a non-empty sets    and     to denote the usual topology on 

the  set  of   real  numbers  .  Throughout  this  paper  (   )  and (   ) ( or simply   and   ) 

represent to non-empty topological spaces on which no separation axiom are assumed , unless 

otherwise mentioned . 
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 Notations: andDefinitions 1. Basic  

 

:]1[ 1.1. Definition 

       A subset   of a topological space    is called generalized closed (for brief g-closed)  set if 

  ( )     for every open set   in   contains   . The complement of g-closed set is called g-

open set.  

  

1.2. Example:  

         Let    *       +  with         , then    * + is g-closed set. 

 

3. Example:1. 

        Let      ,        then   (   ) is not g-closed set. 

 

]:14. Remark [1. 
(i)  Every closed set is g-closed. 

(ii) Every open set is g-open. 

 

         The converse of (i , ii )  in  remark  (1.4)  is  not true in general as the following example 

shows: 

 

Example: 5.1. 
        In example (1.2) ,   * +  is g-closed set but not closed and    *   +  is g-open but its 

not open . 

 

]:16. Theorem [1. 
         A  subset    of  a topological  space    is g-closed set if and only if    ( )   contains no 

 non-empty closed set. 

 

]:17. Theorem [1. 

        A subset   of a topological space   is g-open if and only if      ( ) , for every closed 

set   in   contained in  .  

 

]:11.8. Theorem [ 

        Let   be a topological space,   is a closed (open) set in   . Then:  

(i)  If   is g-closed (g-open) set in   then      is g-closed (g-open) set in   . 

(ii) If   is g-closed (g-open) set in   then     is g-closed (g-open) set in  . 
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]:1. Theorem [1.9 

 
       Let   be a topological space and        . Then:                     

(i) if    is g-closed (g-open) set in   and     is g-closed (g-open) set in   , then     is g-closed 

     (g-open)  set in   . 

 

(ii) if   is g-closed (g-open) set in   then   is g-closed (g-open) in   . 

              
         Note that if   is g-closed (g-open)  in   then   not necessary be g-closed (g-open) set in 

   as the following example shows: 

 

. Example:01.1 
       Let     with        and    *    + , then    * + is g-open set in     but   is not 

g-open in   . 

 

:]2[. Definition 1.11 
         Let    be a  topological  space  and     .  A generalized neighborhood of   ( for brief 

g-neighborhood) is any subset of   which contains g-open set containing   . The family of all  

g-neighborhoods of a subset   of   denoted by    ( )  and the family of all g-neighborhoods 

of      denoted by    ( ) . 

 

 1.12. Definition [3]: 
          A topological space    is called generalized Hausdorff  (                 ) if for  any two 

distinct points         there are disjoint g-open sets       of    such that     and     .  

   

 1.13. Remark [3]: 
          Every   -space is    -space . But the converse is not true in general. In example (1.2) ,  

  is    -space. But   is not   -space. 

          

]:2. Remark [1.14 
          The intersection of two g-closed  sets need  not be g-closed and the union of two g-open 

sets need not be g-open as the following example shows: 

         

. Example:1.15 

         Let   *       + and    *      * ++ be a topology on   , then  *    + and  *    + are 

g-closed sets in   , but *    + *    +  * + is not g-closed set and * + * + are g-open sets but 

* + * +  *   + is not g-open . 

 

]:2. Definition [1.16 
          A topological space   is called generalized multiplicative space (  -space)  if  arbitrary 

intersection of g-closed sets of   is g-closed set . 
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]:2. Remark [171. 
(i)      ( )  need not be g-closed, since the intersection of g-closed sets is not to be g-closed . 

(ii)       ( ) if and only if for every g-open set   containing    ,       .   

(iii) If   be an   -space, then    ( ) is g-closed set. 

(iv) Every   -space is an   -space. 

  

                                                                                                         ]:4[ 1.18. Definition 
          Let       be a function from a topological space    into a topological space   , then 

   is called:   

(i)  generalized  continuous ( g-continuous )  function  if     ( ) is g-closed set in   for every 

     closed set   in   . 

(ii) generalized  irresolute  continuous ( gI-continuous) function if     ( ) is g-closed set in   

      for every g-closed set   in   .  

 

]:41.19. Definition [ 
           A function       is called: 

(i)  generalized closed (g-closed) if  ( ) is g-closed set in   for every closed set   in   .        

(ii) generalized  irresolute  closed (gI-closed) function if   ( )  is  g-closed set in    for  every 

      g-closed set   in   . 

 

]:4. Definition [01.2 

          A function       is called: 

(i)  generalized open ( g-open ) function if  ( ) is g-open set in  for every open set   in   .  

(ii) generalized  irresolute open  (gI-open) function if  ( ) is g-open set in   for every g-open 

      set   in   . 

 

1.21. Definition [3]: 
          A topological space   is called generalized compact (g-compact) space if  every g-open 

cover of   has finite subcover.  

 

1.22. Remark [5]: 
         Every  g-compact  space is compact. The converse is not true in general as the following 

example shows: 

 

1.23. Example [5]: 
         Let    * + *        + ,   uncountable,    {     * +}  be a topology on    . Then 

  is compact but is not g-compact, since {*     +    } is g-open cover of   and has no finite 

subcover. 
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1.24. Theorem [2] ,[3],[5]: 
(i)   Every g-closed subset of g-compact space is g-compact. 

(ii)  The intersection of g-compact subset with g-closed subset is g-compact. 

(iii) Every g-compact subspace of    -space is g-closed.  

(iv) Every finite subset is g-compact.  

(v)  Every    compact space is g-compact. 

 

1.25. Theorem [3]: 
(i)  Let    be a topological space and   is g-closed subset of   . Then      is g-compact in                            

     for every g-compact set   in   . 
               
(ii) Let    be a g-open set of a topological    and     , then    is g-compact set in    if and             

      only if    is  g-compact set in   .  

 

1.26. Theorem [3]: 

(i)   Let   be gI-continuous function from g-compact space   onto a topological space   , then  

          is  g-compact space.          

 (ii)  Let        be gI-continuous function , then the image  ( ) of  any g-compact set   in         

         is g-compact set in   . 
(iii)  Let   be gI-continuous function from g-compact space   into a    -space   is gI-closed.   

   
1.27. Definition [3]: 

        Let       be a function , then   is called generalized irresolute compact (gI-compact) 

if    ( ) is g-compact set in   for every g-compact set   in   .  

    

]:6efinition [1.28. D 
        A set   is called a directed if there is a relation   on   satisfying: 

(i)        for each      . 

(ii)  If        and       then       . 

(iii) If          , there is some       with        and       . 

 

]:7. Definition [9.21 

         A  net  in a set    is  a  function  𝜒     , where     is directed  set. The  point  𝜒( ) is 

usually denoted by  𝜒
 
 .  

  

]:7. Definition [1.30 

         A subnet of a net 𝜒     is the composition 𝜒   , where       and    is directed 

set, such that : 

(i)   (  )   (  )  , where         . 

(ii) For all      there is some     such that     ( ) for     . The point  𝜒  ( ) 

      is often written  𝜒   .  

 

 

 
5 



Certain Types of Compact Spaces 

 

]:7. Definition [1.31 
          Let  (𝜒 )    be a net in a topological space   and     ,     then: 

(i)  (𝜒 )     is eventually in   if there is       such that 𝜒     for all      .  

(ii) (𝜒 )     is  frequently  in     if  for  all        there  is        with        such  that 

𝜒     .              

1.32. Definition [5]: 
          Let (𝜒 )     be  a  net  in  a  topological  space   ,     . Then (𝜒 )    is  said  to be 

generalized  converges  to  a  point   ( for brief g-converges )  if (𝜒 )     eventually  in every 

g-neighborhood of   ( written 𝜒 
 
   ) . A point     is called generalized limit point ( for brief 

g-limit point) of (𝜒 )    .  

 

1.33. Theorem: 
          Let   be a topological space and    ,     . Then      ( ) if and only if there is 

a net (𝜒 )    in   such that  𝜒 
 
   . 

 

Proof: 

         Suppose that there is a net (𝜒 )     in   such that  𝜒 
 
   .  To prove that      ( ) .                       

Let      ( ) , since 𝜒 
 
   , there is       with  𝜒    for all      . But  𝜒    for 

all     . So       for all     ( ). By remark (1.17.ii) ,      ( ) . 

Conversely: 

Suppose  that       ( )   To prove that there is a net  (𝜒 )    in    such that  𝜒 
 
   . 

Since       ( ) , by  remark (1.17.ii) ,         for all     ( ) . Then      ( )  is 

directed set  by  inclusion.  Since             ( ) , there is 𝜒     .                              

Define  𝜒      by  𝜒( )  𝜒   for  all     ( ) .  Hence  (𝜒 )    ( )  is  a net in   . To 

prove  that  𝜒 
 
   .  Let     ( )  to find        such  that  𝜒     for  all       . Let  

     , then  for  all         we have        ( )  i.e.,         .                                        

𝜒  𝜒( )  𝜒( )  𝜒          , then 𝜒    for all      . Thus  𝜒 
 
   . 

 

1.34. Corollary:               
          Let   be a topological space and    ,    .  Then      ( ) if and only if there is 

a net (𝜒 )     in   such that  𝜒    
 

 . 

 

1.35. Theorem [8]:  
           Let    be a   -space. Then    is  g-compact if and only if every net in   has a g-cluster 

point in   .  
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]:71.36. Remark [ 
           Let       be a function from a set   into a set   , then:    

 (i)  If (𝜒 )    is a net in   , then * (𝜒 )+    is a net in   . 

 (ii) If      is  onto  and  (  )    be  a  net  in   ,  then  there  is  a  net  (𝜒 )    in    such that 

        (𝜒 )     , for each     .          

            

1.37. Theorem:  
         Let    and     be topological spaces . A function        is g-continuous  if and only if 

whenever (𝜒 )    is a net in    such that 𝜒 
 
   , then  (𝜒 )   ( )  in   . 

 

Proof: Clear. 

 

1.38. Corollary: 
         Let   and   be topological spaces . A function        is gI-continuous  if and only if 

whenever (𝜒 )    is a net in    such that 𝜒 
 
   , then  (𝜒 )

 
  ( )  in   . 

 
Proof: 

        Suppose that        is gI-continuous and (𝜒 )    is a net in   such that  𝜒 
 
   . To 

prove that  (𝜒 )
 
  ( ) . Let      ( ( )) in   , then    ( )    ( ) , for some                                                                        

,        implies that  𝜒   
  ( ) .  Thus  showing  that   (𝜒 )

 
  ( ) ,  since  (𝜒 )     is  

eventually in each g-neighborhood of   ( ) ,  then by remark  ( 1.36.i ),  * (𝜒 )+  is a net in   

which is eventually in each g-neighborhood of   ( ).  Therefore   (𝜒 )
 
  ( )  .  

Conversely:  

 To  prove  that     is gI-continuous ,  suppose  not ,  then  there  is      ( ( ))  such  that  

 ( )    for any      ( ) . Thus for all      ( )  we can 𝜒    such that   (𝜒 )    

, but (𝜒 )    ( )  is a net in     with  𝜒 
 
    ,  while  * (𝜒 )+    ( )  is not g-convergent to 

 ( ) . This is a contradiction.  
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    2. Compactly g-closed and g-compactly g-closed spaces: 
          This  section is devoted to a new concept which is called compactly g-closed space and  
generalized  compactly  g-closed  space.  Several  various  examples , theorems  and  remarks   
on these concepts are proved . Furthermore theorems are stated as well as the relationships  
between these concepts . 

    

2.1. Definition: 
        Let   be a topological space. A subset     is called compactly generalized closed (for 

brief cgc-set) if     is g-compact set for every g-compact set   in   . 
 

2.2. Example:  
(i)  Every finite subset of a topological space is cgc-set. 

(ii) Every subset of indiscrete space is cgc-set. 

 

2.3. Theorem: 
          Every g-closed subset of a topological space is cgc-set. 

 

Proof: 
         Let   be a g-closed subset of a topological space    and   be a compact subset of   , by 

Theorem (1.24.ii) ,     is g-compact set. Thus   is cgc-set. 

  

         The converse of theorem (2.3) need not true in general as the following example shows: 

  

2.4. Example: 
        Let   *      +  and    {    *   +}  be a topology on   , then   *   +  is cgc-set 

but it is not g-closed set. 

 

2.5. Theorem: 
         Let   be a   -space and      . Then   is cgc-set if and only if it is g-closed set . 

 
Proof: 
        Let   be a cgc-set in    and       ( ) . By theorem (1.33) , there is a net (𝜒 )    in    

such  that  𝜒 
 
   .  Then   *𝜒   + is g-compact set . Since    is cgc-set , then       is  g-

compact set in   . But    is a    , then      is g-closed . Since 𝜒 
 
   and  𝜒      , then  

by  theorem (1.33) ,        , hence     . Thus   is g-closed set.  

Conversely:  By using Theorem (2.3) . 

  

2.6. Theorem: 
         Let         is a bijective, gI-continuous , gI-compact function and      . Then   is 

cgc-set in   if and only if  ( ) is cgc-set in  . 
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Proof:    
        Let    be a cgc-set in   and let   be a g-compact set in  . Since   be a gI-compact, then  

   ( ) is g-compact set in  .  Thus      ( )  is g-compact set in  . By theorem  (1.26.ii) ,  

 (     ( ))  is g-compact set in  .  But   (     ( ))   ( )   is g-compact set in   . 

Hence  ( ) is cgc-set in   .  

Conversely: 

Let  ( ) be a cgc-set in  . To prove that   is cgc-set in  . Let    be a g-compact set in  . 

Since    be a  gI-continuous , then  by  theorem  (1.26.ii) ,  ( ) is  g-compact  set  in    .Thus 

 ( )  ( )   is  g-compact  set  in    , thus     ( ( )  ( ))  is g-compact set in   . ( since 

  gI-compact ). But     ( ( )  ( ))      .  Thus   is cgc-set in   . 

 

2.7. Theorem: 
          Let   be a g-open subset of a topological space   . Then   is cgc-set in    if and only if 

the inclusion function         is gI-compact. 
 

Proof: 

         Suppose that   be a cgc-set and   be a g-compact set in   . Then       is g-compact  

set in   , by theorem (1.25.ii),     is g-compact  set in  . But        ( ) , then    ( ) 

is g-compact set in   . Thus        is gI-compact. 

Conversely: 

Let   be  a  g-compact  set  in    ,  since           is  gI-compact .  Then      ( )       is       

g-compact  set  in     , thus  by  theorem  (1.25.ii) ,        is  g-compact   set  in     for  every 

g-compact set   in   , Therefore   is cgc-set in  .  

    

2.8. Definition:  
         A subset   of a topological space   is said to be generalized compact generalized closed 

set (for brief gcgc-set) , if      is g-closed set in   for every g-compact set   in   . 

 

2.9. Example: 
         Every subset of a discrete space is gcgc-set.  

 

2.10. Remark: 
         Not every set of a topological space is gcgc-set as the example (2.4) shows. 

 

 

2.11. Theorem: 
         Every gcgc-set in a topological space is gcg-set. 
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         Let   be a gcgc-set of a topological space   and let   be a g-compact subset of     Then 

     is g-closed set in      Since      , then by remark (1.24.i) ,     is g-compact set . 

Therefore   is cgc-set in   .  

 

2.12. Theorem: 
           Let   be a   -space and     , the following statements are equivalent: 

(i)     is cgc-set. 

(ii)    is gcgc-set. 

(iii)   is g-closed set. 

 

Proof: 
(    )  Let   is cgc-set in   and let   be a g-compact set in   . Then     is g-compact set  

                in   . Since   is a   -space , then by  theorem (1.24.iii) ,      is g-closed set in   . 

                Thus   is gcgc-set in   . 
(    )   By using theorem (2.11) . 
(     ) By using theorem (2.3) . 

 

2.13. Remark: 
          If   is not   -space , then it is  not  necessary  that cgc-set  is  gcgc-set as the following 

example shows: 

  

         Let   *     + and   *         + * +  be a topology on   , clear that (   ) 
is not   -space .  Since *   + * +    and  * +  is g-compact set in   and *   + * +  * + is 

g-closed but *   + is not g-closed set. 

 

        Recall that a bijective function       is called generalized irresolute homeomorphism 

(gI-homeomorphism) if   and     are gI-continuous [7]. 

 

:]9[ . Theorem2.14 
           A bijection function        is gI-homeomorphism if   is gI-continuous and gI-open 

(gI-closed) function.  

        

2.15. Theorem:  
         The following conditions on a Hausdorff space   are equivalent: 

(i)  The only g-open subset of   which is gcgc-set is the whole space and the empty set.  

          

(ii) Every  gI-open , gI-continuous and gI-compact function from a topological space   into                                
      is onto . 

 

(iii) Every   one  to one , gI-open , gI-continuous and  gI-compact function  from a topological         

       space   into   is gI-homeomorphism.  
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(    ) Let        be a gI-open , gI-continuous and gI-compact function . Since   is non -                   

empty g-open set , then  ( )  is non-empty g-open set in  .  To prove  ( ) is  gcgc-set in  . 

Let   be a g-compact set in   then    ( ) is g-compact set in   , since   is gI-compact. Thus 

by theorem  (1.26.ii) ,  (   ( )) is g-compact set in  .  By theorem (1.24.iii) ,  (   ( )) is  

g-closed set in  .  Since  ( )    (   ( )) , then  ( )    is g-closed set in  . So  ( ) 

is gcgc-set.   But   ( )    ,  then   ( )    . Thus    is onto. 

                      
(      )Let       be an one to one, gI-open, gI-continuous and gI-compact function. 

Then  by  (ii) ,    is  onto  and  one to one , hence it is bijection . Then by theorem (2.14) ,   is 

gI-homeomorphism .                    

 
(     ) Let    be a non-empty g-open subset of   which is gcgc-set. Then by theorem (2.11)  

 ,   is cgc-set , since    is g-open . Then  by theorem (2.7) ,  the inclusion function        is  

gI-compact. To prove         is gI-continuous, let   is g-open set in  , then     is g-open 

set. But         ( )  is g-open set in   . Thus , the inclusion function is gI-continuous, by 

(iii) , the  inclusion function is gI-homeomorphism . Thus     , this complete proof . 

                                                              

2.16. Definition:  
         A topological  space    is  said  to  be  compactly  generalized  closed  space  ( for  brief 

cgc-space) if every cgc-set of   is g-closed.  

 

2.17. Example: 
(i)  Every indiscrete space is cgc-space. 

(ii) Every   -space is cgc-space.  

 

2.18. Remark:  
         The example in remark (2.13) shows that not every topological space is cgc-space. 

 

2.19. Theorem: 
           Let    be a topological  space  and     is cgc-space. Then every  gI-continuous  and  gI-

compact onto function       is gI-closed.  

 

Proof: 
          Let   be a g-closed subset of  . To prove that  ( )  is g-closed subset of  . Let    be a   

g-compact subset of    . Since   is gI-compact, then    ( ) is g-compact set in       

By remark (1.24.ii) ,      ( ) is g-compact set in   .   

Since   is gI-continuous, then by theorem (1.26.ii),  (     ( )) is g-compact set of   . But 

 (     ( ))   ( )   , thus  ( )      g-compact set of   . Hence  ( )  is cgc-set in    

Since   is cgc-space, then  ( ) is g-closed set in   . Thus   is gI-closed function.  

11 
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         A topological space    is said to be  generalized compactly generalized closed ( for brief 

gcgc-space) if every gcgc-set of   is g-closed.  

 

2.21. Example: 
(i)  Every   -space is gcgc-space.  

(ii) Every indiscrete space is gcgc-space. 

 

2.22. Theorem: 
            Let   be a   -space . Then cgc-space and gcgc-space are equivalent. 

 

Proof:  By using theorem (2.12) .  

  

2.23. Definition: 
          Let    and    be topological spaces. A function        is called generalized coercive  

(for brief g-coercive)  if for every g-compact subset    of     there is g-compact subset   of    

such that  (   )  (   ) .  

 

2.24. Example: 
         The identity function of any topological space is g-coercive.  

 

2.25. Theorem: 
         If        is a function, such that   is g-compact space , then   is g-coercive. 

 

Proof:  
         Let   be a g-compact subset of   . Since   is g-compact space. Then (   )   ( )  
    (   ) . Thus   is g-coercive function.  

 

2.26. Theorem: 

          Let   and   be   -spaces and        is gI-continuous function. Then   is g-coercive  

if and only if   is gI-compact . 

 
 

Proof:  
         Suppose  that     is g-coercive and let    be a g-compact subset of   .  To prove that   is 

g-compact , since   is   -space then by (1.24.iii) ,   is g-closed  but   is gI-continuous . Then 

   ( )  is g-closed subset of    . Since   is g-coercive function , then there is a g-compact set 

  in   such that   (   )  (   ).  
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since    ( )  is g-closed, then by corollary (1.34) , every net in    ( ) has g-cluster in itself 

itself . Then by theorem (1.35) ,    ( )  is g-compact subset in   . Therefore   is gI-compact 

function. 

Conversely:  By using theorem (2.25) . 

   

2.27. Theorem: 
           Let    and   be topological spaces and         be a function. Then: 

(i)  If         be a  g-coercive  function with     is g-closed and open subset of    , then the   

      restriction function           is g-coercive .   

(ii) If   is g-compact and   is g-closed subset of    , then           is g-coercive function. 

 

Proof:                     

(i)  Let    be  a  g-compact  subset of    , since    is a g-coercive . Then  there  is a g-compact 

subset    of     such that  (   )  (   ) .  
Since   is g-closed subset of   , then by theorem (1.24.ii) ,      is g-compact set in  .  Since 

   is open in   ,by theorem (1.25.ii),     is g-compact set in  .  

Since    (   )   (   ) and          , then   (   )   (   ) .  

Thus     (     )      , hence         is g-coercive.  

 

 (ii)  By using theorem (2.25) and (i) .  

             

 2.28. Theorem: 
           A composition of two g-coercive functions is g-coercive. 

 

Proof: 
          Let        and         be a g-coercive functions . Let    is a g-compact subset of  

  , then there is a g-compact subset   of    such that  (   )      .  

Since    is a g-coercive , then there is a g-compact subset    of    such that (   )      .  

So  ( (   ))   (   ) , but   (   )      .  Hence   ( (   ))     (   )  
    ,  therefore       is g-coercive function. 

  

2.29. Theorem:  
          If        is bijective , gI-compact and       is a g-coercive function, then     is 

g-coercive function . 

 

Proof: 
         Let    be a g-compact subset of     , then  there  is  a g-compact subset   of    such that  

 (   )     . Put       ( ), since   is gI-compact then   is a g-compact subset of    
Thus    (   )   ( (    ))   ( ( )  (  )) . 
Since   is a bijective, then    (   )   ( ( )  (  ))   (   (   ( ))   (    ) 
  (   )      . Thus     is g-coercive function. 
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 المرصوصة  أنماط معينة من الفضاءات

 

 من قبل

ستار حميد حمزة الجنابي 0د   

 جامعة القادسية , كلية التربية , قسم الرياضيات

 و

 سعيد عبد الكاظم جوني 

    جامعة القادسية , كلية علوم الحاسوب والرياضيات ,  قسم الرياضيات 

 

 المستخلص :

 (-gالمعممة )المرصوصةوالمرصوصة  (-g)المغلقةالمجموعات المغلقة المعممة مفهومي أستخدمنا في هذا البحث         

المرصوصة  المغلقة  المعممة  )   الفضاءات  أسميناهاوالدوال المرصوصة الفضاءات جديدة من لأنشاء أنواع 

 الأضطرارية )  المعممةوالدوال الأضطرارية  (-gcgc الفضاءات )المعممة المرصوصة المعممة والفضاءات  (-cgc الفضاءات 

g-)  . ودرسنا خواص هذه المفاهيم  

 

 

 

       

     

             

          

 

 

 

 

15 



Certain Types of Compact Spaces 

 

 

   

 

 
 
                                                        
  

 

 

 

 

  

   


