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Abstract

In this paper , we used the concept of generalized closed (g-closed) and generalized
compact (g-compact) sets to construct a new types of compact spaces and functions which are
compactly generalized closed space (cgc-space) , generalized compactly generalized closed
space and generalized coercive function (g-coercive) and investigate the properties of these
concepts .
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Introduction

This concept of generalized closed (g-closed) set was introduced by Levin N. [1] and
studied its properties. Selvarani S. [2] gave the definition of g-neighborhood of a point x € X
, gT, -space and g-compact space . The generalized closure of A € X is the intersection
of all g-closed sets which contain A and denoted by gcl(A) [1]. In [4] Balachandran
K., Sundaram P. and Maki H. introduced the certain types of continuous functions. Finally in
[3] AliJ. H. and Mohammed J. A. defined certain type of compact functions. We use Tj, 4 t0
denote the indiscrete topology on a non-empty sets X and T;; to denote the usual topology on
the set of real numbers R. Throughout this paper (X,T) and (Y, T) (orsimply X and Y )
represent to non-empty topological spaces on which no separation axiom are assumed , unless
otherwise mentioned .
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1. Basic Definitions and Notations:

1.1. Definition [1]:

A subset A of a topological space X is called generalized closed (for brief g-closed) set if
cl(A) € U forevery open set U in X contains A . The complement of g-closed set is called g-
open set.

1.2. Example:
Let X ={1,2,3} with T =T,,q,then A = {1} is g-closed set.

1.3. Example:
Let X=R,T =Ty ,then A = (a, b) is not g-closed set.

1.4. Remark [1]:
(i) Every closed set is g-closed.

(ii) Every open set is g-open.

The converse of (i, ii) in remark (1.4) is not true in general as the following example
shows:

1.5. Example:
In example (1.2) , A = {1} is g-closed set but not closed and B = {2,3} is g-open but its

not open .

1.6. Theorem [1]:
A subset A of atopological space X is g-closed set if and only if cl(A)-A contains no
non-empty closed set.

1.7. Theorem [1]:
A subset A of a topological space X is g-open if and only if F < int(A) , for every closed
set F in X contained in A.

1.8. Theorem [1]:

Let X be a topological space, Y is a closed (open) set in X . Then:
(i) If B is g-closed (g-open) set in X then BNY is g-closed (g-open) setin X .
(i) If B is g-closed (g-open) set in X then BNY is g-closed (g-open) setinY.
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1.9. Theorem [1]:

Let X be a topological spaceand B €Y € X . Then:
(i) if B isg-closed (g-open) setinY and Y is g-closed (g-open) setin X , then B is g-closed
(g-open) setin X .

(i) if B is g-closed (g-open) set in X then B is g-closed (g-open) inY .

Note that if B is g-closed (g-open) in Y then B not necessary be g-closed (g-open) set in
X as the following example shows:

1.10. Example:
LetX = Rwith T=Ty and Y = {1,2},then B = {1} isg-opensetinY, but B is not
g-openinR .

1.11. Definition [2]:

Let X be a topological space and A € X. A generalized neighborhood of A ( for brief
g-neighborhood) is any subset of X which contains g-open set containing A . The family of all
g-neighborhoods of a subset A of X denoted by NV, (A) and the family of all g-neighborhoods
of x € X denoted by NV, (x) .

1.12. Definition [3]:
A topological space X is called generalized Hausdorff ( for brief gT, ) if for any two
distinct points x, y € X there are disjoint g-opensets U,V of X suchthatx e Uandy €V .

1.13. Remark [3]:

Every T,-space is gT,-space . But the converse is not true in general. In example (1.2) ,
X is gT,-space. But X is not T,-space.

1.14. Remark [2]:
The intersection of two g-closed sets need not be g-closed and the union of two g-open
sets need not be g-open as the following example shows:

1.15. Example:

LetX ={a,b,c}and T ={0,X,{a}} be atopology on X, then {a,b}and {a,c}are
g-closed sets in X , but {a,b}N{a,c} = {a} is not g-closed set and {b}, {c} are g-open sets but
{b}U{c} = {b, c} is not g-open .

1.16. Definition [2]:
A topological space X is called generalized multiplicative space (IG-space) if arbitrary
intersection of g-closed sets of X is g-closed set .
3
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1.17. Remark [2]:
(i) gcl(A) need not be g-closed, since the intersection of g-closed sets is not to be g-closed .

(if) x € gcl(A) if and only if for every g-open set U containingx ,UNA # Q.
(i) If X be an IG-space, then gcl(A) is g-closed set.
(iv) Every T;-space is an IG-space.

1.18. Definition [4]:
Let f: X — Y be a function from a topological space X into a topological space Y, then
f is called:
(i) generalized continuous ( g-continuous ) function if f~1(A) is g-closed set in X for every
closedsetAinY .
(i) generalized irresolute continuous ( gl-continuous) function if f~1(A) is g-closed set in X
for every g-closed set A inY .

1.19. Definition [4]:
A function f: X — Y is called:

(i) generalized closed (g-closed) if f(B) is g-closed set in Y for every closed set B in X .
(ii) generalized irresolute closed (gl-closed) function if f(B) is g-closed setinY for every
g-closedset Bin X .

1.20. Definition [4]:
A function f: X — Y is called:
(i) generalized open ( g-open ) function if f(B) is g-open set inY for every open set B in X .
(ii) generalized irresolute open (gl-open) function if f(B) is g-open set in Y for every g-open
setBinX.

1.21. Definition [3]:
A topological space X is called generalized compact (g-compact) space if every g-open
cover of X has finite subcover.

1.22. Remark [5]:

Every g-compact space is compact. The converse is not true in general as the following
example shows:

1.23. Example [5]:

Let X = {x}U{x; : i €1}, Iuncountable, T = {@,X,{x}} be atopology on X . Then
X is compact but is not g-compact, since {{x X 1l € I} is g-open cover of X and has no finite
subcover.
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1.24. Theorem [2] ,[3],[5]:

(i) Every g-closed subset of g-compact space is g-compact.

(if) The intersection of g-compact subset with g-closed subset is g-compact.
(iii) Every g-compact subspace of gT,-space is g-closed.

(iv) Every finite subset is g-compact.

(v) Every T; compact space is g-compact.

1.25. Theorem [3]:
(i) Let X be atopological space and F is g-closed subset of X . Then FNK is g-compact in F
for every g-compact set K in X .

(if) Let Y be a g-open set of a topological X and K € Y, then K is g-compact setinY ifand
only if K is g-compact setin X .

1.26. Theorem [3]:

(i) Let f be gl-continuous function from g-compact space X onto a topological space Y , then
Y is g-compact space.

(if) Let f: X — Y be gl-continuous function , then the image f(A) of any g-compact set A in
X is g-compact setinY .

(iii) Let f be gl-continuous function from g-compact space X into a gT,-space Y is gl-closed.

1.27. Definition [3]:

Let f: X — Y be a function , then f is called generalized irresolute compact (gl-compact)
if f~1(K) is g-compact set in X for every g-compact set K inY .

1.28. Definition [6]:
A set D is called a directed if there is a relation < on D satisfying:
(1) d<d foreach d €D.

(i) Ifdy <d, andd, < dsthend; <d;.
(i) If dy,d, € D ,thereissomed; € D withd, < d; andd, < d; .

1.29. Definition [7]:
A net inaset X is a function y:D — X, where D isdirected set. The point y(d) is
usually denoted by y,, .

1.30. Definition [7]:

A subnet of anet y: D — X is the composition yoe , where ¢: M — D and M is directed
set, such that :

(i) (my) < p(my) , where my <m, .
(it) For all d € D there is some m € M such that d < ¢(m) form € M . The point yogp(m)
is often written x4, -
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1.31. Definition [7]:
Let (xq)a4ep be anetin atopological space X and A € X , x € X then:

(1) (Xa)aep i1seventually in A if thereisdy, € D suchthat y, € A foralld > d, .
(i) (Xxa)aep 1s frequently in A if for all d € D there is dy, € D with d > d,, such that
Xa, €A .
1.32. Definition [5]:
Let (x4)aep e a net in a topological space X, x € X . Then (x4)qep IS Said to be
generalized converges to a point x ( for brief g-converges ) if (x4)qep €ventually in every

g-neighborhood of x ( written y, A x).Apoint x is called generalized limit point ( for brief
g-limit point) of (x4)4ep -

1.33. Theorem:
Let X be a topological space and A € X, x € X . Then x € gcl(A) if and only if there is

anet (x4)aep in A such that x4 L.

Proof:

Suppose that there is a net (y4)4ep in A such that y, Zx. To prove that x € gcl(A) .
Let U € NV,(x), since xq4 % x ,thereisd, € D with y, € Uforalld > d, .But y,; € U for
alld € D.So ANU # @ forall U € Ny (x). By remark (1.17.ii) , x € gcl(A) .
Conversely:
Suppose that x € gcl(A) . To prove that there isanet (x4)aep iN A such that y, x.
Since x € gcl(A) , by remark (1.17.ii), ANU # @ forall U € Ny (x) . Then D = Ny (x) is
directed set by inclusion. Since N\U # @ V U € N,(x) , there is y,;, € ANU.
Define y:D - A by y(U) = xy for allU € NV, (x) . Hence ()(U)UENg(x) is anetinA.To

prove that yy, Lx. LetU € Ny (x) tofind d, € D such that y, € U for alld > d, . Let
do =U ,then for all d >d, wehave d =V € Ny(x) ie,V=UoVCU.

Xa=x@)=xWV)=xyy€VNACSV cU,theny, € Uforalld = d,. Thus )(Uix.

1.34. Corollary:
Let X be a topological space and A € X, x € X. Then x € gcl(A) if and only if there is
anet (xg)gep iNAsuchthat y, Jx.

1.35. Theorem [8]:
Let X be a T,-space. Then X is g-compact if and only if every net in X has a g-cluster

pointin X .
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1.36. Remark [7]:
Let f: X — Y be a function from a set X into aset Y, then:

(1) If (xa)aep isanetin X, then {f(x4)}qepiSanetiny .
(i) If £ is onto and (y4)qep be a net inY, then there is a net (xq)qep iN X such that

f(xa) =vq,foreachd € D .

1.37. Theorem:
Let X and Y Dbe topological spaces . A function f: X — Y is g-continuous if and only if

whenever (x4)q4ep iS @ netin X such that y, % x ythen f(xq) = f(x) inY.

Proof: Clear.

1.38. Corollary:
Let X and Y be topological spaces . A function f: X — Y is gl-continuous if and only if

whenever (x4)ep i1Sanetin X such that y, Zx , then f(x4) A f(x) inY.

Proof:

Suppose that f: X — Y is gl-continuous and (¥4)4ep is @ netin X such that x4 A x.To
prove that f(xrq) = f(x) . Let V € N,(f(x))in Y, then f~1(V) € N, (x), for some d € D
, d >d, impliesthat y; € f~1(V). Thus showing that f(x4) ﬂf(x) , since (Xq)aep is
eventually in each g-neighborhood of f(x), then by remark (1.36.i), {f(xq)} isanetinY

which is eventually in each g-neighborhood of f(x). Therefore f(x4) A f(x) .
Conversely:

To prove that f isgl-continuous, suppose not, then there is V € Ng(f(x)) such that
f(U) ¢ Vforany U € Ny(x) . Thus forall U € Ny(x) we can yy € U suchthat f(xy) € V

g
, but ()(U)UeNg(x) isanetin X with y; = x , while {f()(U)}UeNg(x) is not g-convergent to
f(x) . This is a contradiction.
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2. Compactly g-closed and g-compactly g-closed spaces:

This section is devoted to a new concept which is called compactly g-closed space and
generalized compactly g-closed space. Several various examples, theorems and remarks
on these concepts are proved . Furthermore theorems are stated as well as the relationships
between these concepts .

2.1. Definition:
Let X be a topological space. A subset A € X is called compactly generalized closed (for
brief cgc-set) if ANK is g-compact set for every g-compact set K in X .

2.2. Example:
(i) Every finite subset of a topological space is cgc-set.
(i) Every subset of indiscrete space is cgc-set.

2.3. Theorem:
Every g-closed subset of a topological space is cgc-set.

Proof:
Let A be a g-closed subset of a topological space X and K be a compact subset of X , by
Theorem (1.24.ii) , ANK is g-compact set. Thus A is cgc-set.

The converse of theorem (2.3) need not true in general as the following example shows:

2.4. Example:
LetX ={a,b,c} and T = {0,X,{a b}} beatopology on X, then A = {a, b} is cgc-set
but it is not g-closed set.

2.5. Theorem:
Let X bea T,-space and A € X . Then A is cgc-set if and only if it is g-closed set .

Proof:
Let A beacgc-setin X and x € gcl(A) . By theorem (1.33) , there is a net (x4)q4ep in A

such that y, % x. Thenk = {xa4,x} is g-compact set . Since A is cgc-set, then ANK is g-

compactsetin X . But XisaT,,then ANK is g-closed . Since x4 %, x and Xa € ANK , then
by theorem (1.33),x € ANK ,hencex € A. Thus A is g-closed set.
Conversely: By using Theorem (2.3) .

2.6. Theorem:
Let f: X — Y is a bijective, gl-continuous , gl-compact functionand A € X . Then A is
cge-set in X if and only if f(A) iscgc-setinY.

8
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Proof:
Let A be acgc-setin X and let K be a g-compact set in Y. Since f be a gl-compact, then

fY(K) is g-compact set in X. Thus ANf~1(K) is g-compact set in X. By theorem (1.26.ii) ,
fF(ANF~Y(K)) is g-compact setin Y. But f(ANf~1(K)) = f(A)NK is g-compact setin Y .
Hence f(A) is cgc-setinY .

Conversely:

Let f(A) beacgc-setinY. To prove that A is cgc-setin . Let K be a g-compact set in X.
Since f bea gl-continuous, then by theorem (1.26.ii), f(K) is g-compact set in Y .Thus
f(ANf(K) is g-compact set in Y, thus f‘l(f(A)ﬂf(K)) IS g-compact set in X . ( since
f gl-compact ). But f~1(f(A)Nf(K)) = ANK . Thus A is cgc-setin X .

2.7. Theorem:
Let B be a g-open subset of a topological space X . Then B is cgc-set in X if and only if
the inclusion function i: B — X is gl-compact.

Proof:

Suppose that B be a cgc-set and K be a g-compact setin X . Then BNK is g-compact
set in X, by theorem (1.25.ii), BNK is g-compact setin B. But BNK = i~ 1(K), then i"1(K)
is g-compact setin B . Thus i: B = X is gl-compact.
Conversely:
Let K be a g-compact set in X, since i:B — X is gl-compact. Then i"}(K) = BNK is
g-compact set in B , thus by theorem (1.25.ii), BNK is g-compact set in X for every
g-compact set K in X , Therefore B is cgc-set in X.

2.8. Definition:
A subset A of a topological space X is said to be generalized compact generalized closed
set (for brief gcge-set) , if ANK is g-closed set in X for every g-compact set K in X .

2.9. Example:
Every subset of a discrete space is gcgc-set.

2.10. Remark:
Not every set of a topological space is gcgc-set as the example (2.4) shows.

2.11. Theorem:
Every gcgc-set in a topological space is gcg-set.

Proof:
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Let A be a gcge-set of a topological space X and let K be a g-compact subset of X. Then
ANK isg-closed setin X . Since ANK < K, then by remark (1.24.i) , ANK is g-compact set .
Therefore A is cgc-set in X .

2.12. Theorem:
Let X be a T,-space and A < X , the following statements are equivalent:
(i) Ais cgc-set.
(if) A is gcge-set.
(iii) A is g-closed set.

Proof:

(i=ii) Let Aiscgc-setin X and let K be a g-compact set in X . Then ANK is g-compact set
in X . Since X is a T,-space , then by theorem (1.24.iii) , ANK is g-closed set in X .
Thus A is gcge-set in X .

(ii > i) By using theorem (2.11) .

(iii = i) By using theorem (2.3) .

2.13. Remark:
If X is not T,-space , then it is not necessary that cgc-set is gcgc-set as the following
example shows:

LetX ={a,b,c}and T ={U € X : a € U }U{®} be atopology on X, clear that (X,T)
is not T,-space . Since {a, b},{b} c X and {b} is g-compact setin X and {a, b}N{b} = {b}is
g-closed but {a, b} is not g-closed set.

Recall that a bijective function f: X — Y is called generalized irresolute homeomorphism
(gl-homeomorphism) if f and £~ are gl-continuous [7].

2.14. Theorem [9]:
A bijection function f: X = Y is gl-homeomorphism if f is gl-continuous and gl-open
(gl-closed) function.

2.15. Theorem:
The following conditions on a Hausdorff space Y are equivalent:
(i) The only g-open subset of Y which is gcgc-set is the whole space and the empty set.

(it) Every gl-open, gl-continuous and gl-compact function from a topological space X into Y
is onto .

(iii) Every one to one, gl-open, gl-continuous and gl-compact function from a topological
space X into Y is gl-homeomorphism.

10
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(i=1ii)Letf:X - Y beagl-open, gl-continuous and gl-compact function . Since X is non -
empty g-open set, then f(X) is non-empty g-open setinY. To prove f(X) is gcgc-setinY.

Let K be a g-compact set in Y then f~1(K) is g-compact set in X , since f is gl-compact. Thus
by theorem (1.26.ii) , f(f ~*(K)) is g-compact set in Y. By theorem (1.24.iii) , f(f "1(K)) is
g-closed setin Y. Since f(X)NK = f(f1(K)), then f(X)NK is g-closed setin Y. So £(X)
is gcge-set. But f(X) # @, then f(X) =Y .Thus f is onto.

(ii = iii)Let f: X — Y be an one to one, gl-open, gl-continuous and gl-compact function.
Then by (ii), f is onto and one to one, hence it is bijection . Then by theorem (2.14) , f is
gl-homeomorphism .

(iii = i) Let A be a non-empty g-open subset of Y which is gcgc-set. Then by theorem (2.11)
, A is cgc-set , since A is g-open . Then by theorem (2.7) , the inclusion functioni:A =Y is
gl-compact. To prove i:A — Y is gl-continuous, let B is g-open set in Y, then ANB is g-open
set. But ANB = i~1(B) is g-opensetin A. Thus, the inclusion function is gl-continuous, by
(ii1) , the inclusion function is gl-homeomorphism . Thus A =Y, this complete proof .

2.16. Definition:
A topological space X is said to be compactly generalized closed space (for brief

cgc-space) if every cgc-set of X is g-closed.

2.17. Example:
(i) Every indiscrete space is cgc-space.
(i) Every T,-space is cgc-space.

2.18. Remark:
The example in remark (2.13) shows that not every topological space is cgc-space.

2.19. Theorem:
Let X be atopological space and Y is cgc-space. Then every gl-continuous and gl-

compact onto function f: X — Y is gl-closed.

Proof:
Let F be a g-closed subset of X. To prove that f(F) is g-closed subset of Y. Let K be a

g-compact subset of Y . Since f is gl-compact, then f~1(K) is g-compact set in X.
By remark (1.24.ii) , FNf~1(K) is g-compact set in X .
Since f is gl-continuous, then by theorem (1.26.ii), f (FNf~1(K)) is g-compact set of Y. But
F(FNFY(K)) = fF(F)NK , thus f(F)NK is g-compact set of Y. Hence f(F) is cgc-setin Y.
Since Y is cgc-space, then f(F) is g-closed set in Y . Thus f is gl-closed function.

11
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A topological space X is said to be generalized compactly generalized closed ( for brief
gcge-space) if every gege-set of X is g-closed.

2.21. Example:
(i) Every T,-space is gcgc-space.
(if) Every indiscrete space is gcgc-space.

2.22. Theorem:
Let X be a T,-space . Then cgc-space and gcgc-space are equivalent.

Proof: By using theorem (2.12) .

2.23. Definition:

Let X and Y be topological spaces. A function f:X — Y is called generalized coercive
(for brief g-coercive) if for every g-compact subset B of Y there is g-compact subset A of X
such that f(X\ A) € (Y\B).

2.24. Example:
The identity function of any topological space is g-coercive.

2.25. Theorem:
If f:X — Y isafunction, such that X is g-compact space , then f is g-coercive.

Proof:
Let B be a g-compact subset of Y . Since X is g-compact space. Then (X \ X) = f(@) =
@ < f(Y\B).Thus f is g-coercive function.

2.26. Theorem:

Let X and Y be T,-spacesand f: X — Y is gl-continuous function. Then f is g-coercive
if and only if f is gl-compact .

Proof:

Suppose that f is g-coercive and let B be a g-compact subset of Y. To prove that f is
g-compact , since Y is T,-space then by (1.24.iii) , B is g-closed but f is gl-continuous . Then
f~1(B) is g-closed subset of X . Since f is g-coercive function , then there is a g-compact set
Ain X suchthat f(X\ A) € (Y \ B).

12
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since f~1(B) is g-closed, then by corollary (1.34) , every net in f ~1(B) has g-cluster in itself
itself . Then by theorem (1.35) , f~(B) is g-compact subset in X . Therefore f is gl-compact
function.

Conversely: By using theorem (2.25) .

2.27. Theorem:
Let X and Y be topological spaces and f:X — Y be a function. Then:
(i) If f:X —>Y bea g-coercive function with F is g-closed and open subset of X , then the
restriction function f/z:F — Y is g-coercive .
(ii) If X is g-compact and F is g-closed subset of X, then f,z: F - Y is g-coercive function.

Proof:

(i) Let B be a g-compact subset of Y, since f isa g-coercive . Then there is a g-compact
subset A of X suchthat f(X\ A4) € (Y \B).

Since F is g-closed subset of X , then by theorem (1.24.ii) , FNA is g-compact set in X. Since
F isopen in X ,by theorem (1.25.ii), FNA is g-compact set in F.

Since f/r(FNA) = f(F\A)and F\ACS X\ A, then f(F\A) S f(X\A).

Thus f;r(F\FNA) €Y\ B, hence f/r: F — Y is g-coercive.

(if) By using theorem (2.25) and (i) .

2.28. Theorem:
A composition of two g-coercive functions is g-coercive.

Proof:

Let f:X =Y and h:Y — Z be a g-coercive functions . Let C is a g-compact subset of
Z , then there is a g-compact subset B of Y suchthath(Y \ B) € Z\C .
Since f is a g-coercive , then there is a g-compact subset A of X suchthat (X\A) S Y\B.
Soh(f(X\A) S h(Y\B),but h(Y\B)€Z\C. Hence h(f(X\ A)) =hof(X\A) €
Z \ C, therefore hof is g-coercive function.

2.29. Theorem:
If f:X — Y isbijective , gl-compact and h: Y — Z is a g-coercive function, then hof is
g-coercive function .

Proof:

Let C be a g-compact subset of Z , then there is a g-compact subset B of Y such that
h(Y\ B) € Z\ C.Put A= f~1(B), since f is gl-compact then A is a g-compact subset of X.
Thus hof (X \ 4) = h(f (XNA®)) = h(f (X)Nf(A)) .

Since f is a bijective, then hof (X \ 4A) = h(f(X)Nf(A°)) = k(Y \ f(f 1 (B))¢ = h(YNB®)
=h(Y\ B) € Z\ C.Thus hof is g-coercive function.

13
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