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Abstract: 

 In this paper we constructed an expansion of an asymptotic solution for singularly perturbed 

linear-quadratic optimal control with quadratic parameter problem. This formulation is based on direct 

substituting a postulated asymptotic expansion of  boundary function type for the solution into the problem 

condition and on defining optimal control problems for finding asymptotic terms. The solutions of which form 

(   ) for the asymptotic solution, is proven. In physical mathematic problem we say the singularly perturbed 

linearly quadratic problems is "fast and slow " velocity , in this work we discussed the concept " The slowest 

velocity" by taken  quadratic small parameter in the singularly perturbed linearly quadratic problems. 
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I.Introduction: 

 The theory of optimal control system 

began develop in the 1960s due practical needs and 

general inters to control problem. Most papers 

devoted to problems of optimal control with a small 

parameter. Asymptotic analysis of solution is based 

on construction of expansion of  solution by 

definition  a series of  boundary function and 

postulated this expansion into condition . 

 

 Vasilive in [13] A study optimal control 

system of  perturbed linear, quadratic problems with 

boundary-layer function method.  Melnik in [10] 

study asymptotics of solutions of  discontinuous 

singularly Perturbed problems and he finds the 

solution by divided the interval of solutions to 

several subintervals such that the problem is 

continuous on that subinterval. 

 

In this paper, we are using a direct scheme 

for a boundary functions for singularly perturbed 

linearly quadratic problems of the optimal controls 

with quadratic small parameter . The asymptotic of 

the solution containing the boundary-layer functions 

of four types is constructed.  

 

 

 

II.view Problem: 

Consider minimum functional problem: 

      

 

 
             
 

 

                        

On the system: 
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Such that     
 
 
 
  and W(t),R(t), 

       ,        ,        ,                    are 

smooth  on the interval [0,T],     and 

              are symmetric matrices. 

We will use the following matrices: 

   

         

         

         

      

  
  
  

   

We will work under the following condition: 

 The matrices             
       are 

stable, i.e. the real parts of their 

eigenvalues are negative. 

 

III. Construction of asymptotic expansion : 

The following method is called direct method [3]  

by using a boundary functions [ 9]. 

The solution of problem  (1-3) by this method will 

be written : 
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Such that: 

   
     

     
     

     
     

   are a boundary functions 

in a neighborhoods of t=0 and it satisfies the 

following equality : 

    
               

                         

   
     

     
     

     
     

   are a boundary 

functions in a neighborhoods of t=0 and it satisfies 

the following equality : 

    
               

                      

Where  c, are positive constants. 
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Now by substituting the expansion (4) in the 

equations 1-3 and equating coefficients which the 

same power of   we obtain: 

                    

          
                

          
        

            

            

          
                  

          
        

            

             

          
        

                  

          
        

            

             

By considering (5) we obtain : 

   
         

         
         

     

    
        

   
         

         
              

 

In the following statements we construction the 

minimize functional   J0 , at     and from 1-3 we 

have : 

         
 

 
                        
 

 

                                    

    
  

                           

                     

                            

                     

                            

                            

Now we use the Hamilton method for solving the 

problem (15-16): 
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By conditions of optimal control we obtain: 

    
    

   
    
    

   
    
    

                

    
    

  
        

  
 

 
        

  
                               

    
              

          

    
           

                            

From  (18) we have : 
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Proposition  3.1(sufficient condition): 

The control : 

            
     

            
         

   
                    

is optimal control for problems 15-16. 

Proof: 

We must proof:                                  

i.e.                    

We note that: 

                 
 

 
  

 

 

  

        
        
        

        

        
        
        

 

                           

                 

Such that: 

     

 

 

      

        
        
        

   

    
    
    

   

                          

By using equations 16,19,20,21,22 we have: 

    

 

 

  
                          

                    
                    

   

        
        
        

 

  

   
            

            
                    

     

    

 

 

 
     
 
 

   

        
        
        

   

  

                    
                    
                    

   

        
        
        

   

                                        

                       

    

 

 

 
     
 
 

   

        
        
        

                   

                       

By (19) we obtain     . 

Since the first part of (23) is positive for all  

        , thus :                    

                                      

Therefore         is optimal control for the problem 

15-16. 

Proposition 3.2 (necessary condition): 

The optimal control for problem 15-16 is : 

            
     

            
         

   
           

Proof: 

From (16) we have : 
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By substation           in the equation (15) we have: 

       

 
 

 
  

 

 

  

   
   

               

   
               

        

   
   

               

   
               

 

                      

and the system: 

               
         

      

           
  

       
                  

Such that: 

                    

                              

             

             

The necessary condition of optimal control follows 

from [5] 

Example 3.3: 

Consider the problem: 

         
 

 
             

 

 

       

                        

                          

                                         

                                     

The Hamilton function will be: 

                          

 
 

 
   

 

 
   

 

 
   

Thus by Maximum principle we have a system: 

 

            

            

          
     

 
 

 
 

       

                               

Now we solve the systems (2-3) and (4-5) together, 

we will have the exact solution: 

          
          

        

                               

           

       
 

 
 

 

  
 
 

 

 
  

Such that: 

   
     

  
               

    

  
   

  
 
 
  
 
 
 
  

 
 

Now , let     and we will find the solution in this 

case: 

                                         

  

 
               

         

Thus the solution is: 

     
 
 
        

 

 
 
 
 
              

Finally we find asymptotically solution: 
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For compare between the solutions we take 

                       and composition the 

following table: 

 J(u) J(   ) J(     

0.1 10.8594 9.485941 9.5707 

0.01 9.6211 9.485941 9.4937 

0.05 10.1674 9.485941 9.5263 

Table(1.1) 
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 :الملخص

 الصيغة هذه وتستند. طراب المنفردةضلمعادلات الا الخطي الحل الامثل التربيعيلمسائل  متناظر حل عيتوس ببناء قمناا البحث هذ في

     عند التوسيع إثبات تم. وايجاد شروط المسألة لايجاد حدود التوسيع ةحدودمال من الدوال  لنوع مفترض مقارب توسع عن المباشر التعويض على

(ε = 0 )هذا في ،"وبطيئة سريعة" سرعةتمثل ال هي المنفردة الخطية التربيعية المسائل إن نقول الفيزياوية الرياضيات مسائل في. المتناظر للحل 

 .مسائل الاضطراب الخطي التربيعي المنفردة في التربيعية الصغيرة المعلمة اتخاذ خلال من" سرعة أبطأ" مفهوم ناقشنا البحث

 

 


