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A NEW CLASS OF MULTIVALENT HARMONIC FUNCTIONS
ASSOCIATED A LINEAR OPERATOR

WAGGAS GALIB ATSHAN1 AND JUMANA HIKMET SULMAN2

Abstract. New class of multivalent harmonic functions are introduced. Further-

more, we determine coefficient bounds, extreme points, closure theorem, convo-

lution condition, integral operator and other property for the functions in this

class.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
complex domain C if both u and v are real harmonic in C. In any simply connected
domain D ⊂ C we can write f = h+g, where h and g are analytic in D. We call h the
analytic part and g the co- analytic part of f . A necessary and sufficient condition
for f to be locally univalent and sense - preserving in D is that |h′(z)| > |g′(z)| in D,
see Clunie and Sheil - Small [2].

Denote by H(p) the class of functions f = h + g that are harmonic multivalent
and sense - preserving in the unit disk U = {z : |z| < 1}. The class H(p) was studied
by Ahuja and Jahangiri [1] and the class H(p) for p = 1 was defined and studied by
Jahangiri et.al in [3].

For f = h+ g, we may express the analytic functions h and g as:

h(z) = zp +
∞∑

n=p+1

anz
n, g(z) =

∞∑
n=p

bnz
n, |bp| < 1. (1.1)

Let A(p) denote the subclass of H(p) consisting of functions f = h+ g, where h and
g are given by

h(z) = zp −
∞∑

n=p+1

|an|zn, g(z) = −
∞∑
n=p

|bn|zn, |bp| < 1. (1.2)
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Now, we define a new class Np(β, α) of harmonic functions of the form (1.1) that
satisfy the inequality

Re

{
β +

(1− β)zp−1 + βz(Dp(λ, q, η)f(z))′′

(Dp(λ, q, η)f(z))′

}
> (βp2 + (1− β))α, (1.3)

where 0 ≤ α < 1
p , p ∈ N = {1, 2, · · · }, 0 ≤ β ≤ 1, η ≥ 0, λ ≥ 0, q ≥ 0 and

Dp(λ, q, η)f(z) = Dp(λ, q, η)h(z) +Dp(λ, q, η)g(z). (1.4)

The operator Dp(λ, q, η) denotes the linear operator introduced in [5]. For h and g

given by (1.1) we obtain

Dp(λ, q, η)h(z) = zp +
∞∑

n=p+1

[
1 +

(n− p)λ
p+ q

]η
anz

n, (1.5)

Dp(λ, q, η)g(z) =
∞∑
n=p

[
1 +

(n− p)λ
p+ q

]η
bnz

n, (1.6)

where p ∈ N = {1, 2, · · · }, λ ≥ 0, q ≥ 0, η ≥ 0.
We further denote by Ap(β, α) the subclass of Np(β, α) that satisfies the relation

Ap(β, α) = A(p) ∩Np(β, α). (1.7)

2. Coefficient Bounds

Theorem 2.1. Let f = h+ g (h and g being given by (1.1)). If
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an|

+
∞∑
n=p

n[βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn| ≤ p, (2.1)

where 0 ≤ α < 1
p , p ∈ N = {1, 2, · · · }, 0 ≤ β ≤ 1, η ≥ 0, λ ≥ 0, q ≥ 0, then f is

harmonic p- valent sense - preserving in U and f ∈ Np(β, α).

Proof. Let

w(z) =
{
β +

(1− β)zp−1 + βz(Dp(λ, q, η)f(z))′′

(Dp(λ, q, η)f(z))′

}
.

Using the fact that Re{w(z)} > (βp2 + (1− β))α if and only if

|w(z)− (1 + (βp2 + (1− β))α)| ≤ |w(z) + (1− (βp2 + (1− β))α)|, (2.2)

it is suffices to show the inequality (2.2).
Substituting for w and making use of (1.4) to (1.6), and resorting to simple calcu-

lation, we find that

|w(z)− (1 + (βp2 + (1− β))α)| ≤ [(βp2 + (1− β))− p− (βp2 + (1− β))αp]
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+
∞∑

n=p+1

n[1 + (βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an||zn−p|

+
∞∑

n=p+1

n[1 + (βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn||zn−p| (2.3)

and

|w(z) + (1− (βp2 + (1− β))α)| ≥ [(βp2 + (1− β)) + p− (βp2 + (1− β))αp]

−
∞∑

n=p+1

n[(βp2 + (1− β))α− 1− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an||zn−p|

−
∞∑

n=p+1

n[(βp2 + (1− β))α− 1− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn||zn−p| (2.4)

Evidently (2.3) and (2.4) in conjunction with (2.1) yields

|w(z)− (1 + (βp2 + (1− β))α)| − |w(z) + (1− (βp2 + (1− β))α)| ≤ 0.

The harmonic functions

f(z) = zp +
∞∑

n=p+1

xn

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η zn
+
∞∑
n=p

yn

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η (z)n (2.5)

where ( ∞∑
n=p+1

|xn|+
∞∑
n=p

|yn| = p

)
,

show that the coefficients bounds given by (2.1) is sharp.
The functions of the form (2.5) are in Np(β, α) because in view of (2.5), we infer

that
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn|

∞∑
n=p+1

|xn|+
∞∑
n=p

|yn| = p.

The restriction placed in Theorem 2.1 on the moduli of coefficients of f = h+g implies
that for arbitrary rotation of the coefficients of f , the resulting functions would still
be harmonic multivalent and f ∈ Np(β, α). �
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The following theorem shows that the condition (2.1) is also necessary for function
f to belong to Ap(β, α).

Theorem 2.2. Let f = h+ g with h and g are given by (1.2). Then f ∈ Ap(β, α)
if and only if

∞∑
n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn| ≤ p (2.6)

where 0 ≤ α < 1
p , p ∈ N = {1, 2, · · · }, 0 ≤ β ≤ 1, η ≥ 0, λ ≥ 0, q ≥ 0.

Proof. By noting thatAp(β, α) ⊂ Np(β, α), the sufficiency part of Theorem 2.2 follows
at once from Theorem 2.1. To prove the necessary part, let us assume that f ∈
Ap(β, α). Using (1.3), we get

Re

{
β +

(1− β)zp−1 + βz(Dp(λ, q, η)h(z))′′ + βz(Dp(λ, q, η)g(z))′′

(Dp(λ, q, η)h(z))′ + (Dp(λ, q, η)g(z))′

}

= Re


(βp2 + (1− β))−

∞∑
n=p+1

n2β
[
1 +

(n−p)λ
p+q

]η
|an|zn−p −

∞∑
n=p

n2β
[
1 +

(n−p)λ
p+q

]η
|bn|(z)n−p

p−
∞∑

n=p+1
n
[
1 +

(n−p)λ
p+q

]η
|an|zn−p −

∞∑
n=p

n
[
1 +

(n−p)λ
p+q

]η
|bn|(z)n−p


> (βp2 + (1− β))α.

If we choose z to be real and let z → 1−, we obtain the condition (2.6) which
completes the proof of Theorem 2.2. �

3. Extreme Points

Next, we determine the extreme points of the closed convex hull of Ap(β, α), de-
noted by clco Ap(β, α).

Theorem 3.1. f ∈ clco Ap(β, α)if and only if

f(z) =
∞∑
n=p

(µnhn + δngn), (3.1)

where z ∈ U, hp(z) = zp,

hn(z) = zp − p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η zn, (3.2)

(n = p+ 1, p+ 2, · · · )

gn(z) = zp − p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η (z)n, (3.3)
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(n = p, p+ 1, · · · ) and
∞∑
n=p

(µn + δn) = 1, (µn ≥ 0, δn ≥ 0).

In particular, the extreme points of Ap(β, α) are {hn} and {gn}.

Proof. Suppose f is of the form (3.1). Using (3.2) and (3.3) , we get

f(z) =
∞∑
n=p

(µnhn + δngn)

=
∞∑
n=p

(µn + δn)zn −
∞∑

n=p+1

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η µnzn
−
∞∑
n=p

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η δn(z)n

= zp −
∞∑

n=p+1

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η µnzn
−
∞∑
n=p

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η δn(z)n.

Then
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
×

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η µn
+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
×

p

n[(βp2 + (1− β))α− nβ]
[
1 + (n−p)λ

p+q

]η δn
= p

( ∞∑
n=p

(µn + δn)− µp

)
= p(1− µp) ≤ p

which implies that f ∈ clco Ap(β, α).
Conversely, assume that f ∈ Ap(β, α). Putting

µn =
(
n

p

)
[(βp2 + (1− β))α− nβ]

[
1 +

(n− p)λ
p+ q

]η
|an|, (n = p+ 1, p+ 2, · · · ),

δn =
(
n

p

)
[(βp2 + (1− β))α− nβ]

[
1 +

(n− p)λ
p+ q

]η
|bn|, (n = p, p+ 1, · · · ),



106 WAGGAS GALIB ATSHAN, JUMANA HIKMET SULMAN

we get

f(z) =
∞∑
n=p

(µnhn + δngn)

and this completes the proof of Theorem 3.1. �

4. Closure Theorem

Theorem 4.1. The class Ap(β, α) is a convex set.

Proof. Let the function fn,j (j = 1, 2) defined by

fn,j(z) = zp −
∞∑

n=p+1

|an,j |zn −
∞∑
n=p

|bn,j |zn

be in the class Ap(β, α).
It is sufficient to prove that the function

H(z) = γfn,1(z) + (1− γ)fn,2(z), (0 ≤ γ < 1),

is also in the class Ap(β, α). Since for 0 ≤ γ < 1,

H(z) = zp −
∞∑

n=p+1

(γ|an,1|+ (1− γ)|an,2|)zn

−
∞∑
n=p

(γ|bn,1|+ (1− γ)|bn,2|)(z)n

with the aid of Theorem 2.2, we have
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
(γ|an,1|+ (1− γ)|an,2|)

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
(γ|bn,1|+ (1− γ)|bn,2|)

= γ

[ ∞∑
n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an,1|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn,1|

]

+(1− γ)

[ ∞∑
n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an,2|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn,2|

]
≤ γp+ (1− γ)p = p.
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Hence, H(z) ∈ Ap(β, α). This completes the proof of Theorem 4.1. �

5. Convolution Condition

For harmonic functions

f(z) = zp −
∞∑

n=p+1

|an|zn −
∞∑
n=p

|bn|(z)n (5.1)

and

F (z) = zp −
∞∑

n=p+1

|An|zn −
∞∑
n=p

|Bn|(z)n (5.2)

we define the convolution of f and F as

(f ∗ F )(z) = zp −
∞∑

n=p+1

|anAn|zn −
∞∑
n=p

|bnBn|(z)n. (5.3)

In the following theorem we examine the convolution property of the class Ap(β, α).

Theorem 5.1. If f and F are in Ap(β, α), then (f ∗ F ) ∈ Ap(β, α).

Proof. Let f and F of the forms (5.1) and (5.2) belongs to Ap(β, α). Then the
convolution of f and F is given by (5.3). Note that |An| ≤ 1 and |Bn| ≤ 1, since
F ∈ Ap(β, α).

Then we can write
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an||An|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn||Bn|

≤
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn|.

The right hand side of the above inequality is bounded by p because f ∈ Ap(β, α).
Therefore (f ∗ F ) ∈ Ap(β, α). �

6. Integral Operator

Definition 6.1. The Jung-Kim-Srivastava integral operator [4] is defined by

J σK(z) =
(p+ 1)σ

zΓ(σ)

∫ z

0

(
log

z

t

)σ
K(t)dt, σ > 0. (6.1)



108 WAGGAS GALIB ATSHAN, JUMANA HIKMET SULMAN

If

K(z) = zp −
∞∑

n=p+1

anz
n,

then

J σK(z) = zp −
∞∑

n=p+1

(
p+ 1
n+ 1

)σ
anz

n, (6.2)

also J σ is a linear operator.

Remark 6.1. If f(z) = h(z) + g(z), where

h(z) = zp −
∞∑

n=p+1

|an|zn, g(z) = −
∞∑
n=p

|bn|zn, |bp| < 1,

then
J σf(z) = J σh(z) + J σg(z). (6.3)

Theorem 6.1. If f ∈ Ap(β, α), then J σf is also in Ap(β, α).

Proof. By (6.2) and (6.3), we obtain

J σf(z) = J σ
(
zp −

∞∑
n=p+1

|an|zn −
∞∑
n=p

|bn|(z)n
)

= zp −
∞∑

n=p+1

(
p+ 1
n+ 1

)σ
|an|zn −

∞∑
n=p

(
p+ 1
n+ 1

)σ
|bn|(z)n,

since f ∈ Ap(β, α), then by Theorem 2.2, we have
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|an|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η
|bn| ≤ p, (6.4)

we must show
∞∑

n=p+1

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η (
p+ 1
n+ 1

)σ
|an|

+
∞∑
n=p

n[(βp2 + (1− β))α− nβ]
[
1 +

(n− p)λ
p+ q

]η (
p+ 1
n+ 1

)σ
|bn| ≤ p. (6.5)

But in view of (6.4) the inequality in (6.5) holds true if(
p+ 1
n+ 1

)σ
≤ 1,

since σ > 0 and p ≤ n, therefore (6.5) holds true and this gives the result. �
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