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SUPERORDINATION RESULTS FOR MULTIVALENT FUNCTIONS

INVOLVING A MULTIPLIER TRANSFORMATION

WAGGAS GALIB ATSHAN1, HUDA KHALID ABID ZAID2

Abstract. The purpose of this paper is to derive superordination results involving a

multiplier transformation for a family of analytic multivalent functions in the open unit

disk.

1. Introduction

Let Tp denote the class of functions of the form :

f(z) = zp +

∞∑
k=p+1

akz
k, (p ∈ N = {1, 2, · · · }), (1.1)

which are analytic and p - valent in the open unit disk U = {z ∈ C : |z| < 1}.
If f and g are analytic functions in U , we say that f is subordinate to g, written f ≺ g,

if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0
and |w(z)| < 1 for all z ∈ U , such that f(z) = g(w(z))), for all z ∈ U . Furthermore, if the
function g is univalent in U , then we have the following equivalence

f(z) ≺ g(z), (z ∈ U)⇔ f(0) = g(0) and f(U) ⊂ g(U).

For 0 ≤ η < p, we denote by S∗p(η),Kp(η) and Cp the subclasses of Tp consisting of all
analytic functions which are respectively, p - valent starlike of order η, p-valent convex of
order η and close-to-convex in U .

Let define the multiplier transformation : Isλ,p : Tp → Tp by

Isλ,pf(z) = zp +

∞∑
k=p+1

(
k + λ

p+ λ

)s
akz

k, (λ ≥ 0, s ∈ R).

This operator is closely related to the Salagean derivative operator [13]. The special case Is1,λ
was studied recently by Cho and Srivastava [5] and Cho and Kim [4], while Is1,1 was studied
by Uralegaddi and Somanatha [15]. An investigation of the Isp;λ operator was given by

Aghalary et. al. [1]. We also mention the papers [2], [7], [8], [9], [11], [12] and [14], that are
closely-related recent articles on the subject of the multiplier transformations investigated
in our work.

Setting

fsp;λ(z) = zp +

∞∑
k=p+1

(
k + λ

p+ λ

)s
akz

k, (λ ≥ 0, s ∈ R),
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we now introduce the operator Isp;λ,µ : Tp → Tp, defined by

Isp;λ,µf(z) = fsp;λ,µ ∗ f(z) = zp +

∞∑
k=p+1

(
p+ λ

k + λ

)s
(p+ µ)k−p

(1)k−p
akz

k, (1.2)

where fsp;λ,µf(z) is given by

fsp;λ,µf(z) ∗ fsp;λ(z) =
zp

(1− z)µ+p
, (µ > −p) (see [6]). (1.3)

In view of (1.2) and (1.3), we may easily obtain the following relations:

z(Is+1
p;λ,µf(z))′ = (λ+ p)Isp;λ,µf(z)− λIs+1

p;λ,µf(z) (1.4)

and
z(Is+1

p;λ,µf(z))′ = (µ+ p)Isp;λ,µ+1f(z)− µIsp;λ,µf(z) (1.5)

2. Preliminaries

To prove our results we shall need the following lemmas:

Lemma 2.1. (see [10]) : Let q(z) be convex univalent function in the unit disk U and
γ ∈ C. Further assume that Re(γ) > 0. If r(z) ∈ H[q(0), 1] ∩ Q and r(z) + γzr′(z) is
univalent in U , then q(z) + γzq′(z) ≺ r(z) + γzr′(z), then q(z) ≺ r(z) and q(z) is the best
subordinant.

Lemma 2.2. (see [3]) : Let q(z) be convex univalent function in the unit disk U , and let
θ and φ be analytic in a domain D containing q(U). Suppose that

: (i) Re
{
θ′(q(z))
φ(q(z))

}
> 0 for z ∈ U .

: (ii) zq′(z)φ(q(z)) is starlike univalent in z ∈ U .

If r(z) ∈ H[q(0), 1] ∩ Q, with r(U) ⊆ D and if θ(r(z)) + zr′(z)φ(r(z)) is univalent in U
and θ(q(z)) + zq′(z)φ(q(z)) ≺ θ(r(z)) + zr′(z)φ(r(z)), then q(z) ≺ r(z) and q(z) is the best
subordinant.

3. Main Results

Theorem 3.1. Let q be convex univalent in U with q(0) = 1 and 1
p2Reβ > 0. Let f ∈ Tp

satisfies zpIs+1
p;λ,µf(z) ∈ H[q(0, 1), 1] ∩Q and(

1 +
β

p

(
p− λ
p

))
zp
(
Is+1
p;λ,µf(z)

)
+

(
λβ

p

(
p− 1

p

))
zp
(
Isp;λ,µf(z)

)
is univalent in U . If

q(z) +
β

p2
zq′(z) ≺

(
1 +

β

p

(
p− λ
p

))
zp
(
Is+1
p;λ,µf(z)

)
+

(
λβ

p

(
p− 1

p

))
zp
(
Isp;λ,µf(z)

)
.

(3.1)
Then

q(z) ≺ zp(Is+1
p;λ,µf(z)) (3.2)

and q(z) is the best subordinant of (3.1).

Proof. Let
r(z) = zp(Is+1

p;λ,µf(z)). (3.3)

Differentiating (3.3) with respect to z, we get

zf ′(z)

r(z)
=

(λ+ p)(Isp;λ,µf(z))− (λ+ p)(Is+1
p;λ,µf(z))

(Is+1
p;λ,µf(z))

. (3.4)
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From (3.4) and using the identity (1.4), a simple computation show that(
1 +

β

p

(
p− λ
p

))
zp(Is+1

p;λ,µf(z)) +

(
λβ

p

(
p− 1

p

))
zp(Isp;λ,µf(z)) = r(z) +

β

p2
zr′(z)

and now, by using Lemma (2.1), we get desired result. �

Putting q(z) =
(

1+z
1−z

)δ
, (0 < δ ≤ 1) in the Theorem (3.1), we obtain the following

Corollary :

Corollary 3.2. Let 0 < δ ≤ 1 and 1
p2Reβ > 0. It zpIs+1

p;λ,µf(z) ∈ H[q(0), 1] ∩Q and(
1 +

β

p

(
p− λ
p

))
zp(Is+1

p;λ,µf(z)) +

(
λβ

p

(
p− 1

p

))
zp(Isp;λ,µf(z))

be univalent in U . If(
1 +

2βδz

p2(1− z2)

)(
1 + z

1− z

)δ
≺
(

1 +
β

p

(
p− λ
p

))
zp
(
Is+1
p;λ,µf(z)

)
+

(
λβ

p

(
p− 1

p

))
zp
(
Isp;λ,µf(z)

)
.

Then
(

1+z
1−z

)δ
≺ zp

(
Is+1
p;λµf(z)

)
and q(z) is the best subordinant.

Theorem 3.3. Let q be convex univalent in U with q(0) = 1 and 1
1+pRe

(
αλ
δ

)
> 0. Let

f ∈ Tp satisfies :
Isp;λ,µf(z)

zp
∈ H[q(0, 1), 1] ∩Q

and
αλ

δ(1 + p)

[
(µ+ p)(Isp;λ,µ+1f(z))− (µ+ p)(Isp;λ,µf(z))

zp

]
is univalent in U . If

q(z) +
αλ

δ(1 + p)
zq′(z) ≺ αλ

δ(1 + p)

[
(µ+ p)(Isp;λ,µ+1f(z))− (µ+ p)(Isp;λ,µf(z))

zp

]
, (3.5)

then

q(z) ≺
Isp;λ,µf(z)

zp
(3.6)

and q(z) is the best subordinant of (3.5).

Proof. Let

f(z) =
Isp;λ,µf(z)

zp
. (3.7)

Differentiating (3.7) with respect to z, we get

zr′(z)

r(z)
=

(µ+ p)(Isp;λ,µ+1f(z))

(Isp;λ,µf(z))
− (µ+ p). (3.8)

From (3.8) and using the identity (1.5), a simple computation shows that

αλ

δ(1 + p)

[
(µ+ p)(Isp;λ,µ+1f(z))− (µ+ p)(Isp;λ,µf(z))

zp

]
= r(z) +

αλ

δ(1 + p)
zr′(z)

and now, by using Lemma (2.1), we get desired result. �

Putting q(z) = 1+Az
1+Bz in the Theorem (3.2) , we have the following Corollary :



170 WAGGAS GALIB ATSHAN, HUDA KHALID ABID ZAID

Corollary 3.4. Let A,B ∈ C, A 6= B, |B| < 1. If f ∈ Tp :

Isp;λ,µf(z)

zp
∈ H[q(0), 1] ∩Q

and
αλ

δ(1 + p)

[
(µ+ p)(Isp;λ,µ+1f(z))− (µ+ p)(Isp;λ,µf(z))

zp

]
is univalent in U . If

1 +Az

1 +Bz
+

αλ

δ(1 + p)

(A−B)z

(1 +Bz)2
≺ αλ

δ(1 + p)

[
(µ+ p)(Isp;λ,µ+1f(z))− (µ+ p)(Isp;λ,µf(z))

zp

]
.

Then
(

1+Az
1+Bz

)
≺ Isp;λ,µf(z)

zp and q(z) = 1+Az
1+Bz is the best subordinant.

Theorem 3.5. Let αi ∈ C, (i = 1, 2, 3) and let q be convex univalent with q(0) = 1, and
assume that

Re

{
α2

α3
q′(z)q(z)

}
> 0. (3.9)

Suppose that zq′(z)
q(z) is starlike univalent in U . Let f ∈ Tp satisfies :

zpIs+1
p;λ,µf(z) ∈ H[q(0), 1] ∩Q

and

α1 + α2z
p(Is+1

p;λ,µf(z)) + α3

[
(λ+ p)(Isp;λ,µf(z))

(Is+1
p;λ,µf(z))

− (λ− p)

]
is univalent in U . If

α1 + α2q(z) + α3

[
zq′(z)

q(z)

]
≺ α1 + α2z

p(Is+1
p;λ,µf(z)) + α3

[
(λ+ p)(Isp;λ,µf(z))

(Is+1
p;λ,µf(z))

− (λ− p)

]
,

(3.10)
then

q(z) ≺ zp(Is+1
p;λ,µf(z)) (3.11)

and q is the best subordinant of (3.10).

Proof. Define the function r(z) by

r(z) = zp(Isp;λ,µ(f(z)). (3.12)

By setting θ(w) = α1 + α2w and φ(w) = α3

w , we see that θ(w) is analytic in C, φ(w) is
analytic in C/{0} and that φ(w) 6= 0, w ∈ C/{0}. Also, we get

Q(z) = zq′(z)φ(q(z)) = z
α3

q(z)
q′(z).

It is clear that Q(z) is starlike univalent in U ,

Re

{
zθ′(q(z))

φ(q(z))

}
= Re

{
α2

α3
q(z)q′(z)

}
> 0.

By a straight forward computation, we obtain

α1 + α2z
p(Is+1

p;λ,µf(z)) + α3

[
(λ+ p)(Isp;λ,µf(z))

(Is+1
p;λ,µf(z))

− (λ− p)

]
≺ α1 + α2r(z) + α3

[
zr′(z)

r(z)

]
.

(3.13)
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From (3.10) and (3.13), we have

α1 + α2q(z) + α3

[
zq′(z)

q(z)

]
≺ α1 + α2r(z) + α3

[
zr′(z)

r(z)

]
. (3.14)

Therefore, by Lemma (2.2), we get q(z) ≺ r(Z). �

Putting q(z) = 1+Az
1+Bz in the Theorem (3.3), we obtain the following corollary.

Corollary 3.6. Let αi ∈ C, (i = 1, 2, 3) and let be convex univalent with q(0) = 1 and
assume that :

Re

{
α2

α3

(
1 +Az

1 +Bz

)(
A−B

(1 +Bz)2

)}
> 0.

Suppose that zq′(z)
q(z) is starlike univalent in U . Let f ∈ Tp satisfies :

zpIs+1
p;λ,µf(z) ∈ H[q(0), 1] ∩Q

and

α1 + α2z
p(Is+1

p;λ,µf(z)) + α3

[
(λ+ p)(Isp;λ,µf(z))

(Is+1
p;λ,µf(z))

− (λ− p)

]
is univalent in U . If

α1 + α2

(
1 +Az

1 +Bz

)
+ α3

[
z(A−B)

(1 +Az)/(1 +Bz)

]
≺ α1 + α2z

p(Is+1
p;λ,µf(z)) + α3

[
(λ+ p)(Isp;λ,µf(z))

(Is+1
p;λ,µf(z))

− (λ− p)

]
.

Then
(

(1+Az
1+Bz

)
≺ zp(Is+1

p;λ,µf(z)) and q(z) =
(

1+Az
1+Bz

)
is the best subordinant.

Theorem 3.7. Let σ, δ, γ ∈ C and q be convex univalent in U with q(0) = 1 and assume
that :

Re

{
σq′(z)

γ

}
> 0. (3.15)

Suppose that zq′(z) is starlike univalent in U . Let f ∈ Tp satisfies :

zpIs+1
p;λ,µf(z) ∈ H[q(0), 1] ∩Q

and

(σ − λγ + γp)zp(Is+1
p;λ,µf(z)) + γ(λ+ p)(Isp;λ,µf(z)) + δ

is univalent in U . If

σq(z) + γzq′(z) + δ ≺ (σ − λγ + γp)zp(Is+1
p;λ,µf(z)) + γ(λ+ p)(Isp;λ,µf(z)) + δ, (3.16)

then

q(z) ≺ zp(Is+1
p;λ,µf(z)) (3.17)

and q(z) is the best subordinant of (3.17).

Proof. Define the function r(z) by

r(z) = zp(Isp;λ,µf(z)). (3.18)

By setting θ(w) = σw+δ and φ(w) = γ, we see that θ(w) is analytic in C, φ(w) is analytic
in C/{0} and that φ(w) 6= 0, w ∈ C/{0}. Also, we get

Q(z) = zq′(z)φ(q(z)) = γzq′(z).
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It is clear that Q(z) is starlike univalent in U ,

Re

{
θ′(q(z))

φ(q(z))

}
= Re

{
σq′(z)

γ

}
> 0.

By a straight forward computation, we obtain

(σ − λγ + γp)zp(Is+1
p;λ,µf(z)) + γ(λ+ p)(Isp;λ,µf(z)) + δ ≺ σr(z) + γzr′(z) + δ. (3.19)

From (3.16) and (3.19) we have

σq(z) + γzq′(z) + δ ≺ σr(z) + γzr′(z) + δ.

Therefore, by Lemma (2.2), we get q(z) ≺ r(z). �
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