Certain results on a class of multivalent functions of power order
 defined by a linear integral operator

WaggasGalibAtshan* and Ahmed sallalJoudah
Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya
Diwiniya - Iraq

E-mail: *waggashnd@yahoo.com, ahmedhiq@yahoo.com

Abstract

. By using a linear integral operator, a class of multivalent functions of power order is introduced. Some important results of this class such as coefficient estimates, integral means inequalities and other property are found.

\section*{2010MathematicsSubjectClassificaton:}

Primary 30C45, Secondary 30C50,26A33.

Keywords and phrases: Multivalent functions ,Linear integral operator, Integral means.

1. Introduction

Let $\sum_{p, \eta}$ be the class of functions f of the form:

$$
\begin{gather*}
f(z)=z^{p+\eta}+\sum_{k=2}^{\infty} a_{k} z^{k+p+\eta}, \quad\left(0 \leq \eta<1, a_{k}\right. \\
\geq 00 \tag{1}
\end{gather*}
$$

that are analytic in the unit disk

$$
U=\{z \in \mathbb{C}:|z|<1\} .
$$

Let

$$
g(z)=z^{p+\eta}+\sum_{k=2}^{\infty} b_{k} z^{k+p+\eta},\left(0 \leq \eta<1, b_{k}\right.
$$

$$
\begin{equation*}
\geq 0, z \in U) . \tag{2}
\end{equation*}
$$

A convolution (orHadamard product) of two power series f of the form (1) and a function g of the form (2) is defined by :
$(f * g)(z)=$
$z^{p+\eta}+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k+p+\eta}=(g * f)(z),(z \in U)$.
Note that the authors defined and studied some classes of analytic functions take the form (1) in [1].

In this paper, we need to introduce a generalized integral operator such that class can be defined by means of this integral operator. For a function $f \in \sum_{p, \eta}$ given by (1), we define the integral operator $\mathrm{K}_{c, p, \eta}^{\delta}(c>$ $-(p+\eta))$ and $(0 \leq \eta<1, p \in \mathbb{N})$ by:

$$
\begin{align*}
& \mathrm{K}_{c, p, \eta}^{\delta} f(z) \\
& =\frac{(c+p+\eta)^{\delta}}{\Gamma(\delta) z^{c}} \int_{0}^{z} t^{c-1}\left(\log \frac{z}{t}\right)^{\delta-1} f(t) d t \\
= & z^{p+\eta}+\sum_{k=2}^{\infty}\left[\frac{c+p+\eta}{c+k+p+\eta}\right]^{\delta} a_{k} z^{k+p+\eta}, \tag{3}
\end{align*}
$$

when $\eta=0$ the operator $\mathrm{K}_{c, p, 0}^{\delta}$ was introduced by Komatu [7].
Clearly, (3) yields :

$$
f \in \sum_{p, \eta} \Rightarrow \mathrm{~K}_{c, p, \eta}^{\delta} f \in \sum_{p, \eta}
$$

A function $f \in \sum_{p, \eta}$ is said to be $(p+\eta)-$ valent starlike of $\operatorname{order} \rho,(0 \leq \rho<p+\eta)$ if and only if :

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho, \quad(z \in U)
$$

Let $S_{p, \eta}(\rho)$ denote the class of all those functions.
A function $f \in \sum_{p, \eta}$ is said to be $(p+\eta)-$ valent convex of $\operatorname{order} \rho,(0 \leq \rho<p+\eta)$ if and only if :

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\rho, \quad(z \in U)
$$

Let $C_{p, \eta}(\rho)$ denote the class of all those functions.
A function $f \in \sum_{p, \eta}$ is said to be $(p+\eta)-$ valent close - to - convex of order $\rho,(0 \leq$ $\rho<p+\eta)$ if and only if :

$$
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{(p+\eta)-1}}\right\}>\rho, \quad(z \in U)
$$

Let $K_{p, \eta}(\rho)$ denote the class of all those functions.
We suppose $L(p, \eta, \delta)$ denote the subclass of $\sum_{p, \eta}$ consisting of functions f which satisfy :

$$
\begin{array}{r}
\left\lvert\, \frac{1}{\beta}\left[\frac{\mu z\left(\mathrm{~K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)^{\prime}+(1-\mu)\left(\mathrm{K}_{c, p, \eta}^{\delta} f(z)\right)^{\prime}}{\mu\left(\mathrm{K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)+(1-\mu) z^{(p+\eta)-1}}\right.\right. \\
-(p+\eta)] \mid<\gamma \tag{4}
\end{array}
$$

where $\delta>0, c>-(p+\eta), 0 \leq \eta<1, \beta \in \mathbb{C} \backslash$ $\{0\}=\mathbb{C}^{*}, 0<\gamma \leq p+\eta$ and $\mathrm{K}_{c, p, \eta}^{\delta} f$ given by (3).

2. Coefficient estimates

Theorem 1.

$$
\begin{gathered}
\left\lvert\, \frac{1}{\beta}\left[\frac{\mu z\left(\mathrm{~K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)^{\prime}+(1-\mu)\left(\mathrm{K}_{c, p, \eta}^{\delta} f(z)\right)^{\prime}}{\mu\left(\mathrm{K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)+(1-\mu) z^{(p+\eta)-1}}\right.\right. \\
-(p+\eta)] \mid<\gamma,(z \in U) .
\end{gathered}
$$

Let the function $f \in \sum_{p, \eta}$ be defined by (1). Then $f \in L(p, \eta, \delta)$ if and only if $\sum_{k=2}^{\infty} a_{k} \frac{(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)]}{\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)}\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}$ ≤ 1,
where $\delta>0, c>-(p+\eta), 0 \leq \eta<1, \beta \in \mathbb{C} \backslash$ $\{0\}=\mathbb{C}^{*}$ and $0<\gamma \leq p+\eta$.

Proof. Assume that inequality (5) holds true and $|z|=1$. Then, we obtain

$$
\begin{aligned}
& \mid \mu z\left(\mathrm{~K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)^{\prime}+(1-\mu)\left(\mathrm{K}_{c, p, \eta}^{\delta} f(z)\right)^{\prime} \\
&-(p+\eta) \mu\left(\mathrm{K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)-(1-\mu)(p+\eta) z^{(p+\eta)-1} \mid \\
&-\gamma|\beta|\left|\mu\left(\mathrm{K}_{c, p, \eta}^{\delta} f^{\prime}(z)\right)+(1-\mu) z^{(p+\eta)-1}\right| \\
&= \mid-\mu(p+\eta) z^{(p+\eta)-1} \\
&+\sum_{k=2}^{\infty}(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}[\mu(k-1) \\
&-\gamma \mid \beta \|(\mu(p+\eta)+(1-\mu)) z^{(p+\eta)-1} \\
& \left.+\sum_{k=2}^{\infty} \mu(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} a_{k} z^{k+p+\eta-1} \right\rvert\, \\
& \sum^{\infty}(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)] \\
& \leq \sum_{k=2}^{\infty}(k+p+\eta-1 \mid \\
& \times c+p+\eta \\
&\quad+k+p+\eta) a_{k} \\
& \leq \gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)
\end{aligned}
$$

by hypothesis.
Hence, by maximum modulus principle, we have $f \in L(p, \eta, \delta)$. Conversely, let $f \in$ $L(p, \eta, \delta)$. Then

That is
$=1-\mu(p+\eta) z^{(p+\eta)-1}$

$$
\begin{align*}
& +\sum_{k=2}^{\infty} \begin{array}{l}
(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}[\mu(k-1) \\
\\
\quad+(1-\mu)] a_{k} z^{k+p+\eta-1} \mid
\end{array} \\
& \begin{array}{l}
\div \mid(\mu(p+\eta)+(1-\mu)) z^{(p+\eta)-1} \\
\quad+\sum_{k=2}^{\infty} \mu(k+p \\
\quad+\eta) \left.\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} a_{k} z^{k+p+\eta-1} \right\rvert\,
\end{array} \\
& <\gamma|\beta|
\end{align*}
$$

since $|\operatorname{Ref}(z)| \leq|f(z)|$ for all z, we have
$\mid \operatorname{Re}\left\{\left[-\mu(p+\eta) Z^{(p+\eta)-1}\right.\right.$
$+\sum_{k=2}^{\infty}(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}[\mu(k-1)+(1-\mu)]$

$$
\left.\times a_{k} z^{k+p+\eta-1}\right]
$$

$\div\left[(\mu(p+\eta)+(1-\mu)) z^{(p+\eta)-1}\right.$
$\left.\left.+\sum_{k=2}^{\infty} \mu(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} a_{k} z^{k+p+\eta-1}\right]\right\} \mid$

$$
\begin{equation*}
<\gamma|\beta| \tag{7}
\end{equation*}
$$

choosing Z on real axis and allowing $z \rightarrow 1$, we have
$\underline{\mu(p+\eta)+\sum_{k=2}^{\infty}(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}[\mu(k-1)+(1-\mu)] a_{k}}$
$(\mu(p+\eta)+(1-\mu))-\sum_{k=2}^{\infty} \mu(k+p+\eta)\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} a_{k}$
$\leq \gamma|\beta|$
which gives (5).
Finally, the result is sharp with extremal function f given by :
$f(z)$
$=z^{p+\eta}$
$+\frac{\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)}{(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}} z^{k+p+\eta}$,
$k \geq 2$.
Corollary 1. Let the function f defined by (1) be in the class $L(p, \eta, \delta)$. Then

$$
\begin{aligned}
& a_{k} \\
& \leq \frac{\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)}{(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}}
\end{aligned}
$$

$$
\begin{equation*}
k \geq 2 \tag{9}
\end{equation*}
$$

The equality in (9) is attained for the function f given by (8).

Definition 1.Let $0 \leq \lambda<1$ and $\xi, \zeta \in \mathbb{R}$. Then in terms of Guass's hypergeometric function ${ }_{2} \mathrm{~F}_{1}$, the generalized fractional derivative operator of order λ of the function f is defined by:

$$
\begin{align*}
& D_{0, z}^{\lambda, \xi, \zeta} f(z)=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \\
& \times\left\{z^{\lambda-\xi} \int_{0}^{z}(z-t)^{-\lambda}{ }_{2} F_{1}(\xi-\lambda, 1-\zeta ; 1-\lambda ; 1\right. \\
& \left.\left.\quad-\frac{t}{z}\right) f(t) d t\right\} \tag{10}
\end{align*}
$$

where the function f is analytic in a simply connected region of the z - plane containing the origin , with the order
$f(z)=O(|z|)^{\epsilon},(z \rightarrow 0)$ for
$\epsilon>\max \{0, \xi-\zeta\}-1$ and the multiplicity of $(z-t)^{-\lambda}$ is removed by requiring $\log (z-t)$ to be real when $(z-t)>0$.

Note that
$D_{0, z}^{\lambda, \lambda, \zeta} f(z)=D_{z}^{\lambda} f(z),(0 \leq \lambda<1)$,
where

$$
\begin{gather*}
D_{z}^{\lambda} f(z)=\frac{1}{\Gamma(1-\lambda)} \frac{d}{d z} \int_{0}^{z} \frac{f(t)}{(z-t)^{\lambda}} d t \\
(0 \leq \lambda<1) \tag{12}
\end{gather*}
$$

is the Riemann - Liouville fractional derivative of order λ.

Definition 2. Under the hypothesis of Definition 1, the fractional derivative of order $n+\lambda$ is defined, for a function f, by

$$
\begin{gathered}
D_{Z}^{n+\lambda} f(z)=\frac{d^{n}}{d z^{n}} D_{Z}^{\lambda} f(z), \quad\left(0 \leq \lambda<1 ; n \in \mathbb{N}_{0}\right. \\
=\mathbb{N} \cup\{0\}) .
\end{gathered}
$$

It readily follows from Definition 1 that

$$
\begin{align*}
& D_{z}^{\lambda} z^{k+p+\eta} \\
& =\frac{\Gamma(k+p+\eta+1)}{\Gamma(k+p+\eta-\lambda+1)} z^{k+p+\eta-\lambda},(0 \leq \lambda \\
& <1), \tag{13}
\end{align*}
$$

we shall need the concept of subordination between analytic functions and subordination theorem of Littlewood [2].

Definition 3.If the functions f and g are analytic in the open unit disk U, then f is said to be subordinate to g in U if there exists a function w analytic in U with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))(z \in U)$. We denote this subordination by $f<g$.

Theorem 2.

If the function f and g are analytic in U with $f \prec g$, then

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|f\left(r e^{i \vartheta}\right)\right|^{\tau} d \vartheta \leq \int_{0}^{2 \pi}\left|g\left(r e^{i \vartheta}\right)\right|^{\tau} d \vartheta,(\tau \\
&>0 ; 0<r<1) \tag{14}
\end{align*}
$$

3. Integral means inequalities

Theorem 3.

Let g be of the form (2) and $f \in L(p, \eta, \delta)$ be of the form (1) and let for some $i \in \mathbb{N}$,

$$
\frac{\varphi_{i}}{b_{i}}=\min _{k \geq 2} \frac{\varphi_{k}}{b_{k}},
$$

where
φ_{k}
$=\frac{(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)]}{\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)}\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta}$.
Also, let for such $i \in \mathbb{N}$, the functions f_{i} and g_{i} be defined respectively by

$$
\begin{align*}
& f_{i}(z) \\
& =z^{p+\eta} \\
& +\frac{\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}} z^{i+p+\eta}, \\
& g_{i}(z)=z^{p+\eta}+b_{i} z^{i+p+\eta} . \tag{15}
\end{align*}
$$

If there exists an analytic function w defined by
$\{w(z)\}^{i}$
$=\frac{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}}{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}} \sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$,
then, for $\tau>0$ and $z=r e^{i \vartheta}(0<r<1)$,

$$
\int_{0}^{2 \pi}|(f * g)(z)|^{\tau} d \vartheta \leq \int_{0}^{2 \pi}\left|\left(f_{i} * g_{i}\right)(z)\right|^{\tau} d \vartheta
$$

($\tau>0$).
Proof. Convolution of f and g is defined as:

$$
\begin{aligned}
(f * g)(z)=z^{p+\eta}+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k+p+\eta} \\
=z^{p+\eta}\left(1+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}\right) .
\end{aligned}
$$

Similarly, from (15), we obtain

$$
\begin{aligned}
& \left(f_{i} * g_{i}\right)(z)=z^{p+\eta} \\
& +\frac{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}} z^{i+p+\eta} \\
& =z^{p+\eta}(1 \\
& \left.+\frac{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}} z^{i}\right) .
\end{aligned}
$$

To prove the theorem , we must show that for $\tau>0$ and $z=r e^{i \vartheta}(0<r<1)$,

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|1+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}\right|^{\tau} d \vartheta \\
& \leq \int_{0}^{2 \pi} \mid 1+
\end{aligned}
$$

$\left.\frac{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}} z^{i}\right|^{\tau} d \vartheta$.
Thus, by applying Theorem 2, it would suffice to show that

$$
\begin{align*}
& 1+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}<1+ \\
& \frac{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}} z^{i} . \tag{16}
\end{align*}
$$

If the subordination (16) holds true, then there exist an analytic function w with $w(0)=0$ and $|w(z)|<1$ such that
$1+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=1+$
$\frac{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}}{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}}\{w(z)\}^{i}$.
From the hypothesis of the theorem, there exists an analytic function w given by

$$
\begin{aligned}
& \{w(z)\}^{i} \\
& =\frac{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}}{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}} \\
& \quad \times \sum_{k=2}^{\infty} a_{k} b_{k} z^{k},
\end{aligned}
$$

which readily yields $w(0)=0$. Thus for such function w, using the hypothesis in the coefficient inequality for the class $L(p, \eta, \delta)$, we get
$|w(z)|^{i}$
$\leq \frac{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}}{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}} \sum_{k=2}^{\infty} a_{k} b_{k}|z|^{k}$
$\leq|z|^{2} \frac{(i+p+\eta)[1+\mu(i+\gamma|\beta|-2)]\left(\frac{c+p+\eta}{c+i+p+\eta}\right)^{\delta}}{[\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)] b_{i}} \sum_{k=2}^{\infty} a_{k} b_{k}$
$\leq|z|<1$.
Therefore ,the subordination (16) holds true, thus the theorem is proved.

Theorem 4.

Let $f \in L(p, \eta, \delta), p(z)$ be given by

$$
\begin{align*}
p(z)= & z^{p+\eta} \\
& +\sum_{s=1}^{m} b_{s j-(s-1)(p+\eta)^{2}} z^{s j-(s-2)(p+\eta)}, \tag{17}
\end{align*}
$$

($p+\eta)>\lambda, j \geq 2, m \geq 2$, and suppose that
$\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} a_{k} \leq$
$\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v) \Gamma(3-\lambda-n+p+\eta)}{\Gamma(s-2)(p+\eta)-\lambda+1-v) \Gamma(2+p+\eta-\lambda) \Gamma(p+\eta-\lambda+1-n)}$
$\times b_{s j-(s-1)(p+\eta)}$
for $\lambda=0$ or 1
$(0 \leq n, v<1)$ and $2 \leq \lambda \leq k(0<n, v<1)$,
where $(k+p+\eta-\lambda)_{\lambda+1}$ denotes the
pochhammer symbol defined by
$(k+p+\eta-\lambda)_{\lambda+1}=(k+p+\eta-\lambda)(k+p+$ $\eta-\lambda+1) \ldots(k+p+\eta)$.

Then for $z=r e^{i \vartheta}(0<r<1)$,
$\int_{0}^{2 \pi}\left|D_{Z}^{\lambda+n} f(z)\right|^{\tau} d \vartheta$
$\leq \int_{0}^{2 \pi}\left|\frac{\Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta-\lambda+1-n)} z^{v-n} D_{z}^{\lambda+v} p(z)\right|^{\tau} d \vartheta$,
($\tau>0$).
Proof. By means of the fractional derivative formula (13) and Definition 2 , we find from (1) that
$D_{z}^{\lambda+n} f(z)=\frac{\Gamma(p+\eta+1)}{\Gamma(p+\eta-\lambda+1-n)} z^{p+\eta-\lambda-n}$
$\times\left[1+\sum_{n=2}^{\infty} \frac{\Gamma(k+p+\eta+1) \Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1) \Gamma(k+p+\eta-\lambda+1-n)} a_{k} z^{k}\right]$
$=\frac{\Gamma(p+\eta+1)}{\Gamma(p+\eta-\lambda+1-n)} z^{p+\eta-\lambda-n}$
$\times\left[1+\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k} z^{k}\right]$
where
$\varphi(k)=$
$\frac{\Gamma(k+p+\eta-\lambda)}{\Gamma(k+p+\eta+1-\lambda-n)}\left\{\begin{array}{ll}\lambda=0 \text { or } & 1 \\ 2 \leq \lambda \leq n<1) \\ 2 \leq \lambda & (0<n<1)^{\prime}\end{array}\right.$,
$k \geq 2, k \in \mathbb{N}$.
Since $\varphi(k)$ is a decreasing function of k, we have

$$
\begin{gathered}
0 \leq \varphi(k) \leq \varphi(2)= \\
\frac{\Gamma(2+p+\eta-\lambda)}{\Gamma(3+p+\eta-\lambda-n)}\left\{\begin{array}{l}
\lambda=0 \text { or } 1 \quad(0 \leq n<1) \\
2 \leq \lambda \leq k \quad(0<n<1)^{\prime}
\end{array}\right.
\end{gathered}
$$ $k \geq 2, k \in \mathbb{N}$.

Similarly, by using (17) ,(13) and Definition 2, we obtain

$$
\begin{aligned}
& D_{z}^{\lambda+v} p(z)=\frac{\Gamma(p+\eta+1)}{\Gamma(p+\eta-\lambda+1-v)} z^{p+\eta-\lambda-v} \\
& {\left[1+\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)}\right.} \\
& \quad \times b_{\left.s j-(s-1)(p+\eta) z^{s j-(s-1)(p+\eta)}\right]}
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \frac{\Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta-\lambda+1-n)} z^{v-n} D_{Z}^{\lambda+v} p(z) . \\
& =\frac{\Gamma(p+\eta+1)}{\Gamma(p+\eta-\lambda+1-n)} z^{p+\eta-\lambda-n} \\
& \times\left[1+\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)}\right. \\
& \left.\quad \times b_{s j-(s-1)(p+\eta)} z^{s j-(s-1)(p+\eta)}\right]
\end{aligned}
$$

For $z=r e^{i \vartheta}(0<r<1)$, we must show that

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|1+\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k} z^{k}\right|^{\tau} d \vartheta \\
& \leq \int_{0}^{2 \pi} \mid 1+ \\
& \sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)} \\
& \quad \times\left. b_{s j-(s-1)(p+\eta)} z^{s j-(s-1)(p+\eta)}\right|^{\tau} d \vartheta,(\tau>0) .
\end{aligned}
$$

By applying Theorem 1. It suffices to show that
$1+\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k} z^{k}$
$\prec 1+\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)}$

$$
\begin{equation*}
\left.\times b_{s j-(s-1)(p+\eta)}\right)^{s j-(s-1)(p+\eta)} \tag{20}
\end{equation*}
$$

By setting
$1+\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k} z^{k}$
$=1+\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)}$
$\times b_{s j-(s-1)(p+\eta)}\{w(z)\}^{s j-(s-1)(p+\eta)}$
we find that
$\{w(z)\}^{s j-(s-1)(p+\eta)}$
$=\sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k} z^{k}$
$\times \frac{1}{\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)} b_{s j-(s-1)(p+\eta)}}$.
which readily yields $w(0)=0$. Therefore ,
we have

$$
\begin{aligned}
& |w(z)|^{s j-(s-1)(p+\eta)} \leq \\
& \sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)} \varphi(k) a_{k}|z|^{k}
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{1}{\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)} b_{s j-(s-1)(p+\eta)}} \\
& \leq|Z|^{2} \\
& \times \frac{\varphi(2) \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)}}{\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)} b_{s j-(s-1)(p+\eta)}}
\end{aligned}
$$

$$
\times \sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} a_{k}
$$

$$
=|z|^{2}
$$

$$
\times \frac{\frac{\Gamma(2+p+\eta-\lambda)}{\Gamma(3+p+\eta-\lambda-n)} \frac{\Gamma(p+\eta-\lambda+1-n)}{\Gamma(p+\eta+1)}}{\sum_{s=1}^{m} \frac{\Gamma(s j-(s-2)(p+\eta)+1) \Gamma(p+\eta-\lambda+1-v)}{\Gamma(p+\eta+1) \Gamma(s j-(s-2)(p+\eta)-\lambda+1-v)} b_{s j-(s-1)(p+\eta)}}
$$

$$
\times \sum_{k=2}^{\infty}(k+p+\eta-\lambda)_{\lambda+1} a_{k} \leq|z|^{2}<1
$$

by means of the hypothesis (18) of Theorem 4.
Now, we prove the following property by using the definition of f_{i} which given by
$f_{i}(z)=z^{p+\eta}+\sum_{k=2}^{\infty} a_{k, i} z^{k+p+\eta}$.

Theorem 5.

Let f of the form (1) be in the class $L(p, \eta, \delta)$ such that $f(U)$ is convex. Assume that f satisfies the inequality (5). Then, for the Cesàro operator [3-6] of f defined by the relation

$$
\begin{gathered}
\sigma_{k}(z)=\sum_{k=2}^{\infty} \frac{1}{k+1}\left(\sum_{i=0}^{k} a_{k, i}\right) z^{k+p+\eta} \\
(p=1,2, \ldots, 0 \leq \eta<1, z \in U)
\end{gathered}
$$

with $\sigma_{0}(z)=0, \sigma_{1}(z)=z^{p+\eta}$, we have
$\sigma_{k}(z) \in L(p, \eta, \delta)$.
Proof. Since f_{i} which is defined by (21) satisfies (5) then in view of Theorem 1, we have

$$
\begin{aligned}
& \quad \sum_{k=2}^{\infty} a_{k, i}(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)] \\
& \quad \times\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} \\
& \leq \gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta) .
\end{aligned}
$$

For all $k \in \mathbb{N}_{0}$, we have

$$
\begin{aligned}
\sigma_{k}(z) & =0+z^{p+\eta} \\
& +\sum_{k=2}^{\infty} \frac{1}{k+1}\left(\sum_{i=0}^{k} a_{k, i}\right) z^{k+p+\eta}, \quad(z \in U)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{k=2}^{\infty}(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)] \\
& \times\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} \frac{1}{k+1}\left(\sum_{i=0}^{k} a_{k, i}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{k+1} \sum_{i=0}^{n}\left(\sum_{k=2}^{\infty}(k+p+\eta)[1+\mu(k+\gamma|\beta|-2)]\right. \\
& \left.\times\left(\frac{c+p+\eta}{c+k+p+\eta}\right)^{\delta} a_{k, i}\right)
\end{aligned}
$$

References

[1] M. Darus and R. W. Ibrahim, Coefficient inequalities for a new class of univalent functions. Lobachevskii J. Math., 29(2008),221-229.
[2] J.E. Littlewood, On inequalities in the theory of functions,Proc. LondonMath. Soc., 23(1925), 482-519.
[3] J. Miao, The Ces`aro operator is bounded on \(H^{p}\) for \(0<p<1\), Proc. Amer. Math. Soc., 116(4)(1992),1077-1079. [4] J.-h. Shi and G.-b. Ren, Boundedness of the Ces`aro operator on mixed norm spaces, Proc. Amer. Math. Soc., 126(12)(1998) , 3553-3560.
[5] A. G. Siskakis, Composition semigroups and the Ces'aro operator on H^{p}, J. London Math. Soc.(2),36(1)(1987),153-164.
[6] A. G. Siskakis, The Ces`aro operator is bounded on H^{1},Proc. Amer. Math. Soc., 110(2)(1990),461-462.
[7] Tariq O. Salim, A class of multivalent functions involving a generalized linear operator and subordination, Int. J. Open Problems Complex Analysis, 2(2)(2010).8294.

$$
\begin{aligned}
& <\frac{1}{k+1} \sum_{i=0}^{k}(\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)) \\
& =\gamma|\beta|(1-\mu)+(\gamma|\beta|-1) \mu(p+\eta)
\end{aligned}
$$

This implies that $\sigma_{k}(z) \in L(p, \eta, \delta)$.

