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Abstract :

This paper interest to estimation the unknown parameters for generalized
Rayleigh distribution model based on censored samples of singly type one . In this
paper the probability density function for generalized Rayleigh is defined with its
properties . The maximum likelihood estimator method is used to derive the point
estimation for all unknown parameters based on iterative method , as Newton —
Raphson method , then derive confidence interval estimation which based on Fisher
information matrix . Finally , testing whether the current model ( GRD ) fits to a set
of real data , then compute the survival function and hazard function for this real data.

Keywords :
Maximum likelihood method , type one censored sample , interval estimation method , and
fisher information matrix .

1:Introduction

A rich class of probability distributions had been introduced by Burr ( 1942 ) , which
includes twelve different form of cumulative distribution functions for modeling data " .

Rayleigh distribution is an important distribution in statistics and operations research . It has
a wide range of applications in several areas such as health , agriculture , biology , analyzing wind
speed data and other sciences M7 .

It is known that the generalized Rayleigh density functions are always right skewed and they
can be used quite effectively to analyze skewed data set .

Recently , Surles and Padgett ( 2001 ) introduced two parameters Burr-Type X distribution ,
which can also be described as generalized Rayleigh distribution (G.R.D)and it was observed that
this particular skewed distribution can be used in analyzing lifetime data g

Kundu and Raqab ; (2003) consider this distribution and discussed its different properties
and employed different methods of estimators *! .

Kundu and Raqab ; (2005) ' estimate the parameters of (G.R.D) by using different
methods, such as MLE method modified moment method , percentiles method , least square
method .




Kundu and Ragab ; (2006) presented that the pdf of a (G.R.D) is a decreasing function for
a <0.5 and it is a right — skewed unimodal function for & > 0.5 . ( Figure 1)

And show that the hazard rate function of a (G.R.D) is bathtub type for o <0.5 and it is an
increasing function for o >0.5. ( Figure 2 ) 1.
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Our aim in this paper is to estimate the unknown parameters of the (G.R.D) based on
censored data .

The maximum likelihood method is used to derive point estimation by using Newton-
Raphson method , then derive and find the confidence interval estimation based on Fisher
information matrix .

After that deriving and estimating the survival function and hazard function , then fit and
apply this distribution to a set of real data to calculate the values of estimators and compute the
values of estimate for survival and hazard function .

The rest of the paper is organized as follows : in section two definition and some properties
of distribution , in section three deriving point estimation , in section four deriving interval
estimation for the unknown parameter of study distribution , in section five apply the real set data
then compute the estimators , survival function and hazard function . Finally , in section six made
conclusion for this paper .



2: Definition and properties "'
The probability density function for generalized Rayleigh distribution (G.R.D) is :

2afte ™™ (1- e )*! t>0
Jfar(t;a, B) = {0

Q={(a.p); a>0, >0}
Where f : is shape parameter
a : is scale parameter

From now on the generalized Rayleigh distribution with the scale parameter o and shape
parameter B will be denoted by GR(«, B) .

The cumulative distribution function for this distribution is :
Ft:a,B)=0—eP ) 5 for t>0 oo (2)

It's survival function is given by :
Sta,B)=1-1=eP) 5 for t20 oo 3)

The hazard rate function is given by :
o) -pi? 1— —pE a1
W, p)= 22 2¢ )
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3:Maximum likelihood estimator method for censored type one sample

The maximum likelihood method is the most popular procedure to estimate the parameter 6
which specifies a probability function f(z:60) , based on the observations ¢,,,.,.....,t, which were
independently sample from the distribution .

The likelihood function of type I censored data is :
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Taking the logarithm for the likelihood function , so we get the function :
InL=Ina+rn2+rna+rinf+) Int, - BYt +(a ~1)Y In(1—e ™)
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The partial derivatives for the log — likelihood function with respect to unknown parameters
o and B are:
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We place the partial derivative for o to zero as follows :
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Equating the partial der1vat1ve for B to zero and we solve this equation :
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Since we cannot find the estimators for the parameters («, ) , because hardness solve this
nonlinear equations simultaneously , so we resort to iterative methods in numerical analysis .

Consider Newton-Raphson method ! is one of the best iterative methods in numerical
analysis because it's very fast and the error of this iterative method is quadratic approximation . An
iterative procedure is a technique of successive approximations , and each approximation is called

iteration .
If the successive approximations approach the solution very closely then the iterations

converge .
The Newton — Raphson method requires an initial value of each unknown parameters («, f)

The steps of this method are as follows :

|:ak+1:| _ {ak} _ Jk‘{fl (a)} ................... 14)
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The two — functions f,(«) and f,(f) are the first derivative of log-likelihood function with
respect to unknown parameters o and S respectively .
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The Jacobean matrix J, is the first derivative for each function of f(a) and f,(f) are
with respect to @ and g or it is the second derivative of the log-likelihood function to the two —
parameters .



of. () of(a)] [0°lL 8’ InLf (a)

oot op oa’ dadp
J, = =l (17)
%(P) oAhP)| |*InL O’ InL
Oa op dpoa op?
Then :
@) __r _(n=r)=e ) In(l-e")F 18
P TRy
Hhi@ e’ (n-ne’ (- Y I+ainl-e )~ (1-e 7 )] 19
B Sl-e? ey P T
KB _&Le™  (m-nTe” (- ) [l+alnl-e™)-(1-¢ " )]
Yy il 0 — < e 0
ox ;l_e_ﬂtf [1_(1_e—ﬁT[{)a]2 Q )
KB __r X e
P “ );(1
(a l)eﬂTo the
(n—r)alle”™ (1-¢ -%)“-1[7[” I+ )"+ (1—e ™ Y]
- el

[1-(-¢")F
Jacobean matrix in maximum likelihood method estimator must be anon-singular symmetric matrix
in this procedure because depending upon the first derivatives , so it's inverse can be founded .
The absolute value for the difference between the new founded values with the initial value
is the error term , it must be a symbol by & , which is a very small value and assumed .
Then , error term is formulated as :
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4:Interval estimation method

The interval estimation is a range of estimation , where the true value of parameter lies
between lower limit estimate and upper limit estimate . The measure which represent the interval
estimation is confidence intervals , which is a range of values , bounded above and below , within
which the true unknown value is expected to fall , that means , confidence intervals are estimates of

the true unknown parameters . The confidence bounds for the shape and scale parameters in the
generalized Rayleigh distribution are as follows :

A A A A A A
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Where Z, is tabulate value of standard normal distribution under level of significant o .

Now , to find var(a) and var(f) we must employ the observed fisher information matrix , where
the variance-covariance matrix can be obtained by inverting the fisher information matrix , which
are as follows :
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After that , we can find the confidence interval estimation for the survival function and
hazard function which are formulated as follows :
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S: results and discussion

In this paper , depending on real data for the Lung cancer disease , choosing this type of
cancer because it is widespread and deadly in time in Iraq and this type of diseases has failure time
( death time ) occurs which is interesting phenomenon in this paper .

To collect data for the Lungcancer disease , returning the educational hospital in Diwaniya .

The time of study point in this paper determined from 1-1-2012 until 31-12-2012 , that
means the duration time of this study is constant and fixed for (12) months or (365) days .

The number of patients in the experiment for the above duration time is (60) . Thirty seven
patients were dead and twenty three patients remain alive .

We found from the our samples that the Male formed (51) and Female formed (31) from my
study . And , we found that Urban is (59) and Rural (23) for my study .

When applying the test statistic (Kolmogorov-Smirnov) in order to fit generalized Rayleigh
distribution data , it is discovered that the calculated value is (0.20833) ; when comparing this value
with tabulated value (0.2183) we find out that the calculated value is less than the tabulated value at
level of significant (0.05) , this means data is distributed according to generalized Rayleigh
distribution .

The null and alternative hypotheses are as follows :
H,, : The survival time data is distributed as generalized Rayleigh pdf .

H, : The survival time data is not distributed as generalized Rayleigh pdf .

By utilizing program visual studio ct++ , we've got the following estimated parameters
values :

a =0.00465 ;B =0.01281

Now , we find and calculated the variance / covariance matrix by using observed Fisher
information matrix

0.000004923 0.00000214

I, = | (27)
0.00000214 0.000000005

The above values are computed in (G.R.D) to get the numerical value of Fisher information
matrix .

From the variances values and the estimated parameters values , we get the lower and upper
values for the estimated parameters which are :

A A A A

a,.=00003 ; @, =0009 ; B =00127 ; B =0013

Then computing the numerical values for probability death density function f(¢) , survival
function s(¢) and hazard function A(¢) .



Table (1)

Estimated values for the function 7 (¢) , s(¢) , h(z)

Failure f@ s(1) h(t)
Time Lower Upper Lower Upper Lower Upper

15 0.000598447 | 0.016730928 | 0.002445167 | 0.070363865 | 0.237777275 | 0.244747088
17 0.000598468 | 0.016767939 | 0.002370262 | 0.068267452 | 0.245621277 | 0.252490272
17 0.000598468 | 0.016767939 | 0.002370262 | 0.068267452 | 0.245621277 | 0.252490272
19 0.000598481 | 0.016800725 | 0.002303696 | 0.066400603 | 0.253020669 | 0.259791482
19 0.000598481 | 0.016800725 | 0.002303696 | 0.066400603 | 0.253020669 | 0.259791482
19 0.000598481 | 0.016800725 | 0.002303696 | 0.066400603 | 0.253020669 | 0.259791482
20 0.000598484 0.0168158 | 0.002272998 | 0.065538451 | 0.256579154 | 0.263301695
20 0.000598484 0.0168158 | 0.002272998 | 0.065538451 | 0.256579154 | 0.263301695
21 0.000598486 | 0.016830108 | 0.002243798 | 0.064717657 | 0.260054355 | 0.266729096
23 0.000598485 | 0.016856687 | 0.002189352 | 0.063185382 | 0.266781441 | 0.273361821
23 0.000598485 | 0.016856687 | 0.002189352 | 0.063185382 | 0.266781441 | 0.273361821
24 0.000598483 | 0.01686907 | 0.002163881 | 0.062467704 | 0.270044655 | 0.276578394
26 0.000598473 | 0.016892249 | 0.002115977 | 0.061116529 | 0.27639412 | 0.282835499
31 0.000598428 | 0.01694255 | 0.002010715 | 0.058140902 | 0.291405013 | 0.297619679
54 0.000597884 | 0.017090042 | 0.001678702 | 0.048695838 | 0.350954887 | 0.356158622
54 0.000597884 | 0.017090042 | 0.001678702 | 0.048695838 | 0.350954887 | 0.356158622
77 0.000596867 | 0.01716451 | 0.001466717 | 0.042617996 | 0.402752637 | 0.40694094
175 0.000587831 | 0.017130481 | 0.000979412 | 0.028509179 | 0.60018805 | 0.600875984
175 0.000587831 | 0.017130481 | 0.000979412 | 0.028509179 | 0.60018805 | 0.600875984
185 0.000586499 | 0.017105647 | 0.000946782 | 0.027557909 | 0.619465405 | 0.620716423
193 0.00058538 | 0.017083452 | 0.000921977 | 0.026834212 | 0.634918257 | 0.636629566
198 0.000584656 | 0.017068556 | 0.000907014 | 0.026397459 | 0.644594967 | 0.646598468
207 0.000583308 0.0170398 | 0.000881054 | 0.025639357 | 0.662057138 | 0.664595466
233 0.000579083 | 0.01694318 | 0.000812278 | 0.023628622 | 0.712912444 | 0.717061699
243 0.000577328 | 0.01690085 | 0.000787979 | 0.022917492 | 0.732669403 | 0.737465054
243 0.000577328 | 0.01690085 | 0.000787979 | 0.022917492 | 0.732669403 | 0.737465054
243 0.000577328 | 0.01690085 | 0.000787979 | 0.022917492 | 0.732669403 | 0.737465054
245 0.000576969 | 0.016892049 | 0.000783248 | 0.022778996 | 0.73663572 | 0.74156248
250 0.000576058 | 0.016869563 | 0.000771601 | 0.022437956 | 0.746574332 | 0.751831555
250 0.000576058 | 0.016869563 | 0.000771601 | 0.022437956 | 0.746574332 | 0.751831555
253 0.000575503 | 0.016855743 | 0.000764733 | 0.022236808 | 0.752553552 | 0.758010911
267 0.000572828 | 0.016788034 | 0.000733808 | 0.021330755 | 0.780624243 | 0.787034221
310 0.000563764 | 0.016548134 | 0.000648915 | 0.018840784 | 0.868780116 | 0.878314555
325 0.000560307 | 0.016453567 | 0.000622356 | 0.018061032 | 0.900300611 | 0.91099821
330 0.000559122 | 0.016420837 | 0.00061381 | 0.017810076 | 0.910903011 | 0.921997024
338 0.00055719 | 0.01636723 | 0.000600441 | 0.01741738 | 0.927969307 | 0.939706756
350 0.000554215 | 0.016283999 | 0.000581053 | 0.016847806 | 0.953811246 | 0.96653528




Note that we can make the following comments for the results in the above table :
1- Noting that the values of death density function f(¢) were increasing slightly until (t=24)

for lower bound , then the values became decreasing slightly until the end of failure times ,
but the values of death density function f(¢) were increasing slightly until (t=77) for upper
bound , then the values became decreasing slightly until the end of failure times.

2- Noting that the values of survival function s(¢) are decreasing gradually with increasing the

failure times for the Lung cancer patients in the hospital , that means there is an opposite
relationship between failure times and survival function .
3- Noting that the values of hazard function h(¢z) are increasing gradually with increasing the

failure times for the Lung cancer patients in the hospital , that means there is a direct
relationship between failure times and hazard function .
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The relation between lower and upper /(¢) with ¢
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