Some Properties of Certain subclass of Meromorphically Multivalent Functions Defined by Convolution and Integral Operator involving IFunction

Waggas Galib Atshan and Raghda Naser Abdul-Hussien

Department of Mathematics,College of Computer Science and Mathematics, University of Al-Qadisiya ,Diwaniya, Iraq
waggashnd@gmail.com, raghda.jr@gmail.com
 results, like, Coefficient inequality, Modified Hadamard Product, Integral means and Inclusion properties for this class.
Mathematics Subject Classification: 30C45, 30 C50.
Keywords: Meromorphic p-valent function; Starlike function; I-function; Convolution; Integral operator.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol.10, No. 6
www.cirjam.com , editorjam@gmail.com

1.INTRODUCTION:

Let \mathcal{R}_{p}^{*} denote the class of functions of the form :
$f(z)=z^{-p}+\sum_{n=1}^{\infty} a_{n-p^{2}} z^{n-p}, \quad(p \in N=\{1,2,3, \ldots\})$,
which are meromorphic multivalent in the punctured unit disk $U^{*}=\{z: z \in \mathbb{C}, 0<|z|<1\}$. Consider a subclass J_{p} of the class \mathcal{R}_{p}^{*} consisting of function of the form:
$f(z)=z^{-p}-\sum_{n=1}^{\infty} a_{n-p} z^{n-p}\left(a_{n-p} \geq 0\right)$,
The Hadamard product of two functions, f is given by (1.2) and
$g(z)=z^{-p}-\sum_{n=1}^{\infty} b_{n-p} z^{n-p} \quad\left(b_{n-p} \geq 0\right)$.
is defined by
$(f * g)(z)=z^{-p}-\sum_{n=1}^{\infty} a_{n-p} b_{n-p} z^{n-p}=(g * f)(z)$.
The I-function which was introduced by Saxena [14] is an extension of Fox's H-function. On specializing the parameters, Ifunction can be reduced to almost all the known as well as unknown special function.
The definition of I-functions given by Saxena [14] is as follows:

$=\frac{1}{2 \pi i} \int_{c} t(s) z^{s} d s$,
where
$t(s)=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}-\beta_{j} s\right) \prod_{j=1}^{\eta} \Gamma\left(1-a_{j}+a_{j} s\right)}{\sum_{i=1}^{p}\left\{\prod_{j=m+1}^{q_{j}} \Gamma\left(1-b_{j}+\beta_{j i} s\right) \prod_{j=n+1}^{p_{f}} \Gamma\left(a_{j i}-\alpha_{j i} s\right)\right\}}$
$p_{i}\left(i=1,2,3_{n} \ldots r\right), q_{i}\left(i=1,2,3_{n}, \ldots, r\right), m, n$ are integers satisfying $0 \leq n \leq p_{i p} 0 \leq m \leq q_{i}\left(i=1,2,3_{v, \ldots} r\right), r$ is finite $\alpha_{i v}, \beta_{i}, \alpha_{i j}, \beta_{i j}$ are real and positive and $a_{i}, b_{i j}, a_{i j}, b_{i j}$ are complex numbers such that
$\alpha_{j}\left(b_{h}+v\right) \neq \beta_{j}\left(a_{h}-1-k\right)$.
With all necessary conditions for existence as given by Saxena [14]. If the integral operator of $f \in \mathscr{R}_{p}^{*}$ for $\alpha_{v} \beta>0$ is denoted by
$I_{p}^{\alpha, \beta}$ and defined as following:
$I_{p}^{\alpha, \beta} f(z)=\frac{z^{\beta-p}}{\Gamma(\alpha-\beta) I_{p_{1}^{2}, q_{1}^{2}}^{m, y+1}[z]} \int_{0}^{z} t^{p-\alpha}(z-t)^{\alpha-\beta-1} I_{p_{1}^{+1}, q_{1}^{2} z z}^{m, z}[t] f(t) d t$,
where
$I_{p_{i}^{+2}, q_{1}^{+2}, r}^{m, n+1}[z]=I_{p_{i}^{+2}, q_{i}^{2}, x}^{m, n+1}\left[z \left\lvert\, \begin{array}{l}\left(\alpha_{v}, 1\right)\left(a_{j p}, \alpha_{j}\right)\left(a_{j i}, \alpha_{j i}\right) \\ \left(b_{p}^{p} \beta_{j}\right)\left(b_{j p} \beta_{j i}\right)(\beta, 1)\end{array}\right.\right]$,
valid when
$\left(\operatorname{Re}\left(b_{j}\right)<\operatorname{Re}\left(a_{j}\right)<1+\min _{1 \leq j \leq m} \operatorname{Re}\left(\frac{b_{j}}{\beta_{j}}\right)\right)$.
Then $I_{p}^{\alpha, \beta} f(z)$ can be expressed for

$$
f(z)=z^{-p}+\sum_{n=1}^{\infty} a_{n-p} z^{n-p_{x}}
$$

as given below,

$=z^{-p}+\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right) a_{n-p} z^{n-p}$
where

Definition (1.1): Let $f \in \mathcal{R}_{p}^{*}$ given by (1.1). Then f be in the class $J_{p}^{\alpha, \beta}\left(\theta_{v} \delta_{v} v\right)$ if it satisfies the following condition:

where $\theta_{v} \delta_{s} \beta$ belong to $(0,1]$ and \mathbb{v} belong to $[0,1)$
We define the subclass $J_{p}^{* \alpha / \beta}\left(\theta_{v} \delta_{v} v\right)=J_{p} \cap J_{p}^{\alpha, \beta}\left(\theta_{v} \delta_{v} v\right)$.

2.Main results:

In the first theorem, we provide sufficient condition for functions to be in the class $\prod_{p}^{\alpha_{\alpha}, \beta}\left(\theta_{v} \delta_{s} \mathbb{V}\right)$.
Theorem (2.1): Let the function $f(z)$ defined by (1.1) be in the class $J_{p}^{\alpha \alpha_{\beta} \beta}\left(\theta_{v} \delta_{s} v\right)$. Then
$\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{r} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\left|a_{n-p} \| b_{n-p}\right| \leq p \beta(1-v),(2,1)$
where $\theta_{v} \delta_{v} \beta$ belong to $(0,1]$, v belong to $[0,1)$ and $\emptyset_{p}\left(m_{v} n_{v} \alpha_{v} \beta\right)$ is given by (1.6).
proof:Let the condition (2.1) hold true, then we have

$$
\begin{aligned}
& \left|z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)-\theta\right| z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)+p I_{p}^{\alpha, \beta}(f * g)(z)\left|+p I_{p}^{\alpha, \beta}(f * g)(z)\right| \\
& -\left|p \beta(1-v) I_{p}^{\alpha, \beta}(f * g)(z)-\delta\left[z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)-\theta\left|z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)+p I_{p}^{\alpha, \beta}(f * g)(z)\right|\right]-p \delta\left(p I_{p}^{\alpha, \beta}(f * g)(z)\right)\right| \\
& =\left|\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{v} \beta\right) n a_{n-p} b_{n-p} z^{n-p}-\theta\right| \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{v} \alpha_{v} \beta\right) n a_{n-p} b_{n-p} z^{n-p}| |- \\
& \mid p \beta(1-v) z^{-p}+p \beta(1-v) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right) a_{n-p} b_{n-p} z^{n-p} \\
& \left|\quad-\delta\left[\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right) n a_{n-p} b_{n-p} z^{n-p}-\theta\left|\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{v} \beta\right) n a_{n-p} b_{n-p} z^{n-p}\right|\right]\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{0} \beta\right) n a_{n-p} b_{n-p}|z|^{n-p}-p \beta(1-v)|z|^{-p}-p \beta(1-v) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{0} \alpha_{s} \beta\right)\left|a_{n-p} \| b_{n-p}\right||z|^{n-p} \\
& +\left.\delta(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right) n\left|a_{n-p}\left\|b_{n-p}\right\|\right| z\right|^{n-p} \\
& \leq \sum_{\mathrm{n}=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{*} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\left|a_{n-p} \| b_{n-p}\right|-p \beta(1-v) \leq 0,
\end{aligned}
$$

By hepothesis. Then by Maximum modulus theorem, we have $f \in J_{p}^{\alpha, \beta}(\theta, \delta, v)$.
Theorem (2.2): The function $f(z)$ defined by (1.2) is said to be in the class $T_{p}^{* \alpha, \beta}(\theta, \delta, v)$. If and only if
$\sum_{n=1}^{\infty} \phi_{p}(m, n, \alpha, \beta)(n(1+\theta)(1+\delta)-p \beta(1-v)) a_{n-p} b_{n-p} \leq p \beta(1-v)$,
where $\theta_{0} \delta_{i} \beta$ belong to $(0,1], v$ belong to $[0,1)$ and $\emptyset_{p}\left(m, n_{s}, \alpha_{j} \beta\right)$ is given by (1.6).
proof: We only need to prove the "only if" part of Theorem (2.1). For functions $f(z) \in J_{p}$, we can write

$=\left|\frac{z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)-\theta\left|z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)+p I_{p}^{\alpha, \beta}(f * g)(z)\right|+p I_{p}^{\alpha, \beta}(f * g)(z)}{\delta\left[z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)-\theta\left|z\left(I_{p}^{\alpha, \beta}(f * g)(z)\right)+p I_{p}^{\alpha, \beta}(f * g)(z)\right|+p[\delta-\beta(1-v)] I_{p}^{\alpha, \beta}(f * g)(z)\right]}\right|$
$\leq\left|\frac{(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m_{s} n_{s} \alpha_{s} \beta\right) n a_{n-p} b_{n-p} z^{n-p-1}}{p \beta(1-v)+p \beta(1-v) \sum_{n=1}^{\infty} \emptyset_{p}\left(m_{s} n_{s} \alpha_{v} \beta\right) a_{n-p} b_{n-p} z^{n-p-1}-\delta(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m_{s} n_{s} \alpha_{s} \beta\right) n a_{n-p} b_{n-p} z^{n-p-1}}\right|<1$,
since $\operatorname{Re}(z) \leq|z|$, $\left(z \in U^{*}\right)$, we thus find that
$\operatorname{Re}\left(\frac{(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{s} \beta\right) n a_{n-p} b_{n-p} z^{n-p-1}}{p \beta(1-v)+p \beta(1-v) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right) a_{n-p} b_{n-p} z^{n-p-1}-\delta(1+\theta) \sum_{n=1}^{\infty} \emptyset_{p}\left(m, n, \alpha_{s} \beta\right) n a_{n-p} b_{n-p} z^{n-p-1}}\right)<1$.
If we now choose z to be real and let $z \rightarrow 1^{-}$, we get
$\sum_{n=1}^{\infty} \sigma_{p}\left(m, n, \alpha_{i} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) a_{n-p} b_{n-p} \leq p \beta(1-v)$
which is equivalent to (2.2).
Corollary (2.1): Let the function $f(z)$ defined by (1.2) be in the class $p_{p}^{* \alpha, \beta}(\theta, \delta, v)$. Then
$a_{n-p} \leq \frac{p \beta(1-v)}{\emptyset_{p}(m, n, \alpha, \beta)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}$.
The result is sharp for the function
$f(z)=z^{-p}-\frac{p \beta(1-v)}{\emptyset_{p}\left(m, n, \alpha_{*} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}} z^{n-p}$.
Let the function $f_{j}(z)(j=1,2)$ be defined by
$f_{j}(z)=z^{-p}-\sum_{n=1}^{\infty} a_{n-p j} z^{n-p}, \quad\left(a_{n-p j} \geq 0\right)$.
The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\left(f_{1} * f_{2}\right)(z)=z^{-p}-\sum_{n=1}^{\infty} a_{n-p, 1} a_{n-p, 2} z^{n-p}=\left(f_{2} * f_{1}\right)(z)
$$

Theorem (2.3): Let the function $f_{j}(z)(j=1,2)$ be in the class $T_{p}^{* \alpha, \beta}\left(\theta_{v} \delta_{v} v\right)$. Then $\left(f_{1} * f_{2}\right)(z) \in J_{p}^{*, \alpha, \beta}\left(\theta_{v} \delta_{v} v\right)$, where $\eta=1-\frac{n p \beta(1-v)^{2}(1+\theta)(1+\delta)}{\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))^{2} b_{n-p}}$.

The result is sharp for the functions $f_{j}(z)(j=1,2)$ given by
$f_{j}(z)=z^{-p}-\frac{p \beta(1-v)}{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}} z^{n-p},(j=1,2)$,
where $\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)$ given by (1.6).
proof: Employing the technique used earlier by Shild and Silverman [15], we need to find the largest η such that
$\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m_{,} n_{v} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\eta))}{p \beta(1-\eta)} a_{n n-p, 1} a_{n-p, 2} \leq 1$.
Since $f_{j}(z) \in J_{p}^{*, \alpha, \beta}\left(\theta_{v} \delta_{v} v\right),(j=1,2)$, we readily see that
$\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m, n_{s} \alpha_{r} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)} a_{n-p, 1} \leq 1$,
and
$\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m, n_{v} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)} a_{n-p, 2} \leq 1$.
By the Cauchy-Schwarz inequality, we have
$\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m, n_{p} \alpha_{x} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)} \sqrt{a_{n-p, 1} a_{n-p, 2}} \leq 1$.
Thus it is sufficient to show that
$\frac{\emptyset_{p}\left(m, n_{s} \alpha_{z} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\eta))}{p \beta\left(1-\eta_{p}\right)} a_{n-p 1} a_{n-p 2} \leq \frac{\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))}{p \beta(1-v)} \sqrt{a_{n-p, 1} a_{n-p 2}}$
or equivalently, that

$$
\sqrt{a_{n-p, 1} a_{n-p, 2}} \leq \frac{(n(1+\theta)(1+\delta)-p \beta(1-v))(1-\eta)}{(n(1+\theta)(1+\delta)-p \beta(1-\eta))(1-v)} .
$$

Hence, in the right of inequality (2.6), it is sufficient to prove that
$\frac{p \beta(1-v)}{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}$
$\leq \frac{(n(1+\theta)(1+\delta)-p \beta(1-v))(1-\eta)}{(n(1+\theta)(1+\delta)-p \beta(1-\eta))(1-v)}$.
It follows from (2.6) that
$\eta \leq 1-\frac{n p \beta(1-v)^{2}(1+\theta)(1+\delta)}{\emptyset_{p}\left(m, n, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))^{2} b_{n-p}}$.
Using similar arguments to those in the proof of Theorem (2.3), we obtain the following theorem.
Theorem (2.4): Let the function $f_{1}(z)$ defined by (2.5) be in the class $T_{p}^{*, \beta, \beta}\left(\theta_{v} \delta_{v}, v\right)$. Suppose also that the function $f_{2}(z)$ defined by (2.5) be in the class $T_{p}^{* \$ \beta}\left(\theta_{v} \delta_{v} v\right)$. Then $\left(f_{1} * f_{2}\right)(z) \in J_{p}^{* \alpha, \beta_{i}}\left(\theta_{v} \delta_{v} v\right)$, where
$\Psi=1-\frac{n p \beta(1+\theta)(1+\delta)(1-v)(1-\$)}{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))(n(1+\theta)(1+\delta)-p \beta(1-\$))}$,
the result is sharp for the function $f_{j}(z)(j=1,2)$ given by
$f_{1}(z)=z^{-p}-\frac{n p \beta(1+\theta)(1+\delta)(1-v)}{\emptyset_{p}\left(m_{,} n_{s} \alpha_{*} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{2-p}} z^{2-p}$,
and

$$
f_{2}(z)=z^{-p}-\frac{n p \beta(1+\theta)(1+\delta)(1-\$)}{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\$)) b_{2-p}} z^{2-p}
$$

Theorem (2.5): Let the functions $f_{j}(z),(j=1,2)$ defined by (2.5) be in the class $T_{p}^{*, \beta_{j}}\left(\theta_{v}, \delta_{v}, v\right)$. Then the function
$h(z)=z^{-p}+\sum_{n=1}^{\infty}\left(a_{n-p, 1}^{2}+a_{n-p, 2}^{2}\right) z^{n-p}$
belong to the class $T_{p}^{*, \alpha_{\beta} \beta}\left(\theta_{v} \delta_{v} v\right)_{x}$ where
$\varphi=1-\frac{2 n p \beta(1-v)^{2}(1+\theta)(1+\delta)}{\emptyset_{p}\left(m, n, \alpha_{j} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))^{2} b_{n-p}+p \beta(1-v)^{2}}$
The result is sharp for the function $f_{j}(z)(j=1,2)$ given by(2.7).
Proof: By using Theorem (2.1), we obtain
$\sum_{n=1}^{\infty}\left[\frac{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)}\right]^{2} a_{n-p 11}^{2}$

$$
\begin{equation*}
\leq\left[\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m, n_{i} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)} a_{n-p, 1}\right]^{2} \leq 1_{v} \tag{2.8}
\end{equation*}
$$

and
$\sum_{n=1}^{\infty}\left[\frac{\emptyset_{p}\left(m, n_{s} \alpha_{i} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)}\right]^{2} a_{n-p, 2}^{2}$

$$
\begin{equation*}
\leq\left[\sum_{n=1}^{m} \frac{\phi_{p}\left(m, n_{,} \alpha_{2} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)} a_{n-p, 2}\right]^{2} \leq 1 \tag{2.9}
\end{equation*}
$$

It follows from (2.8) and (2.9) that
$\sum_{n=1}^{\infty} \frac{1}{2}\left[\frac{\emptyset_{p}\left(m, n_{2} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)}\right]^{2}\left(a_{(n-p)_{2}}^{2}+a_{(n-p)_{2}}^{2}\right) \leq 1$.
Therefore, we need to find the largest φ such that
$\frac{\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\varphi)) b_{n-p}}{p \beta(1-\varphi)} \leq \frac{1}{2}\left[\frac{\emptyset_{p}\left(m_{s} n_{s} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) b_{n-p}}{p \beta(1-v)}\right]^{2}$.
That is
$\varphi \leq 1-\frac{2 n p \beta(1-v)^{2}(1+\theta)(1+\delta)}{\emptyset_{p}\left(m_{s} n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))^{2} b_{2-p}+p \beta(1-v)^{2}}$.
In the following theorem, we consider integral transforms of the functions in the class $T_{p}^{*, \alpha, \beta}\left(\theta_{v} \delta_{v}, v\right)$,
Theorem (2.6): Let the function f defined by (1.2) be in the class $T_{p}^{*, \alpha_{i}}\left(\theta_{v} \delta, v\right)$. Then the integral transforms
$F_{c+p-1}(z)=c \int_{0}^{1} u^{c+p-1} f(u z) d u s \quad(0<u \leq 1,0<c<\infty)$
is in the class $T_{p}^{* \alpha, \beta}\left(\theta_{s} \delta, V\right)$, where
$\mu=1-\frac{c n(1-v)(1+\theta)(1+\delta)}{(c+1)(n(1+\theta)(1+\delta)-p \beta(1-v))+c p \beta(1-v)}$.
The result is sharp for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z^{p}}+\frac{p \beta(1-v)}{\emptyset_{p}\left(m, n, \alpha_{s} \beta\right)((1+\theta)(1+\delta)-p \beta(1-v))} z^{1-p} \quad\left(p \in N_{v} n \in N\right) \tag{2.11}
\end{equation*}
$$

Proof: Suppose $f(z)=z^{-p}+\sum_{n=1}^{s \infty} a_{n-p} z^{n-p}$ be in the class $I_{p}^{*, \alpha_{j} \beta}\left(\theta_{v} \delta_{v} v\right)$. Then we have
$f_{c+p-1}(z)=c \int_{0}^{1} u^{c+p-1} f(u z) d u_{s}$
$=c \int_{0}^{1}\left[u^{c-1} z^{-p}+\sum_{n=1}^{m} a_{n-p} u^{c+n-1} z^{n-p}\right] d u$
$=z^{-p}+\sum_{n=1}^{m} \frac{c}{c+n} a_{n-p} z^{n-p_{x}}$
In view of Theorem (2.1), it is sufficient to show that
$\sum_{n=1}^{\infty=} \frac{c\left[\emptyset_{p}\left(m, n, \alpha_{x} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\mu))\right] b_{n-p}}{(c+n) p \beta(1-\mu)} a_{n-p} \leq 1$.
Since $f \in J_{p}^{*, \beta_{i} \beta}(\theta, \delta, v)$, we have
$\sum_{n=1}^{\infty} \frac{\left[\emptyset_{p}\left(m, n_{s}, \alpha_{x} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\right] b_{n-p}}{p \beta(1-v)} a_{n-p} \leq 1$.
Note that (2.12) is satisfies if
$\frac{c\left[\emptyset_{p}\left(m, n_{v} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\mu)]\right.}{(c+n) p \beta(1-\mu)} \leq \frac{\left[\emptyset_{p}\left(m, n_{s} \alpha_{s} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\right]}{p \beta(1-v)}$.
Rewriting the inequality, we have
$\frac{(n(1+\theta)(1+\delta)-p \beta(1-\mu))}{(1-\mu)} \leq \frac{(c+n)(n(1+\theta)(1+\delta)-p \beta(1-v))}{c(1-v)}$.
Solving for μ, we have
$\mu=1-\frac{c n(1-v)(1+\theta)(1+\delta)}{(c+1)(n(1+\theta)(1+\delta)-p \beta(1-v))+c p \beta(1-v)}=F(n)$.
A simple computation shows that $F(n)$ is increasing $F(n) \geq F(1)$. Using this result follows:
Theorem (2.7): Let the function f defined by (1.2) is in the class $T_{\rho}^{+\alpha, \beta}\left(\theta_{v} \delta_{v} v\right)$. Then the integral transforms
$F_{c+p-1}(z)=c \int_{0}^{1} u^{c+p-1} f(u z) d u_{s} \quad(0<u \leq 1,0<c<\infty)$
is in the class $\eta_{p}^{*, \alpha, \beta}\left(\theta_{v} \delta_{s} \frac{1+\varnothing(c+p-1)}{1+c+p}\right)$, the result is sharp for function f given by
$f(z)=\frac{1}{z^{p}}+\frac{p \beta\left(1-\frac{1+p(c+p-1)}{1+c+p}\right)}{\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)\left((1+\theta)(1+\delta)-p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)\right)} z^{1-p} \quad(p \in N, n \in N)$
Proof: By Definition of F_{c+p-1}, we get
$F_{c+p-1}(z)=c \int_{0}^{1} u^{c+p-1} f(u z) d u$
$=z^{-p}+\sum_{n=1}^{m} \frac{c}{c+n} a_{n-p} z^{n-p_{x}}$
In view of Theorem (2.1), it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{c\left[\emptyset_{p}\left(m, n, \alpha_{i} \beta\right)\left(n(1+\theta)(1+\delta)-p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)\right)\right] b_{n-p}}{(c+n) p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)} a_{n-p} \leq 1 \tag{2.15}
\end{equation*}
$$

Since $f \in J_{p}^{* \alpha \beta}\left(\theta, \delta_{v} v\right)$, we have
$\sum_{n=1}^{m=} \frac{\left[\emptyset_{p}\left(m, n, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\right] b_{n-p}}{p \beta(1-v)} a_{n-p} \leq 1$.
Note that (2.15) is satisfies if
$\frac{c\left[\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)\left(n(1+\theta)(1+\delta)-p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)\right)\right]}{(c+n) p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)} \leq \frac{\left[\emptyset_{p}\left(m, n, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))\right]}{p \beta(1-v)}$
or equivalently, when
$\mathscr{H}\left(n_{s} c_{v} \alpha_{v} \beta, p_{v} \theta_{v}, v, \delta\right)=\frac{c(1-v)\left[\left(n(1+\theta)(1+\delta)-p \beta\left(1-\frac{1+\phi(0+p-1)}{1+c+p}\right)\right)\right]}{(c+n)\left[p \beta\left(1-\frac{1+\phi(c+p-1)}{1+c+p}\right)\right](n(1+\theta)(1+\delta)-p \beta(1-v))} \leq 1$,
since $\mathscr{H}\left(n_{s} c_{v} \alpha_{v} \beta_{v} p_{v} \theta_{v} v_{v} \delta\right)$ is decreasing of $n(n \geq 1)$. Then the proof is complete.
Theorem (2.8): Let the function f defined by (1.2) be in the class $T_{p}^{*, \alpha, \beta}\left(\theta_{v} \delta_{v}, v\right)$, and
$F(z)=\frac{1}{c}\left[(c+p) f(z)+z f^{\prime}(z)\right]=z^{-p}+\sum_{n=1}^{m \infty} \frac{c+n}{c} a_{n-p} z^{n-p_{s}} c>0$
then F is in the class $\tau_{p}^{* \alpha_{i} \beta}\left(\theta_{v} \delta_{v} v\right)$ for $|z| \leq r\left(\alpha_{v} \beta_{v} \theta_{v} \delta_{v} c_{v} \varepsilon\right)$, where
$r\left(\alpha_{v} \beta_{v} \theta_{v} \delta_{v} c_{v} \varepsilon\right)=\inf \left[\frac{c(1-\varepsilon)(n(1+\theta)(1+\delta)-p \beta(1-v))}{(n+c)(1-v)(n(1+\theta)(1+\delta)-p \beta(1-\varepsilon))}\right]^{\frac{1}{n-w}}{ }_{v} n \in N$.
The result is sharp for the function given by (2.14).
Proof: Let $T=\left[z^{p} f(z)+(1+\delta) z^{p+1} f^{v}(z)\right]$. Then it is sufficient to show that
$|T-1|<|T+1-2 \varepsilon|$
A computation shows that is satisfied if
$\sum_{n=1}^{m} \frac{(n+c)\left[\emptyset_{p}\left(m, n, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\varepsilon))\right]}{c p \beta(1-\varepsilon)} a_{n-p}|z|^{n-p} \leq 1$.
Since $f \in J_{p}^{*} \varepsilon_{i}^{\beta} \beta^{\beta}\left(\theta_{v} \delta_{v} v\right)$, then by Theorem (2.1), we have
$\sum_{n=1}^{\infty} \emptyset_{p}\left(m, n_{v} \alpha_{i} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) \leq p \beta(1-v)$.
The inequality (2.17) is satisfied if
$\frac{(n+c)\left[\phi_{p}\left(m, n, \alpha_{i} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-\varepsilon))\right]}{c p \beta(1-\varepsilon)} a_{n-p}|z|^{n-p} \leq \frac{\emptyset_{p}\left(m, n_{s}, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v)) a_{n-p} b_{n-p}}{p \beta(1-v)}$
Solving for $\|z\|$, we get
$\|\left. z\right|^{n-p} \leq \frac{c(1-\varepsilon)(n(1+\theta)(1+\delta)-p \beta(1-v))}{(n+c)(1-v)(n(1+\theta)(1+\delta)-p \beta(1-\varepsilon)) b_{n-p}}$.
Therefore,
$|z| \leq\left[\frac{c(1-\varepsilon)(n(1+\theta)(1+\delta)-p \beta(1-v))}{(n+c)(1-v)(n(1+\theta)(1+\delta)-p \beta(1-\varepsilon)) b_{n-p}}\right]^{\frac{1}{n-v}}$.
Solving for $|z|$ we get the result.

Now, we obtain the inclusion properties of the class $\tau_{p}^{*, \beta_{\beta}}\left(\theta_{v} \delta_{v} v\right)$.
Theorem (2.9): Let $\theta_{v} \varphi, \delta$ belong to $(0,1], v$ belong to $[0,1)$ and $\lambda \geq 0$. Then

$$
\begin{align*}
& J_{p}^{* \alpha_{1} \beta}\left(\theta_{v} \delta_{v} v+1\right) \subseteq J_{p}^{* \alpha_{l} \beta}\left(\theta_{v} \delta_{v} v\right), \text { where } \\
& \lambda=\frac{(n(1+\theta)(1+\delta)-p \beta(2-v))(1-v)+(2-v)(p \beta(1-v)-n(1+\theta))}{n(2-v)(1+\theta)} \tag{2.18}
\end{align*}
$$

Proof: Let the function defined by (1.2) is in the class $\int_{p}^{*, \alpha_{i} \beta}\left(\theta_{v} \delta_{v} v+1\right)$. Then by using Theorem (2.1), we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\emptyset_{p}\left(m, n_{s} \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(2-v))}{p \beta(2-v)} a_{n-p} b_{n-p} \leq 1 . \tag{2.19}
\end{equation*}
$$

In order to prove that $f \in J_{p}^{* \alpha, \beta}\left(\theta_{v} \delta_{v}, v\right)$, we must have

$$
\begin{equation*}
\sum_{n=1}^{m \infty} \frac{\emptyset_{p}\left(m, n_{v}, \alpha_{v} \beta\right)(n(1+\theta)(1+\delta)-p \beta(1-v))}{p \beta(1-v)} a_{n-p} b_{n-p} \leq 1 \tag{2.20}
\end{equation*}
$$

Not that (2.20) is satisfies if

$$
\begin{equation*}
\frac{(n(1+\theta)(1+\delta)-p \beta(1-v))}{p \beta(1-v)} \leq \frac{(n(1+\theta)(1+\delta)-p \beta(2-v))}{p \beta(2-v)} . \tag{2.21}
\end{equation*}
$$

Rewriting the inequality, we have

$$
\begin{equation*}
\lambda \leq \frac{(n(1+\theta)(1+\delta)-p \beta(2-v))(1-v)+(2-v)(p \beta(1-v)-n(1+\theta))}{n(2-v)(1+\theta)} \tag{2.22}
\end{equation*}
$$

Since the right-hand side of (2.22) is an increasing function of n, thus we get (2.18).

References

[1] O. Altintas, H. Trmark and H. M. Srivastava, A family of meromorphically univalent functions with positive coefficients, Pan. Amer. Math. J. , 5(1)(1995), 75-81.
[2]M. K. Aouf and A. E. Shammarky, A certain subclass of meromorphically convex functions with negative coefficients, J. Approx. Theory and Appl. , 1(2) (2005), 123-143.
[3] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II, J. Surveys in Mathematics and its Applications, 3 (2008), 67-77.
[4] W. G. Atshan and S. R. Kulkarni, Meromorphic p-valent functions with positive coefficients defined by convolution and integral operator, IndianJournal of Acad. Math. , 29(2) (2007), 409-423.
[5] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in: Proc. Book of the International Symposium on Geometric Function Theory and Applications, Istanbul, Turkey, August 2007, 20-25.
[6] F. Ghanim and M. Darus, Some results of p-valentmeromorphic functions defined by a linear operator, Far East J. Math. Sci. , 44(2010), 155-165.
[7] F. Ghanim and M. Darus, Some properties of certain subclass of meromorphically multivalent functions defined by a linear operator, J. Math. Stat. , 6(2010), 34-41.
[8] P. He and D. Zhang, Certain subclass of mermorphically multivalent functions associated with linear operator, Applied Math. Letter, 24(2011), 1817-1822.
[9] J. L. Liu, Properties of some families of meromorphic p-valent functions, Math. Japan, 52(2000), 425-434.
[10] J. L. Liu, A linear operator and its application on p-valentmeromorphic functions, Bull. Inst. Math. Acad. Sin. , 31(2003), 23-32.
[11] J. L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric functions, Math. Comput. Modelling, 39(2004), 21-34.
[12] M. L. Mogra, Meromorphic multivalent functions with positive coefficients II, Math, Japan, 35(6) (1990), 1089-1098.
[13] A. O. Mostafa, Inclusion results for certain subclass of p-valentmeromorphic functions associated with a new operator, Journal of Inequalitiesand Applications, 169(2012), 1/14-14/14.
[14]V. P. Saxena, "A formal solution of certain new pair of dual integral equations involving Hfunctions," Proceedings of the National Academy of Science of India A, 52(A)(1982), 366-375.
[15] A. Schildm and H.Silverman, Convolution of univalent functions with negative coefficients, Ann. Uni. MariaeCunieShlodowska Sect. A, 29(1975), 109-116.
[16] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. , 23 (1997), 169-174.
[17] J. Yang and S. Li, Certain subclass of p-valentmeromorphic functions defined by linear operator, Int. Open Problem Complex Analysis, 4(2) (2010), 10-23

