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Abstract 

In this paper a new method is proposed for the solution of two-point second 
order boundary-value problems( TPBVP ) ,that is, we concerned with constructing 
polynomial solutions to two point second order boundary value problems for ordinary 
differential equation. 

A semi-analytic technique using two-point osculatory interpolation with the fit 
equal numbers of derivatives at the end points of an interval [0,1] is compared with 
conventional methods via a series of examples and is shown to be that seems to 
converge faster and more accurately than the conventional methods and generally 
superior, particularly for problems involving nonlinear equations and/or boundary 
conditions.  

Also we introduce some general observations about control of a residual and 
control of the true error and we prove, there is a more useful connection between 
scaled residual and true error.  

 
1. Introduction  
          The most general form of the problem to be considered is : 
                        y" = f(x ,y, y' ) ,   x ∈ [a , b] ,  
with boundary conditions :      y(a) = A     ,       y(b) = B                     
there is no loss in generality in taking a = 0 and b = 1, and we will sometimes employ 
this slight simplification. We view f as a generally nonlinear function of y and y', but 
for the present, we will take f = f(x) only. For such a problem to have a solution it is 
generally necessary either that f(x) ≠ 0 hold, or that A ≠ 0 at one or both ends of the 
interval. When f(x) ≡ 0, and A = 0 , B =0 the BVP is said to be homogeneous and will 
in general have only the trivial solution, y(x) ≡ 0 [1].In this paper we introduce a new 
technique for the qualitative and quantitative analysis of non homogeneous linear 
TPBVP using two-point polynomial interpolation . 
 

2. Approximation Theory 
         The primary aim of a general approximation is to represent non-arithmetic 
quantities by arithmetic quantities so that the accuracy can be ascertained to a desired 
degree. Secondly, we are also concerned with the amount of computation required to 
achieve this accuracy. A complicated function f(x) usually is approximated  by an 
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easier function of the form φ(x; a0, . . . , an) where a0, . . . , an are parameters to be 
determined so as to characterize the best approximation of f. 
           In this paper, we shall consider only the interpolatory approximation.          
From Weierstrass Approximation Theorem ,it follows that one can always find a 
polynomial that is arbitrarily close to a given function on some finite interval. This 
means that the approximation error is bounded and can be reduced by the choice of 
the adequate polynomial. Unfortunately Weierstrass Approximation Theorem is not a 
constructive one, i.e. it does not present a way how to obtain such a polynomial. i.e. 
the interpolation problem can also be formulated in another way, viz. as the answer to 
the following question: How to find a .good. representative of a function that is not 
known explicitly, but only at some points of the domain of interest .In this paper we 
use Oscillatory Interpolation since has high order with the same given points in the 
domain . 
  2.1. Osculatory Interpolation[2] 
         Given {xi}, i = 1, . . .k  and values fi

(0), . . . , fi
(ri) ,where ri are nonnegative 

integers and fi = f(xi ).We want to construct a polynomial P(x) such that                   
P(j)(xi) = fi

(j)       …………… (1),  for i = 1, . . . , k     and       j = 0, . . . , ri.  
Such a polynomial is said to be an sculatory interpolating polynomial of a function f  
Remark 

            The degree of P(x) is at most      1)1(
1

−+∑
=

k

i
ir  . 

          In this paper we use two-point oscillatory  interpolation [2]. Essentially this is a 
generalization of interpolation using Taylor polynomials and for that reason 
oscillatory interpolation is sometimes referred to as two-point Taylor interpolation. 
The idea is to approximate a function y(x) by a polynomial P(x) in which values of 
y(x) and any number of its derivatives at given points are fitted by the corresponding 
function values and derivatives of P(x).  
          In this paper we are particularly concerned with fitting function values and 
derivatives at the two end points of a finite interval, say [0,1], wherein a useful and 
succinct way of writing a osculatory interpolant P2n+1(x) of degree 2n + 1 was given 
for example by Phillips [3] as : 

P2n+1(x) = ∑
=

n

j 0

{y )( j (0) q j (x)+(-1) j  y )( j (1) q j (1-x)}………….(2) 

q j (x) = ( x j /j!)(1-x) 1+n  ∑
−

=

jn

s 0







 +
s

sn
 xs= Q j (x)/j!    ...………..(3) 

so that (2) with (3) satisfies : 

           y )(r (0) = 
)(

12

r

nP + (0)  ,   y )(r (1) = 
)(

12

r

nP + (1)  ,     r=0,1,2,…,n. 

 implying that P2n+1(x)agrees with the appropriately truncated Taylor series for y(x) 
about x = 0 and x = 1.The error on [0, 1] is given by : 

R2n+1 = y(x) - P2n+1(x) = 
)!22(

)()1()1( )22(1)1(1

+
−− ++++

n

yxx nnnn ε
      where  0 〈〈 ε  1  and  

y )22( +n   is assumed to be continuous. 
          The osculatory interpolant for P2n+1(x) may converge to y(x) in [0,1] 
irrespective of whether the intervals of convergence of the constituent series intersect 
or are disjoint .The important consideration here is whether R2n+1 → 0 as n→∞ for all 
x in [0,1]. In the application to the boundary value problems in this paper such 
convergence with n is always confirmed numerically .We observe that (2) fits an 
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equal number of derivatives at each end point but it is possible and indeed sometimes 
desirable to use polynomials which fit different numbers of derivatives at the end 
points of an interval. As an example of a two-point osculatory interpolant we may 
take n = 2 so that (2) with (3) becomes the quintic : 
P5(x)= (1-x)3(1+3x+6x2 )y(0) + x3(10-15x+6x2 )y(1) + x(1-x)3(1+3x)y'(0) -  
          x3(1-x) (4-3x) y'(1) + 1/2x2 (1-x) 3y''(0) + 1/2x3(1-x) 2 y''(1) 
    Satisfying : 
P5(0)=y(0) , P'5(0)= y'(0)  ,  P''5(0)= y''(0) . 
P5(1)=y(1) , P'5(1)= y'(1)  ,  P''5(1)= y''(1) . 
Finally we observe that (2) can be written directly in terms of the Taylor coefficients 
ai and bi about x = 0 and x = 1 respectively, as : 

         P2n+1(x) = ∑
=

n

j 0

{ a j Q j (x) + (-1) j b j Q j (1-x) }        ….  (4) 

3. Solution Of Two Point Second-Order Boundary Value Problems  
        We consider the boundary value problem 
                                       y'' + f (x ,y ,y') = 0           ………………. (5)  
                          gi ( y(0) , y(1) , y'(0), y'(1) ) = 0 ,   i = 1 , 2  ……. (6)  

where f , g1, g2 are nonlinear functions of their arguments and g1 and g2 are given in 
three kinds [4] : 
1- y(0) = a0 , y(1) = b0 …… (6a), and we say this kind Dirichlet condition (value 

specified). 
2- y'(0) = a1 ,y'(1) = b1 … .(6b) , and we say this kind Neumann condition 

(Derivative specified). 
3- c0y'(0)+c1y(0) = a , d0y'(1) + d1y(1) = b  …. (6c), where c0 ,c1 ,d0 ,d1 are all 

positive constants not all are zero but c1 , d0 are equal to zero or c0 , d1are equal 
to zero and we say this kind Mixed condition (Gradient & value) . 

        The simple idea behind the use of two-point polynomials is to replace y(x) in 
problem (5)–(6), or an alternative formulation of it, by a P2n+1 which enables any 
unknown boundary values or derivatives of y(x) to be computed . The first step 
therefore is to construct the P2n+1 . To do this we need the Taylor coefficients of y (x) 
at x = 0 :  

                y = a0+ a1x + ∑
∞

=2i

a i x
i             ….…. (7a) 

 into (5)and equate coefficients of powers of x yields the system of equations can be 
solved to obtain ai (a0 , a1)for all i ≥ 2.  Also we need the Taylor coefficients of y (x) 
at x = 1. Using MATLAB throughout we simply insert the series forms : 

                 y = b0+ b1( x-1 ) + ∑
∞

=2i

b i ( x-1 )i    ……..(7b) 

into (5) and equate coefficients of powers of (x−1). In order to obtain bi (b0, b1 ) for 
all i ≥ 2.The notation implies that the coefficients depend only on the indicated 
unknowns a0, a1, b0, b1. The algebraic manipulations is needed for this process .We 
are now in a position to construct a P2n+1(x) from (7) of the form (2) and use it as a 
replacement in the problem (5)–(6). Since we have only the four unknowns to 
compute for any n we only need to generate two equations from this procedure as two 
equations are already supplied by the boundary conditions (6). An obvious way to do 
this would be to satisfy the equation (5) itself at two selected points x = c1 , x = c2  in 
[0,1] so that the two required equations become : 
       P"2n+1(c i ) + f { P2n+1(c i ) , P

׳
2n+1(c i ), ci }= 0 ,  i=1,2.   …………..(8) 
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          An alternative approach is to recast the problem in an integral form before 
doing the replacement. Extensive computations have shown that this generally 
provides a more accurate polynomial representation for a given n. We therefore use 
this alternative formulation throughout this thesis although we should keep in mind 
that the procedure based on (8) is a viable option and shares many common features 
with the approach outlined below. Of the many ways we could provide an integral 
formulation we adopt the following. We first integrate (5) to obtain : 

         y'(x) -a1+ ∫
x

0

f( y(s), y'(s) , s) ds = 0               ………………….(9) 

and again to find : 

        y(x) -a0- x a1+ ∫
x

0

(x-s) f (y(s),y'(s), s) ds =0     ……………….(10) 

where a0 = y(0) and a1 = y' (0). Putting x = 1 in (9) and (10) then gives : 

    b1- a1+ ∫
1

0

f ( y(s), y'(s) , s ) ds = 0            ……………………….(11) 

and 

   b0- a0-a1+ ∫
1

0

(1-s) f ( y(s), y'(s) , s ) ds = 0        ………………….(12) 

where b0 = y(1) and b1 = y'(1) . 
          The precise way we make the replacement of y(x) with a P2n+1(x) in (11) and 
(12) depends on the nature of f( y ,y',x ) and will be explained in the examples which 
follow. In any event the important point to note is that once this replacement has been 
made, the equations (6), (11) and (12) constitute the four equations we require to 
determine the set {a0, b0, a1, b1}. As we shall see the fact that the number of 
unknowns is independent of the number of derivatives fitted represents perhaps the 
most important feature of the method. 
We make the following points at this stage : 
 ( i) In the majority of cases where the boundary conditions are simple enough the 
system of algebraic equations may be reduced a priori to a system in two unknowns, 
since the boundary condition can be substituted directly into the integral formulations 
(11) and (12), which MATLAB can be utilized to solve. That is, if we have the 
BC(6a), then we have only  the unknown pair {a1, b1} and is known the required 
polynomial can be constructed. For the benefit of the reader the entire procedure for 
Examples in section 4 .And if, we have the BC(6b), then we have only  the unknown 
pair {a0, b0}and is known the required polynomial can be constructed. Also if, we 
have the BC(6c), then we have only  the unknown pair {a0, b1}or {a1, b0} and is 
known the required polynomial can be constructed . 
(ii) The method offers a certain amount of flexibility. For example we could choose to 
satisfy (9) and (10) at two internal points or we could use alternative integral 
formulations. The fact remains that whatever strategy we adopt produces a quickly 
convergent sequence of values of the set {a0, a1, b0, b1} as n increases. 
(iii) Throughout we assess the accuracy of the procedure by examining the 
convergence with n. Using a symbolic computational facility such as MATLAB, 
computing the required convergent is not an issue. Where possible we can also run 
checks on our solutions using shooting with MATLAB codes. 
(iv) We compare our method with the other method. We now consider a number of 
examples designed to illustrate the convergence, accuracy, implementation and utility 
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of the method. In what follows the use of bold digits in the tables is intended to give a 
rough visual indication of the convergence. 
 
 

Remark 
1- All computations in the following examples were performed in the MATLAB 

environment, Version 7, running on a Microsoft Windows 2003 Professional 
operating system . 

2- In the following examples when analytical solutions are known so that we can 
measure the error of a solution. When analytical solutions are not known, we 
compare our results to values computed by other methods . 

 

4. Examples 
     In this section we introduce some examples illustrates suggested method :  
         Linear boundary value problems (BVPs) can be used to model several physical 
phenomena. For example, a common problem in civil engineering concerns the 
deflection of a beam of rectangular cross section subject to uniform loading, while the 
ends of the beam are supported so that they undergo no deflection. This problem is 
linear second-order TPBVP[5] .Now, we give many other examples, we first consider 
the linear problem with Dirichlet BC : 
Example 1  
               y''  -  4 ( y - x ) = 0    ,   y(0) = 0  ,    y(1) = 2          …  (13) 
has exact solution [6] : e2 (e4 - 1)-1 (e2x - e-2x) + x 
Here (11) and (12) become : 

          b1- a1  + 2 - 4∫
1

0

y(s) ds = 0                             ………..   (14) 

          8/3  - a1 - 4 ∫
1

0

(1-s) y(s) ds = 0                      ……….     (15) 

and the coefficients : a2 ,b2, a3 , b3 ,…can be found from (7a) and (7b) . 
Abinitio inclusion of the boundary conditions in (13) has reduced the number of 
unknowns to two, namely {a1, b1}, which are computed by solving (14) and (15) with 
y(s) replaced by a P2n+1(s). The results for n = 2, 3, 4 are displayed in Table 1. We can 
see that there is clear convergence with n to the ‘exact’ values which are obtained 
using MATLAB boundary value software. Table 2 gives the compare between the 
suggested method and other methods and figure 1 gives the accuracy of the method.    
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TABLE 1: The result of the methods for n = 2, 3, 4 of example1 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Appro.) (Exact)

 
Figure1:Comparison between the exact solution and semi-analytic method P9 

          
 Now we give the comparison between the solution of suggested method  
and solution of other methods in the following table : 
 

TABLE 2: A Comparison between P9 and other methods of example 1 
 
 
x 
 
 

Y 
Ф1 by using 

linear shooting 
method  

Ф2 by sing 
linear Finite-

Difference 
method 

P9 by using 
Oscillatory 

interpolation 
|Y-P9| 

0.25 0.393676692 0.3936767 0.39367669 0.3936767011 0.0000000092 

0.5 0.824027137 0.8240271 0.82402714 0.8240272117 0.0000000748 

0.75 1.337086134 1.337086 1.33708613 1.3370861455 0.0000000116 

 

   P5 P7 P9   

a1   1.5511387164 1.5514458006 1.5514410832   

b1   3.0749482402 3.0746246085 3.0746294890   

X Y:exact P5 P7 P9       |Y-P9| 

0.25 0.3936766919 0.3937912461 0.3936753464 0.3936767011 0.000000009170200 

0.5 0.8240271368 0.8244047619 0.8240204194 0.8240272117 0.000000074822647 

0.75 1.3370861339 1.3372355396 1.3370844322 1.3370861455 0.000000011556981 

S.S.E =  5.81608482230229E-15 
 

 

 

          Then from table 1 and the relation (2)and (3) in the previous section we have : 
                    P5 = .121739 x5 - .662526e-1 x4 + .393375 x3 + 1.55114 x 

         P7 = .114177e-1 x7 - .905686 e-2 x6 + .804532 e-1 x5 - .189035 e-2 x4 +.367631 x3 +1.55145 x  
             P9 = .628069e-3 x9 - .652397e-3 x8 + .774834 e-2 x7 - .403156 e-3 x6 + 0.0736107 x5 +  
          0.367627 x3 + 1.55144 x   
  

i
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Now, we give the nonlinear problem with Neumann boundary conditions : 
 
Example 2 
             y'' = y3 – y  y'     with     BC :  y'(0) = -1  ,  y'(1) = -1/4  
have the exact solution [ 6 ] :  y(x) = 1 / (x + 1) 
The result of method given in the following table  : 

 
 

 

Table 3 : The result of the methods for n = 2, 3, 4 of example 2 

   P5 P7 P9   

a0   -2.0730192434 -1.9094622257 1.0084460394 
  

b0   2.2375726588 2.0790662118 0.5109116568   
x Y P5 P7 P9 | Y-P9 | 

0.25 0.8000000000 0.7788980098 0.7715765789 0.7715767601 0.028423239916215 

0.5 0.6666666667 0.6509123549 0.6567887010 0.6618496652 0.004817001507875 

0.75 0.5714285714 0.6070021412 0.6088950935 0.6025318078 0.031103236348971 

S.S.E  =  0.00179849538224153  

   Then from table 3 and the relation (2) and (3) in the previous section  we have : 
P9 = 21.1466 x9 - 95.0579 x8 + 163.2064 x7- 127.9210 x6 + 39.2950 x5 -1/6 x3 – x +  
1.0084  
    The accuracy of the solution given in the following figure : 

0.510912

0.560912

0.610912

0.660912

0.710912

0.760912

0.810912

0.860912

0.910912

0.960912

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(Appro.) (Exact)

 
Figure2: A comparison between exact and approximate solution of example 2 

 
5.  Error Estimation And Control 
          In this section we begin with some general observation about control of a 
residual and control of the true error and we prove that if the scaled  residual is less 
than a given tolerance , then the true error is also less than the tolerance. And if the 
B.V.P is well - conditioned , a small residual implies a small true error , but this need 
not be true if the B.V.P is ill-conditioned [7].  A practical distinction is that the 
method we consider approximate r(x) (residual) to a lower order than e(x) (true error) 
.Furthermore ,the solution y(x) is the natural weight when controlling a norm of e(x) 
and y'(x) is the natural weight when controlling a norm of r(x) . 
We describe a new B.V.P solver that controls a residual and the true error .We 
consider method suggested in this thesis that approximate    the    solution    of    y(x) 
of (5)  -  (6) on a mesh: 0 = x0< x1  < ……..< xN+1 = 1 by a function P(x) that is 
smooth on subinterval [xi , xi+1].The mesh spacing hi = xi+1 - xi and convergence is the 
considered as :    h  =  maxi hi   tented to zero. We assume that the true error e(x) = 
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P(x) - y(x) and a natural measure of error is the residual in the differential equations 
[8]  :  r(x)  =  P''(x) - f( x, P(x), P'(x) )    ……….(16)                         
This can be interpolated as saying that P(x) is the exact solution of the problem(5)- (6) 
with is data f(x, y, y') and g( y(a),y(b) ) perturbed by residual , e,g,          
                                    P''(x) = ( x ,P(x) , P'(x) ) +  r(x)   
 5.1. Residual  
          In this subsection we introduce some details about how controls the size of the 
residual . The residual is scaled so that it has same order of convergence as the true 
error [9]. Residual control  has important virtues : residual are well-defined no matter 
how bad the approximate solution , and residuals can be evaluated any where simple 
by evaluating :       f( x , P(x), P'(x)) or g(P(0) , P(1) ).   
       Now the approximate solution P(x) is smooth on subintervals [xi , xi+1] , so the 
size of the residual on the subinterval is measured by using a weighted norm │r(x)│at 
each x and defining || r(x) ||i  = 

1+≤≤ ii xxx
Max │r(x) │.For a give tolerance  є  , the aims to 

produce solution for which      maxi   || r(x) ||    ≤ є . 
          In this constructs a mesh that approximately equidistributes  the residual. It 
might seem that controlling the scaled residual , hi || r(x) ||i , is obviously less 
demanding than controlling the residual , || r(x) ||i , because of the small factor  hi , but 
this neglects the role of the norm. Now , subtracting (5) from (16) lead to :                                                
         r(x) = P''(x) - y''(x) - [ f( x ,P(x) , P'(x) ) – f( x, y(x),y'(x) ) ]          ………(17) 
With the usual assumption that f satisfies a Lipschitz  condition : 
 
            │  f(x , P(x), P'(x)) - f(x ,y(x), y'(x)) │ ≤ L │P(x) - y(x) │    
We assume that e(x) = P(x) – y(x)  is O( hn+1) and  P'(x) – y'(x) is O( hn) , so     P''(x) – 
y''(x)     is   O(hn-1)   ,   hence the last term in (17)  is O(hn+1) , so to leading order the 
residual is equal to the error in the 2nd derivative .This implies that the scaled residual 
is O(hn+1) , the same as the true error. Now , if the residuals are uniformly small, P(x) 
is a good solution in the sense that it is the exact solution of a problem close to the  
one supplied to the solver. Further , for reasonable well-condition problem , small 
residuals imply that P(x) is close to y(x) , even when h is not small enough [10] that 
the (n+1) order convergence is evident .                                            
         We prove now ,the there is a more useful connection between scaled residua and 
true error. To investigate the relationship between scaled residual and true error ,we 
begin by integrating(17)over a subinterval of [xi , x] ,where xi < x ≤ xi+1                           

     ∫
x

xi
r(x) dx = e'(x) – e'(xi) - ∫

x

xi
[ f(x ,P(x), P'(x) ) – f( x, y(x),y'(x) ]dx    

               where :      e' =  P' –  y' 
Again integrate over [ xi , β ], where  β ∈ ( xi , xi+1], we get : 

∫
B

xi
(x-s)r(s)ds = e(β) – e(xi) – e'(xi)(β–xi) - ∫

B

xi
(x-s)[ f( s,P(s),P'(s) )– f( s, y(s),y'(s) ) 

]d                                                                                                …………….…(18)   
        
   Suppose now that the method of order n is super convergent at mesh point , 
meaning that if the method is of order n , a norm of the error at mesh points is at least 
O(hn+1) [9] , so that e(xi) is O( hn+1) and  e'(xi) = P'(xi) - y'(xi)    is O( hn) and  │e(β) 
│= || e(x) ||i.  As argued earlier , the integrand on the right hand side of  (18) is O(hn+1) 
and the interval is of length no bigger than hi , so 

                            ∫
B

xi
|| (x-s) r(s) ds || = || e(x) ||i. + O( hn+1)                         
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Then we have the inequality  :      ∫
B

xi
 ||  (x-s) r(s) ds ||  ≤  hi   || r(s) ||i.  

         Then the size of the scaled residual is an upper bound on the size of the true 
error. Now , if we require that maxi hi ||r(s) ||i.  ≤ є , for a tolerance  Є , then we have 
maxi  ||e(x) ||i. ≤ є , this is a strong argument for controlling the size of the residual .    
                                                                                                              
5.2 . Error Estimates  
            The error on [0,1] is given by : 

                      en = Pn(x) – y(x)=
)!12(

)()1()1( )22(1)1(1

+
−− ++++

n

yxx nnnn ξ
                 

where  0 ‹ ζ‹ 1  and  y )22( +n  is assumed to be continuous .The Osculator interpolant for 
Pn(x) may converge to y(x) in [0 , 1]  irrespective of whether the intervals of 
convergence of the constituent series intersect  or are disjoint. The important 
consideration her is whether en → 0 as n→∞ for all x in [0 , 1].In the application to 
the BVṔs in this thesis such convergence with n is always confirmed numerically . 
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