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Abstract

In this papera new method is proposed for the solution of tweypsecond
order boundary-value problems( TPBVP ) ,thatws, concerned with constructing
polynomial solutions to two point second order baany value problems for ordinary
differential equation.

A semi-analytic technique using two-point osculgtioterpolation withthe fit
equal numbers of derivatives at the end pointsnoihterval [0,1]is compared with
conventional methods via a series of examples anshown to behat seems to
converge faster and more accurately than dbeventional methods and generally
superior, particularly for problems involving namar equations and/or boundary
conditions.

Also we introduce some general observations abontral of a residual and
control of the true error and we prove, there ii@e useful connection between
scaled residual and true error.

1. Introduction

The most general form of the problemeccbnsidered is :

y'=fx.y.y), «[a,b],

with boundary conditions: y(@)=A , y(b)=B
there is no loss in generality in taking a = 0 B 1, and we will sometimes employ
this slight simplification. We view f as a geneyationlinear function of y and y', but
for the present, we will take f = f(x) only. Forckua problem to have a solution it is
generally necessary either that f¢&0 hold, or that A# O at one or both ends of the
interval. When f(x)= 0, and A = 0, B =0 the BVP is said to be homogeseand will
in general have only the trivial solution, y&)0 [1].In this paper we introduce a new
technique for the qualitative and quantitative gsial of non homogeneous linear
TPBVP using two-point polynomial interpolation .

2. Approximation Theory

The primary aim of a general approximaisto represent non-arithmetic
quantities by arithmetic quantities so that theuaacy can be ascertained to a desired
degree. Secondly, we are also concerned with tleaanof computation required to
achieve this accuracy. A complicated function f{gually is approximated by an
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easier function of the form(x; &, . . . , @ where g, . . . , @ are parameters to be
determined so as to characterize the best appragimef f.

In this paper, we shall consider onle tinterpolatory approximation.
From Weierstrass Approximation Theorem it follotst one can always find a
polynomial that is arbitrarily close to a given @tion on some finite interval. This
means that the approximation error is bounded amdbe reduced by the choice of
the adequate polynomial. Unfortunately Weierstrgggroximation Theorem is not a
constructive one, i.e. it does not present a way twobtain such a polynomial. i.e.
the interpolation problem can also be formulatednother way, viz. as the answer to
the following question: How to find a .good. reestive of a function that is not
known explicitly, but only at some points of thendin of interest .In this paper we
use Oscillatory Interpolation since has high ordé&h the same given points in the
domain .

2.1. Osculatory Interpolation[2]

Given {}, i = 1, . . .k and values?®, . . ., 7 \where r are nonnegative
integers and ;f= f(x, ).We want to construct a polynomial P(x) such that
PO =69 (), fori=1,...,k and =00,...,r

Such a polynomial is said to be an sculatory irdkiing polynomial of a function f
Remark

[
The degree of P(x) is at mostZ(ri +1)-1.
i=1

In this paper we use two-point oscillatoryeiipolation [2]. Essentially this is a
generalization of interpolation using Taylor polynaisi and for that reason
oscillatory interpolation is sometimes referred to as-pemt Taylor interpolation.
The idea is to approximate a function y(x) by a polyndém{x) in which values of
y(x) and any number of its derivatives at given pointsfigiel by the corresponding
function values and derivatives of P(x).

In this paper we are particularly concerned witimd function values and
derivatives at the two end points of a finite intervaly §,1], wherein a useful and
succinct way of writing a osculatory interpolant,/Ax) of degree 2n + 1 was given
for example by Phillips [3] as :

Pon+a(X) = i {y (0) q; ()+(-1)" yP (@) q; (-9} ()
q, (9 = (X (a-x) ™ ZJ: [Z’LSJ X= QO e @3)

so that (2) with (3) satisfies :

() ()
Yr) (O) = F)2n+1 (O) ' )/r) (1) = F)2n+1 (1) ’ r:01l121""n-
implying that Bn:i(X)agrees with the appropriately truncated Taylor series/(fo
about x =0 and x = 1.The error on [0, 1] is given by

3 3 (_1) n+l X(n+l) (1_ X) n+ly(2n+2) (E)
R2n+1 y(X) I:ﬁn+l(x) (2n + 2)'
y @2 is assumed to be continuous.

The osculatory interpolant for,,R(X) may converge to y(x) in [0,1]
irrespective of whether the intervals of convergence ettnstituent series intersect
or are disjoint .The important consideration here is wdrei,.; — 0 as r»oo for all
x in [0,1]. In the application to the boundary valuelgems in this paper such
convergence with n is always confirmed numerically .Wserve that (2) fits an

where 0(¢ ( 1 and
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equal number of derivatives at each end pointtistpossible and indeed sometimes
desirable to use polynomials which fit differentnmoers of derivatives at the end
points of an interval. As an example of a two-paistulatory interpolant we may
take n = 2 so that (2) with (3) becomes the quintic
Ps(X)= (1-x)%(1+3x+6x°)y(0) + x*(10-15x+6X )y(1) + X(1-x)*(1+3x)y'(0) -
X (1-X) (4-3x) y'(1) + 1/2% (1-x)°y"(0) + 1/2x*(1-x)*y"(1)

Satisfying :
P5(0)=y(0) , P5(0)=y'(0) . P5(0)=y"(0) .
Ps(1)=y(1) , B(1)=y(1) , Ps1)=y"(1).
Finally we observe that (2) can be written dire@tiferms of the Taylor coefficients
a and habout x = 0 and x = 1 respectively, as :

n

P2n+l(X):Z {anj(X)'l'('l)ijQj(l'X)} e (4)
j=0
3. Solution Of Two Point Second-Order Boundary Vale Problems
We consider the boundary value problem
y'+fxy)=0 (5)
dy0),y1).y(0).y(1))=0, i=1,2 ...(6)
where f, g, @ are nonlinear functions of their arguments ap@myd g are given in
three kinds [4] :
1- yO=a,y1)=h...... (6a), and we say this kind Dirichlet conditioralive
specified).
2- y(©0) =a ,y@) =h ... .(6b) , and we say this kind Neumann condition

(Derivative specified).

3- oy(0)+ay(0) = a, dy'(1) + dy(l) = b .... (6C), whereqc,c, ,dy ,d; are all
positive constants not all are zero but d, are equal to zero op cdhare equal

to zero and we say this kind Mixed condition (Geadi& value) .

The simple idea behind the use of two-ppiotynomials is to replace y(x) in
problem (5)—(6), or an alternative formulation @6f by a Bn.1 which enables any
unknown boundary values or derivatives of y(x) ® domputed . The first step
therefore is to construct thef, . To do this we need the Taylor coefficients ¢kl
atx=0:

y:§‘+31X+i ax' (7a)
i=2

into (5)and equate coefficients of powers of X¥dgethe system of equations can be
solved to obtain;ga, a)for all i> 2. Also we need the Taylor coefficients of y (x)
at x = 1. Using MATLAB throughout we simply ins¢ie series forms :

y=hrb(x1)+Y b (x1) ... (7b)

into (5) and equate coefficients of powers of (x-f)order to obtain by, by ) for
all i > 2.The notation implies that the coefficients dep@mly on the indicated
unknowns g &, o, bi. The algebraic manipulations is needed for thcess .We
are now in a position to construct g.fx) from (7) of the form (2) and use it as a
replacement in the problem (5)—(6). Since we hawub/ @he four unknowns to
compute for any n we only need to generate two tpsafrom this procedure as two
equations are already supplied by the boundaryitions (6). An obvious way to do
this would be to satisfy the equation (5) itselfvad selected points x 3 ¢X = G in
[0,1] so that the two required equations become :

P'én+1(Ci) + f{ P2n+1(Ci) ) p2n+1(Ci ), C }: 0, i=1,2. ..ooonenn.. (8)
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An alternative approach is to recast pneblem in an integral form before
doing the replacement. Extensive computations hstvewn that this generally
provides a more accurate polynomial representdtiora given n. We therefore use
this alternative formulation throughout this thealhough we should keep in mind
that the procedure based on (8) is a viable omtimh shares many common features
with the approach outlined below. Of the many weags could provide an integral
formulation we adopt the following. We first intedge (5) to obtain :

X

y(x) -g+ j f(y(s), y(s),s)ds=0 ... (9)
and again to finod ;
y(x) -a-xa+ JX' (x-s) T (¥(s),y(S),S)ds =0 ....ccervirininnnns (20)
where g = y(0) and ;: y' (0). Putting x = 1 in (9) and (10) then gives
b,-a+ Jl' F(Y(S), Y(S),s)ds=0 ., (11)
and O
b,- a,-a,+ Jl' (A-s)f(y(s), ¥(S),s)ds=0 .o, (12)

0

where I = y(1) and b= y'(1) .

The precise way we make the replacemeg(>) with a Bn.1(x) in (11) and
(12) depends on the nature of f( y ,y',x ) and wédlexplained in the examples which
follow. In any event the important point to notehat once this replacement has been
made, the equations (6), (11) and (12) constithée four equations we require to
determine the set §a b, &, b;}. As we shall see the fact that the number of
unknowns is independent of the number of derivatifited represents perhaps the
most important feature of the method.
We make the following points at this stage :
(1) In the majority of cases where the boundawpditions are simple enough the
system of algebraic equations may be reduced a poi@ system in two unknowns,
since the boundary condition can be substituteecty into the integral formulations
(11) and (12), which MATLAB can be utilized to selvThat is, if we have the
BC(6a), then we have only the unknown pait, fa} and is known the required
polynomial can be constructed. For the benefithef ireader the entire procedure for
Examples in section 4 .And if, we have the BC(6b&n we have only the unknown
pair {a, bo}and is known the required polynomial can be cardtd. Also if, we
have the BC(6c), then we have only the unknowm f{ai bi}or {ai, b} and is
known the required polynomial can be constructed .
(i) The method offers a certain amount of flexilyil For example we could choose to
satisfy (9) and (10) at two internal points or weuld use alternative integral
formulations. The fact remains that whatever sgatee adopt produces a quickly
convergent sequence of values of the sgtdaby, b;} as n increases.
(i) Throughout we assess the accuracy of the quaore by examining the
convergence with n. Using a symbolic computatiofaaility such as MATLAB,
computing the required convergent is not an is$leere possible we can also run
checks on our solutions using shooting with MATLA®&des.
(iv) We compare our method with the other methoe& Méw consider a number of
examples designed to illustrate the convergenairacy, implementation and utility
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of the method. In what follows the use of bold @ign the tables is intended to give a
rough visual indication of the convergence.

Remark

1- All computations in the following examples weperformed in the MATLAB
environment, Version 7, running on a Microsoft Womés 2003 Professional
operating system .

2- In the following examples when analytical sada8 are known so that we can
measure the error of a solution. When analyticiditems are not known, we
compare our results to values computed by othehoast.

4. Examples
In this section we introduce some examplestithtes suggested method :

Linear boundary value problems (BVPs) barused to model several physical
phenomena. For example, a common problem in cmjireering concerns the
deflection of a beam of rectangular cross sectignest to uniform loading, while the
ends of the beam are supported so that they undergteflection. This problem is
linear second-order TPBVP[5] .Now, we give manyeotexamples, we first consider
the linear problem with Dirichlet BC :

Example 1

y'-4(y-x)=0 , y©®)0 , y1)=2 - (13)
has exact solution [6] 2¢e’ - 1) (6* - %) + x
Here (11) and (12) become :

b-a +2-4i ys)ds=0 (14)
8/3 -a-4 Jl' (2-s)y(s)ds=0 ... (15)

and the coefficients »aby,, & , bs,...can be found from (7a) and (7b) .

Abinitio inclusion of the boundary conditions in3)Lhas reduced the number of
unknowns to two, namely {ab;}, which are computed by solving (14) and (15) with
y(s) replaced by aJR:1(s). The results for n = 2, 3, 4 are displayedabl& 1. We can
see that there is clear convergence with n to ¢act’ values which are obtained
using MATLAB boundary value software. Table 2 giwee compare between the
suggested method and other methods and figuree$ gie accuracy of the method.
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TABLE 1: The result of the methods for n = 2, 3, 4f examplel

P5 P7 P9

al 1.5511387164 1.5514458006 1.551441083p

bl 3.0749482402 3.0746246085 3.074629489p

X Y:exact P5 P7 P9 |Y-P9|
0.25 0.3936766919 0.3937912461 0.3936753444 0.89841 0.00000000917020d
0.5 0.8240271368 0.8244047619 0.8240204194 0.824077 0.000000074822644
0.75 1.3370861339 1.337235539¢ 1.3370844342 1.83485 0.000000011556981

S.S.E = 5.8160848223022-1%

Then from table 1 and the relation (2)&3)din the previous section we have :
P=.121739 X- .662526€ X" + .393375 X+ 1.55114 x

P=.114177¢ x’ - .905686 & x° + .804532 & x° - .189035 & x* +.367631 £+1.55145 X

RB=.628069€ x° - .652397& x® + .774834 é X’ - .403156 € x® + 0.0736107 X+
0.3676273%+ 1.55144 x
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Figurel:Comparison between the exact solution ancesii-analytic method R

Now we give the comparison between the solutiosugigested method
and solution of other methods in the following &bl

TABLE 2: A Comparison between R and other methods of example 1

- @, by sin .
X @, by using Iinezar)llzinitg- P9 by using
Y linear shooting Difference Oscillatory |Y-P9|
method method interpolation
0.25 | 0.393676692 0.3936767 0.3936764 0.3936767041 0.0000000092
0.5 0.824027137 0.8240271 0.8240271 0.8240272137  .0000000748
0.7¢ | 1.33708613 1.33708! 1.3370861 1.337086145 0.000000011
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Now, we give the nonlinear problem with Neumannrimtary conditions :

Example 2

y'=y—yy with BC: y@0)=-1, y(l)Z/4
have the exact solution[6]: y(X) =1/(x + 1)
The result of method given in the following talle

Table 3 : The result of the methods for n = 2, 3, df example 2

P5 P7 P9
a0 -2.0730192434 -1.909462225] 1.0084460394
b0 2.2375726588 2.07906621194 0.5109116548
X Y P5 P7 PC | Y-P9

0.25 0.8000000000 0.778898009¢ 0.77157657B9 0.B7801 0.028423239916215

0.5 0.6666666667 0.6509123544 0.65678870}.0 0.6686529 | 0.004817001507875
0.75 0.5714285714 0.6070021411% 0.60889509B5 0.46258 0.031103236348971

S.S.E = 0.00179849538224153
Then from table 3 and the relation (2) and {3the previous section we have :
Po=21.1466 X- 95.0579 X + 163.2064 % 127.9210 &+ 39.2950 X-1/6 ¥ — x +

1.0084
The accuracy of the solution given in the failog figure :

‘ - (Appro.) —— (Exact)

0.960912 -

0.910912

0.860912

0.810912

0.760912

0.710912

0.660912 -

0.610912 o

0.560912

0.510912
o 0.1 0.2 0.3 o.a o.5 o.e 0.7 o.8 o.9 1

Figure2: A comparison between exact and approximatsolution of example 2

5. Error Estimation And Control

In this section we begin with some gehetaservation about control of a
residual and control of the true error and we prtha if the scaled residual is less
than a given tolerance , then the true error is lEss than the tolerance. And if the
B.V.P is well - conditioned , a small residual imegla small true error , but this need
not be true if the B.V.P is ill-conditioned’][ A practical distinction is that the
method we consider approximate r(x) (residual) toveer order than e(x) (true error)
.Furthermore ,the solution y(x) is the natural vaeigghen controlling a norm of e(x)
and y'(x) is the natural weight when controllingam of r(x) .
We describe a new B.V.P solver that controls adtei and the true error .We
consider method suggested in this thesis that appabe the solution of y(x)
of (5) - (6) on a mesh: 0 X x1 < ........ < %1 = 1 by a function P(x) that is
smooth on subinterval [x %+1]. The mesh spacing k& %.1 - X; and convergence is the
considered as: h = mdx tented to zero. We assume that the true ersgr=e(
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P(x) - y(x) and a natural measure of error is #mdual in the differential equations
[8 : rx) = P'"(X)-f(x, P(xX), P'(X)) eernvnn. (36

This can be interpolated as saying that P(x) ise##et solution of the problem(5)- (6)
with is data f(x, y, y) and g( y(a),y(b) ) pertedbby residual , e,qg,

P"(x) = (O, P'(X) ) + r(x)
5.1. Residual

In this subsection we introduce someitdetdoout how controls the size of the
residual . The residual is scaled so that it hasesarder of convergence as the true
error [B]. Residual control has important virtues : residare well-defined no matter
how bad the approximate solution , and residuaisbeaevaluated any where simple
by evaluating : f( x, P(x), P'(x)) or g(P(Op(1) ).

Now the approximate solution P(x) is smoothsubintervals [x X.1] , so the
size of the residual on the subinterval is measbsedsing a weighted norrhr(x) | at
each x and defining || r(x) |F Max |r(x) |.For a give tolerance: , the aims to

X SXSX4q

produce solution for which ~ ma}| r(x) || <e.

In this constructs a mesh that approetgagquidistributes the residual. It
might seem that controlling the scaled residual || In(x) || , is obviously less
demanding than controlling the residual , || fi(x)decause of the small factor but
this neglects the role of the norm. Now , subtract{b) from (16) lead to :

rx) = P"() - y'(¥) - [f(x,PX), &) - f(x, y).y ()] e a7)

With the usual assumption that f satisfies a Lifggcleondition :

| 1(x, P(), P'09) - F0< 09, YOOI <L [ P() - y(x) |

We assume that e(x) = P(x) — y(x) is O(hand P'(x) — y'(x) is O(", so  P"(x) —
y'(x) is O(?Y , hence the lastterm in (17) is O, so to leading order the
residual is equal to the error in the Berivative .This implies that the scaled residual
is O(H™) , the same as the true error. Now , if the resliglare uniformly small, P(x)
is a good solution in the sense that it is the egatution of a problem close to the
one supplied to the solver. Further , for reasaatrll-condition problem , small
residuals imply that P(x) is close to y(x) , evehew h is not small enough(]] that
the (n+1) order convergence is evident .

We prove now ,the there is a more usefahection between scaled residua and
true error. To investigate the relationship betwsealed residual and true error ,we
begin by integrating(17)over a subinterval of, [x] ,where X< X< Xi+1

[ o dx=e0-e@- [ [P, P())~ (% y09.y(4) lox
where: e'=P -y
Again integrate over [ix B ], where p U ( X, %+1], we get :
[, (s)ris)ds = ) — e(x) - €BX) - [ (=9 {(,PE)P(S) - (s, YS)Y(S))
a j18

Suppose now that the method of order n is swopewergent at mesh point ,
meaning that if the method is of order n, a nofrthe error at mesh points is at least
O(H™) [9], so that e is O( H™) and e'(® = P'(x) - y(x) is O(K) and |e&()
|: || €x) ||. As argued earlier , the integrand on the righichside of (18) is O[H)
and the interval is of length no bigger thando

[* 11 6es) r(s) ds |1 = | e(x) # OC K™Y
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Then we have the inequality : J'j [| (x-s)r(s)ds|g h |lr(s)il

Then the size of the scaled residual isijgper bound on the size of the true
error. Now , if we require that max||r(s) || < e, for a tolerance€ , then we have
max |le(x) || < e, this is a strong argument for controlling theesof the residual .

5.2 . Error Estimates

The error on [0,1] is given by :
(_1) n+l X(n+l) (1_ X) n+l y(2n+2) (E)

(2n+1)!

where 0 ¢ 1 and y"™? is assumed to be continuous .The Osculator interpfdan
P.(X) may converge to y(x) in [0 , 1] irrespectivé whether the intervals of
convergence of the constituent series intersect arer disjoint. The important
consideration her is whethef > 0 as r» for all x in [0 , 1].In the application to
the BVPs in this thesis such convergence with n is alveaydirmed numerically .

€= Pa(X) — Y(X)=
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