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Abstract 

           In this paper, We develop a functional analytical framework for a linear 

peridynamic model of a spring system in any space and  one  dimension,Various 

properties of the peridynamic operators are examined for general 

micromodulus,one this properties of  peridynamic operator is self-adjont. 
  

Keyword: self-adjoin , peridynamic ,mathematical analysis . 

 

 

1-Introduction 

 

          The peridynamic theory is alternative based on integral[1],rather differential equation 

the purpose of peridynamic theory is provide amore generalizes or other framework than the 

classical theory for problems involving discontinuities or other singularities in the 

deformation the integral equation express nonlocal force model that describes long-rang 

material interaction the convergence peridynamic model to classical elasticity theory by the 

limit small the horzin, i.e δ 0  [2]. Such properties make Peridynamic theory  a powerful 

tool for modeling problems involving cracks, interfaces or defects, we refer to [3] for a 

review of the recent applications of the PD framework.. The relation between general linear 

peridynamic model and the classical Navier equation[4]. It is explained in [8] how the 

general state-based PD material model converges to the continuum elasticity model as the 
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ratio of the PD horizon to effective length scale decreases, assuming that the underlying 

deformation is sufficiently smooth. 

In this paper , By mathematical analysis we discuss the some propertics of perdynamic 

model. The properties of the models depend crucially on the particular micromodulus 

functions used to specify the spring systems. we discussed the self –adjont of perdynamic 

operator.since the operator is on to and one-to-one we led to  the  perdynamic operator is  

isomatry.by mathematical  analysis method which  indication the model is elasticity if the 

operator is self-adjoin .   

 

 

2-The predynamic model : 
 

          The peridynamic is the second-order in time partial integro-differential equation 

[ 5],[9],[6],[7]:  

  

)1.....(..........),(`))`,(),,(`,,( 



R

txbdxtxutxuxxfu

 
 

 where ρ denotes the mass density , u the displacement field of the body , f  the pairwise force 

function that describes the internal forces, and b an in homogeneity that collects all external 

forces per unit volume. By t >0, the time under consideration is denoted. and Rº denote the 

open ball of radius δ where δ>0 is the so-called peridynamic horizon of interaction such that : 
  

}`:{  xxxR 
 

is sub rigan of R(Real number)   Where 

The assumption of no explicit time dependence, and Newton’s third law (For every action, 

there is an equal and opposite reaction )lead to : 

 

   uuxxfuuxxf  `,``,`,,  

 

 with 
 

)3........(``,,),`,,(),`,( uuxxxxfxxf    
 

It is typical for the peridynamic model to require 

 

)4........(`,0)`,,(   xxifxxf
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A first-order approximation justifies for small relative displacements 

)5.........(`).,(`),()`,,( 0  xxCxxfxxf 
 

 

with the stiffness tensor (or micromodulus function) C =C(x, x`) and 

  

denoting forces in the reference configuration 0f
without loss of generality, we may 

assume
00 f

since otherwise 0f
can be incorporated into the right-hand side b In general, the 

stiffness tensor C is neither definite nor depending on only. 
xx ̀

 the length However, C has 

to be symmetric with respect to its arguments as well as with respect to its tensor structure 

such that 

 

  

   

    )7.........(`,`,

)6....(..........`,`,

xxCxxC

xxCxxC

T




  
   xxifxxC `0`,

 view of (4) 

 

The stiffness tensor can be shown to read as: 

 

    )8(..........``)`(`),( xxxxxxxxC    

 

For the special case of proportional materials the equation (8)take the form[10]  : 

 

 
3

`
`,

xx

c
xxC


  

 

The linear peridynamic equation of motion (1) now reads as 

 

   
)9....(`.........),()`,(

`

``
3

dxtxutxu
xx

xxxx
cu

R





 




  

 

In this paper we discuss  case steady –state ,one dimensional and homogenous and linear 

model ,along with `` boundary`` condition, the equation (9) reduces to: 

 

)10(..........),(`
`

),()`,(1
2  









R

txbdx
xx

txutxu
u


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Where )11`......(
`

),()`,(1
2

dx
xx

txutxu
L

R

 





  
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We called   
xx

1
)xx(


  is kernel function of the peridynamic integral operator which 

also determines the micromodulus function. 

 

3-Mathematical analysis for the peridynamic model 

 

To set up a suitable functional setting to discuss  convergence properties of peridynamic 

model equations, we first make some definition  on the kernel function,[1 ]: 

,,dk  = drrr dk

d





0

1

, )(  ,for all  nkxxr 2,.......6,4,2,`  ………(12) 

  .
0

,1,1, drrr k

k 


 

 (in one dimensional) 

L )(
!

2
)( ,1, xu

k
xu k

k

k

k

 , nk 2,.....,6,4,2 …………(13)  

2

111 2

0

2,1,2   drr
r








 

24

0

2,4
4

111






   drr
r

  

  

  

If we assume that u(x)  is sufficiently smooth ,By performing the Taylor extension, 

we can introduce an equivalent definition of  peridynamic operator[1] ,the equation (12) take 

the form: 

)14.......(`
)(

!

2

)( ,1, 
k

k

k

kk xu
kxuLL 




, nk 2,......6,4,2  

It follows 0)( xuLk

 ,     k odd , since then the integrand is an odd function in 

xx ̀ 

 

The Eq(`14) becume: 

= .........)x````(u
48

1
)x``(u

2

1 2   , k =2,4,6,…… n2 (15) 

we denote  L  be form:  

– Lδ= )16.......().........(* xu
k

    
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where   drrr k

k 




 



0

2

2
 

and k
k

k

xu
xu 

!

)(
)(*  , and )(xu k  is derivative of order k where nk 2,...6,4,2   

 

the φδ a real-valued and symmetric positive  vector which we can use to determine the 

right-hand side  of (15) for  

polynomial exact solutions )(xu  

 

Definition (3.1): 

The space )(s dependent on the carnal function, consists of all the functions )()( 2 Lxu  

such that  

                               

 

Norm )(s for which the )(s  

.2,....6,4,2,})(*)1).((*{ 2/1 nkdxxuxuu
k

S
  






 

We also define the corresponding inner product associated with the )(s  

 Norm: 

  2/1})(*)1).((*{, dxxuxvvu
k

S 


               vu, )(s  

 

 we use )(
s  to denote the dual space of )(s and 1  is vector. 

 

Remark (3.2): 

The norm is well defined since 1  is real-valued symmetric positive definite vector and it 

is uniformly bounded below by1. 

 

Lemma (3.3): 

The space )(s  is Hilbert space corresponding to the inner product (.,.)
)(2 RS
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Proof: 

Let { nu } be coushy sequence in )(s , By definition, it is equivalent to say 

 )}()1{( *2/1 xun  

 is coushy sequence in )(2 L  

So by the completeness of , there exists an element )(2 Lv , such 

that 

 
k

║ )()(*)1( xvxu   ║L²→o  ,  as n→∞, ,....6,4,2k n2,  

There exist )()1()(* 2/1 xvxu    

Such that  


k

║(1+ 2/1) )(* xun -(1+  ) 2/1 )(* xu ║ 2L
→0    when n→∞, ,...6,4,2k n2,  


k

))()(*()1( 2/1 xuxun    →0    when n→∞, ,...6,4,2k , n2  

space is complete, and it is thus a Hilbert space )(S then  the 

Lemma (3.4):  

The peridynamic operator L is self-adjont operator on )(S . 1 L  isomatry from 

)()(  
 toSS .   

Proof: 

By relation  

Since L is symmetric then 

   vLuvuL   ,,     ,for all )(,  Svu  

To prove  vuL , is seif- adjont 

Let  vuL ,  is real  

for all )(,  Svu   

0)),((

0),(),(

),(),(

),(,









vuLvLu

uLvvLu

uLvvLu

uLvLvu
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LvLu

LvLu



 0)(
 

then L  is self-adjont operator on )(S  

to prove 1 L  isometry from )(S to )(

S   

to prove - 1L is one-to-one  

  

   

 

 

onetooneL
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u
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u

u
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u
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L
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



























)1(

0

0

0

0

0

0,sin

,

,,

0

0))(1(
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2

2

2

2

2

















 

To prove 1 L   is on to 







Svuvu

vLuL

vLuL







,

11

 

Since L is self adjont operator then  

the operator 1 L  is on to  

then 1 L  isometry from )(S  to )(

S  the norm  

and inner product in )(S as 

   
2/1

2,
SMg

uuu      2/1
,, uuLuu   

=   2/12

2

2
]``)()(

)`(

1

2

1
[ 2 dxdxxuxu

xx
u

L



 


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