ON A NEW CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

WAGGAS GALIB ATSHAN ${ }^{1}$, S. R. KULKARNI ${ }^{2}$

Abstract

In the present paper, we define a new class $G(\alpha, \beta, b)(\alpha \geq$ $0 ;-1 \leq \beta \leq 0 ; b \in \mathbb{C}$) of functions which are analytic in the unit disk. A necessary and sufficient condition for functions to be in $G(\alpha, \beta, b)$ is obtained. Also for this class we get the radii of close-to-convexity, starlikeness, and convexity. Furthermore, we give an application involving fractional calculus for functions in $G(\alpha, \beta, b)$.

1. Introduction

Let W be the class of functions of the form:

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disk $U=\{z:|z|<1\}$. The class of functions $f(z) \in W$, which are starlike of order α and convex of order $\alpha(0 \leq \alpha<1)$ were investigated by Silverman [3].

Let $G(\alpha, \beta, b)$ denote the class of functions $f(z) \in W$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\beta \frac{f(z)}{z}+(1-\beta) f^{\prime}(z)+\alpha z f^{\prime \prime}(z)\right\}>1-|b| \tag{1.2}
\end{equation*}
$$

for some $\alpha(\alpha \geq 0),-1 \leq \beta \leq 0$ and $b \in \mathbb{C}$, and for all $z \in U$.
The class $G(\alpha, 0,1-\gamma)$ was introduced by Altintas [1] who obtained several results concerning this class. The class $G(\alpha, 0, b)$ was introduced by Srivastava and Owa [6]. We give some properties of functions of $G(\alpha, \beta, b)$, radii of close-to-convexity, starlikeness, and convexity, and some distortion theorems involving fractional calculus.

[^0]
2. Interesting Properties of the Class $G(\alpha, \beta, b)$

Theorem 2.1. A function $f(z) \in W$ is in the class $G(\alpha, \beta, b)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\beta+n(1-\beta+\alpha n-\alpha)] a_{n} \leq|b| \tag{2.1}
\end{equation*}
$$

The result (2.1) is sharp.
Proof. Assume that $f(z) \in G(\alpha, \beta, b)$. Then we find from (1.2) that

$$
\begin{gathered}
\operatorname{Re}\left\{\beta\left[1-\sum_{n=2}^{\infty} a_{n} z^{n-1}\right]+(1-\beta)\left[1-\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right]+\right. \\
\left.\alpha z\left[-\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}\right]\right\}>1-|b| .
\end{gathered}
$$

If we choose z to be the real and let $z \rightarrow 1^{-}$, we get $1-\sum_{n=2}^{\infty}[\beta+n(1-$ $\beta+\alpha n-\alpha)] a_{n} \geq 1-|b|$, which is equivalent to (2.1). Conversely, assume that (2.1) is true. Then we have

$$
\left|\beta \frac{f(z)}{z}-(1-\beta) f^{\prime}(z)-\alpha z f^{\prime \prime}(z)-1\right| \leq \sum_{n=2}^{\infty}[\beta+n(1-\beta+\alpha n-\alpha)] a_{n} \leq|b| .
$$

This implies that $f(z) \in G(\alpha, \beta, b)$. The result (2.1) is sharp for the function

$$
\begin{equation*}
f(z)=z-\frac{|b|}{\beta+n(1-\beta+\alpha n-\alpha)} z^{n}(n \geq 2) . \tag{2.2}
\end{equation*}
$$

Theorem 2.2. If $f(z) \in G(\alpha, \beta, b)$, then

$$
\begin{equation*}
|z|-\frac{|b|}{2-\beta+2 \alpha}|z|^{2} \leq|f(z)| \leq|z|+\frac{|b|}{2-\beta+2 \alpha}|z|^{2}, \quad(|b| \leq 2-\beta+2 \alpha) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{2|b|}{2-\beta+2 \alpha}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2|b|}{2-\beta+2 \alpha}|z|, \quad\left(|b| \leq \frac{2-\beta+2 \alpha}{2}\right) \tag{2.4}
\end{equation*}
$$

Proof. It is easy to see that, for $f(z) \in G(\alpha, \beta, b)$,

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{|b|}{2-\beta+2 \alpha} \text { and } \sum_{n=2}^{\infty} n a_{n} \leq \frac{2|b|}{2-\beta+2 \alpha}
$$

$2-\beta+2 \alpha \leq \beta+n(1-\beta+\alpha n-\alpha)$ and $\frac{n}{2}(2-\beta+2 \alpha) \leq \beta+n(1-\beta+\alpha n-\alpha),(n \geq$ $2)$, we have

$$
|f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq|z|+|z|^{2} \frac{|b|}{2-\beta+2 \alpha}
$$

$$
\begin{aligned}
& |f(z)| \geq|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \geq|z|-|z|^{2} \frac{|b|}{2-\beta+2 \alpha} \\
& \left|f^{\prime}(z)\right| \leq 1+|z| \sum_{n=2}^{\infty} n a_{n} \leq 1+|z| \frac{2|b|}{2-\beta+2 \alpha}
\end{aligned}
$$

and

$$
\left|f^{\prime}(z)\right| \geq 1-|z| \sum_{n=2}^{\infty} n a_{n} \geq 1-|z| \frac{2|b|}{2-\beta+2 \alpha} .
$$

Theorem 2.3. Let $f_{i}(z)=z-\sum_{n=2}^{\infty} a_{n, i} z^{n}\left(a_{n, i} \geq 0, i=1,2, \cdots, m\right)$ be in the class $G(\alpha, \beta, b)$. Then the function $k(z)=\sum_{i=1}^{m} d_{i} f_{i}(z)\left(\sum_{i=1}^{m} d_{i}=1\right)$ is in the class $G(\alpha, \beta, b)$.

Proof. By the definition of $k(z)$, we have $k(z)=z-\sum_{n=2}^{\infty}\left[\sum_{i=1}^{m} d_{i} a_{n, i} z^{n}\right]$. Thus we have from Theorem 2.1

$$
\sum_{n=2}^{\infty}[\beta+n(1-\beta+\alpha n-\alpha)]\left[\sum_{i=1}^{m} d_{i} a_{n, i}\right] \leq \sum_{i=1}^{m} d_{i}|b|=|b|,
$$

which completes the proof of Theorem 2.3.
Theorem 2.4. Let $\alpha \geq 0$ and $|b| \leq\left|b^{*}\right|$. Then $G(\alpha, \beta, b) \subset G\left(\alpha, \beta, b^{*}\right)$.
Proof. Assume that $f(z) \in G(\alpha, \beta, b)$. Then $\sum_{n=2}^{\infty}[\beta+n(1-\beta+\alpha n-\alpha)] a_{n} \leq$ $|b| \leq\left|b^{*}\right|$, which completes the proof of Theorem 2.4.

Definition 2.1. Let $(f * g)(z)$ denote the Hadamard product of two functions $f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}\left(a_{n} \geq 0\right)$ and $g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n}\left(b_{n} \geq 0\right)$, that is, $(f * g)(z)=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}$.

Theorem 2.5. If $f(z)$ and $g(z) \in G(\alpha, \beta, b)$, then $(f * g)(z) \in G\left(\alpha, \beta, b^{*}\right)$, where

$$
\begin{equation*}
\left|b^{*}\right|=\frac{|b|^{2}}{2-\beta+2 \alpha} . \tag{2.5}
\end{equation*}
$$

The result (2.5) is sharp.
Proof. By Theorem 2.1 we have

$$
\sum_{n=2}^{\infty} \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{|b|} a_{n} \leq 1
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{|b|} b_{n} \leq 1 \tag{2.6}
\end{equation*}
$$

we have to find the largest $\left|b^{*}\right|$ such that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{\left|b^{*}\right|} a_{n} b_{n} \leq 1 \tag{2.7}
\end{equation*}
$$

By (2.6) we find, by means of the Cauchy-Schwarz inequality, that

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{|b|} \sqrt{a_{n} b_{n}} \leq 1 \tag{2.8}
\end{equation*}
$$

Therefore, (2.7) holds true if $\sqrt{a_{n} b_{n}} \leq \frac{\left|b^{*}\right|}{|b|}$ for each n. But this is satisfied if

$$
\frac{|b|}{(\beta+n(1-\beta+\alpha n-\alpha))} \leq \frac{\left|b^{*}\right|}{|b|} \text { or }\left|b^{*}\right| \geq \frac{|b|^{2}}{(\beta+n(1-\beta+\alpha n-\alpha))}
$$

But $\psi(n)=\frac{\left|b^{2}\right|}{(\beta+n(1-\beta+\alpha n-\alpha))}$ is a decreasing function of n. This implies that $\left|b^{*}\right| \geq \psi(2)=\frac{|b|^{2}}{2-\beta+2 \alpha}$.

3. Close-To-Convexity, Starlikeness and Convexity

A function $f(z) \in W$ is said to be close-to-convex of order \mathcal{E} if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\mathcal{E} \tag{3.1}
\end{equation*}
$$

for some $\mathcal{E}(0 \leq \mathcal{E}<1)$ and for all $z \in U$. Also a function $f(z) \in W$ is said to be starlike of order \mathcal{E} if it satisfies

$$
\begin{equation*}
R e\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\mathcal{E} \tag{3.2}
\end{equation*}
$$

for some $\mathcal{E}(0 \leq \mathcal{E}<1)$ and for all $z \in U$. Further, a function $f(z) \in W$ is said to be convex of order \mathcal{E}, if and only if $z f^{\prime}(z)$ is starlike of order \mathcal{E}, that is if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\mathcal{E} \tag{3.3}
\end{equation*}
$$

for some $\mathcal{E}(0 \leq \mathcal{E}<1)$ and for all $z \in U$.
Theorem 3.1. If $f(z) \in G(\alpha, \beta, b)$, then $f(z)$ is close-to-convex of order \mathcal{E} in $|z|<r_{1}(\alpha, \beta, b, \mathcal{E})$, where

$$
r_{1}(\alpha, \beta, b, \mathcal{E})=\inf _{n}\left[\frac{(1-\mathcal{E})(\beta+n(1-\beta+\alpha n-\alpha))}{|b|}\right]^{\frac{1}{n-1}}
$$

Proof. It is sufficient to show that

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right|<\sum_{n=2}^{\infty} n a_{n}|z|^{n-1} \leq 1-\mathcal{E} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\beta+n(1-\beta+\alpha n-\alpha)] a_{n} \leq|b| \tag{3.5}
\end{equation*}
$$

observe that (3.4) is true if

$$
\begin{equation*}
\frac{n|z|^{n-1}}{1-\mathcal{E}} \leq \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{|b|} . \tag{3.6}
\end{equation*}
$$

Solving (3.6) for $|z|$, we obtain

$$
|z| \leq\left[\frac{(1-\mathcal{E})(\beta+n(1-\beta+\alpha n-\alpha))}{|b|}\right]^{\frac{1}{n-1}}, n=2,3, \cdots .
$$

Theorem 3.2. If $f(z) \in G(\alpha, \beta, b)$, then $f(z)$ is starlike of order \mathcal{E} in $|z|<r_{2}(\alpha, \beta, b, \mathcal{E})$, where

$$
r_{2}(\alpha, \beta, b, \mathcal{E})=\inf _{n}\left[\frac{(1-\mathcal{E})(\beta+n(1-\beta+\alpha n-\alpha))}{(n-\mathcal{E})|b|}\right]^{\frac{1}{n-1}} .
$$

Proof. We must show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\mathcal{E}$ for $|z|<r_{2}(\alpha, \beta, b, \mathcal{E})$. Since

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{n=2}^{\infty}(n-1) a_{n}|z|^{n-1}}{1-\sum_{n=2}^{\infty} a_{n}|z|^{n-1}} \tag{3.7}
\end{equation*}
$$

if $\frac{(n-\mathcal{E})|z|^{n-1}}{1-\mathcal{E}} \leq \frac{(\beta+n(1-\beta+\alpha n-\alpha))}{|b|}, f(z)$ is starlike of order \mathcal{E}.
Corollary 3.3. If $f(z) \in G(\alpha, \beta, b)$, then $f(z)$ is convex of order \mathcal{E} in $|z|<r_{3}(\alpha, \beta, b, \mathcal{E})$, where

$$
r_{3}(\alpha, \beta, b, \mathcal{E})=\inf _{n}\left[\frac{(1-\mathcal{E})(\beta+n(1-\beta+\alpha n-\alpha))}{n(n-\mathcal{E})|b|}\right]^{\frac{1}{n-1}} .
$$

4. An Application of Fractional Calculus

The following definition for the fractional calculus was given by Owa[2]. For other definitions see, for example, the references cited by Srivastava et al. ([4], [5], [7]).

Definition 4.1. The fractional integral of order δ is defined by

$$
D_{z}^{-\delta} f(z)=\frac{1}{\Gamma(\delta)} \int_{0}^{z} \frac{f(\gamma) d \gamma}{(z-\gamma)^{1-\delta}}
$$

where $\delta>0, f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z-\gamma)^{\delta-1}$ is removed by required $\log (z-\gamma)$ to be real when $z-\gamma>0$.

Definition 4.2. The fractional derivative of order δ is defined by

$$
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\gamma) d \gamma}{(z-\gamma)^{\delta}}
$$

where $0 \leq \delta<1, f(z)$ is an analytic function in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-\gamma)^{-\delta}$ is removed as in Definition 4.1 above.

Definition 4.3. Under the conditions of Definition 4.2, the fractional derivative of order $n+\delta$ is defined by

$$
D_{z}^{n+\delta} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\delta} f(z)
$$

where $0 \leq \delta<1$ and $n=0,1, \cdots$.
Theorem 4.1. Let the function $f(z)$ be in the class $G(\alpha, \beta, b)$. Then

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \leq \frac{1}{\Gamma(2+\delta)}|z|^{1+\delta}\left[1+\frac{2|b|}{(2-\beta+2 \alpha)(2+\delta)}|z|\right] \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{-\delta} f(z)\right| \geq \frac{1}{\Gamma(2+\delta)}|z|^{1+\delta}\left[1-\frac{2|b|}{(2-\beta+2 \alpha)(2+\delta)}|z|\right], \tag{4.2}
\end{equation*}
$$

$\left(|b| \leq \frac{(2-\beta+2 \alpha)(2+\delta)}{2 \Gamma(2+\delta)}\right)$.
The equalities in (4.1) and (4.2) are attained for the function

$$
\begin{equation*}
f(z)=z-\frac{|b|}{2-\beta+2 \alpha} z^{2} \tag{4.3}
\end{equation*}
$$

Proof. Using Theorem 2.1 we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} \leq \frac{|b|}{2-\beta+2 \alpha} \tag{4.4}
\end{equation*}
$$

From Definition 4.1 we get

$$
D_{z}^{-\delta} f(z)=\frac{1}{\Gamma(2+\delta)} z^{1+\delta}-\sum_{n=2}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+1+\delta)} a_{n} z^{n+\delta}
$$

and

$$
\begin{align*}
\Gamma(2+\delta) z^{-\delta} D_{z}^{-\delta} f(z) & =z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)} a_{n} z^{n} \tag{4.5}\\
& =z-\sum_{n=2}^{\infty} \Psi(n) a_{n} z^{n}
\end{align*}
$$

where $\Psi(n)=\frac{\Gamma(n+1) \Gamma(2+\delta)}{\Gamma(n+1+\delta)}$.
We know that $\Psi(n)$ is a decreasing function of n and $0<\Psi(n) \leq \Psi(2)=$ $\frac{2}{2+\delta}$. Using (4.4) and (4.5) we have

$$
\begin{aligned}
\left|\Gamma(2+\delta) z^{-\delta} D_{z}^{-\delta} f(z)\right| & \leq|z|+\Psi(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq|z|+\frac{2|b|}{(2-\beta+2 \alpha)(2+\delta)}|z|^{2}
\end{aligned}
$$

which gives (4.1); we also have

$$
\begin{aligned}
\left|\Gamma(2+\delta) z^{-\delta} D_{z}^{-\delta} f(z)\right| & \geq|z|-\Psi(2)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq|z|-\frac{2|b|}{(2-\beta+2 \alpha)(2+\delta)}|z|^{2}
\end{aligned}
$$

which gives (4.2).
Theorem 4.2. Let the function $f(z)$ be in the class $G(\alpha, \beta, b)$. Then

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \leq \frac{1}{\Gamma(2-\delta)}|z|^{1-\delta}\left[1+\frac{2|b|}{(2-\beta+2 \alpha)(2-\delta)}|z|\right] \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{\delta} f(z)\right| \geq \frac{1}{\Gamma(2-\delta)}|z|^{1-\delta}\left[1-\frac{2|b|}{(2-\beta+2 \alpha)(2-\delta)}|z|\right] \tag{4.7}
\end{equation*}
$$

$\left(|b| \leq \frac{(2-\beta+2 \alpha)(2-\delta)}{2 \Gamma(2-\delta)}\right)$.

The equalities in (4.6) and (4.7) are attained for the function $f(z)$ given by (4.3).

Proof. Using Theorem 2.1 we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n a_{n} \leq \frac{2|b|}{2-\beta+2 \alpha} \tag{4.8}
\end{equation*}
$$

By Definition 4.2 we get

$$
D_{z}^{\delta} f(z)=\frac{1}{\Gamma(2-\delta)} z^{1-\delta}-\sum_{n=2}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+1-\delta)} a_{n} z^{n-\delta}
$$

and

$$
\begin{align*}
& \Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z)=z-\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} a_{n} z^{n} \\
& =z-\sum_{n=2}^{\infty} \frac{\Gamma(n) \Gamma(2-\delta)}{\Gamma(n+1-\delta)} n a_{n} z^{n}=z-\sum_{n=2}^{\infty} n \Phi(n) a_{n} z^{n} \tag{4.9}
\end{align*}
$$

since

$$
\Phi(n)=\frac{\Gamma(n) \Gamma 2-\delta)}{\Gamma(n+1-\delta)}
$$

is a decreasing function of n and

$$
0<\Phi(n) \leq \Phi(2)=\frac{1}{2-\delta}
$$

using (4.8) and (4.9), we have

$$
\begin{aligned}
\left|\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z)\right| & \leq|z|+\Phi(2)|z|^{2} \sum_{n=2}^{\infty} n a_{n} \\
& \leq|z|+\frac{2|b|}{(2-\beta+2 \alpha)(2-\delta)}|z|^{2}
\end{aligned}
$$

which gives (4.6); and

$$
\begin{aligned}
\left|\Gamma(2-\delta) z^{\delta} D_{z}^{\delta} f(z)\right| & \geq|z|-\Phi(z)|z|^{2} \sum_{n=2}^{\infty} n a_{n} \\
& \geq|z|-\frac{2|b|}{(2-\beta+2 \alpha)(2-\delta)}|z|^{2}
\end{aligned}
$$

which gives (4.7).
Corollary 4.3. By letting $\delta=0$ in Theorem 4.1 and letting $\delta=1$ in Theorem 4.2, we have Theorem 2.2.

Corollary 4.4. Under the hypotheses of Theorem 4.1 and 4.2, $D_{z}^{-\delta} f(z)$ and $D_{z}^{\delta} f(z)$ are included in the disk with center at the origin and radii
$\frac{1}{\Gamma(2+\delta)}\left[1+\frac{2|b|}{(2-\beta+2 \alpha)(2+\delta)}\right]$ and $\frac{1}{\Gamma(2-\delta)}\left[1+\frac{2|b|}{(2-\beta+2 \alpha)(2-\delta)}\right]$, respectively.

References

[1] O. Altintas, A subclass of analytic functions with negative coefficients, Bull. Sci. Engrg, Hacettepe Univ. 19 (1990), 15-24.
[2] S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), 53-59.
[3] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
[4] H. M. Srivastava and S. Owa, A new class of analytic functions with negative coefficients, Comment. Math. Univ. St. Paul. 35 (1986), 175-188.
[5] -------------------, Univalent Functions, Fractional Calculus and Their Applications, Halsted Press. (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
[6] ------------------, Editors, Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).
[7] H. M. Srivastava, M. Saigo, and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, J. Math. Anal. Appl. 131 (1988), 412-420.

Received 14 September 2007

DEPARTMENT OF MATHEMATICS, (Waggas Galib is a Faculty Member of Al-Qadisiya University, Iraq), UNIVERSITY OF PUNE, PUNE - 411007, INDIA E-mail address: waggashnd@yahoo.com

DEPARTMENT OF MATHEMATICS, FERGUSSON COLLEGE, PUNE - 411004, INDIA

E-mail address: kulkarni_ferg@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Radii of close-to-convexity, Hadamard product, Fractional calculus.

