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ON A NEW CLASS OF ANALYTIC FUNCTIONS WITH
NEGATIVE COEFFICIENTS

WAGGAS GALIB ATSHAN1, S. R. KULKARNI2

Abstract. In the present paper, we define a new class G(α, β, b)(α ≥
0;−1 ≤ β ≤ 0; b ∈ C) of functions which are analytic in the unit disk.

A necessary and sufficient condition for functions to be in G(α, β, b) is

obtained. Also for this class we get the radii of close-to-convexity, star-

likeness, and convexity. Furthermore, we give an application involving

fractional calculus for functions in G(α, β, b).

1. Introduction

Let W be the class of functions of the form:

f(z) = z −
∞∑

n=2

anz
n (an ≥ 0), (1.1)

which are analytic in the unit disk U = {z : |z| < 1}. The class of functions
f(z) ∈ W , which are starlike of order α and convex of order α (0 ≤ α < 1)
were investigated by Silverman [3].

Let G(α, β, b) denote the class of functions f(z) ∈ W which satisfy the
condition

Re

{
β
f(z)
z

+ (1− β)f ′(z) + αzf ′′(z)
}
> 1− |b| (1.2)

for some α (α ≥ 0),−1 ≤ β ≤ 0 and b ∈ C, and for all z ∈ U .
The class G(α, 0, 1−γ) was introduced by Altintas [1] who obtained several

results concerning this class. The class G(α, 0, b) was introduced by Srivastava
and Owa [6]. We give some properties of functions of G(α, β, b), radii of
close-to-convexity, starlikeness, and convexity, and some distortion theorems
involving fractional calculus.
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2. Interesting Properties of the Class G(α, β, b)

Theorem 2.1. A function f(z) ∈ W is in the class G(α, β, b) if and only
if

∞∑
n=2

[β + n(1− β + αn− α)]an ≤ |b|. (2.1)

The result (2.1) is sharp.

Proof. Assume that f(z) ∈ G(α, β, b). Then we find from (1.2) that

Re
{
β

[
1−

∑∞
n=2 anz

n−1
]
+ (1− β)

[
1−

∑∞
n=2 nanz

n−1
]
+

αz
[
−

∑∞
n=2 n(n− 1)anz

n−2
]}
> 1− |b|.

If we choose z to be the real and let z → 1−, we get 1 −
∑∞

n=2[β + n(1 −
β+αn−α)]an ≥ 1−|b|, which is equivalent to (2.1). Conversely, assume that
(2.1) is true. Then we have∣∣∣∣β f(z)

z
− (1− β)f ′(z)− αzf ′′(z)− 1

∣∣∣∣ ≤ ∞∑
n=2

[β + n(1− β + αn− α)]an ≤ |b|.

This implies that f(z) ∈ G(α, β, b). The result (2.1) is sharp for the function

f(z) = z − |b|
β + n(1− β + αn− α)

zn (n ≥ 2). (2.2)

�

Theorem 2.2. If f(z) ∈ G(α, β, b), then

|z|− |b|
2− β + 2α

|z|2 ≤ |f(z)| ≤ |z|+ |b|
2− β + 2α

|z|2 , (|b| ≤ 2−β+2α) (2.3)

and

1− 2|b|
2− β + 2α

|z| ≤ |f ′(z)| ≤ 1 +
2|b|

2− β + 2α
|z| , (|b| ≤ 2− β + 2α

2
). (2.4)

Proof. It is easy to see that, for f(z) ∈ G(α, β, b),
∞∑

n=2

an ≤
|b|

2− β + 2α
and

∞∑
n=2

nan ≤
2|b|

2− β + 2α
.

2−β+2α ≤ β+n(1−β+αn−α) and n
2 (2−β+2α) ≤ β+n(1−β+αn−α), (n ≥

2), we have

|f(z)| ≤ |z|+ |z|2
∞∑

n=2

an ≤ |z|+ |z|2 |b|
2− β + 2α

,
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|f(z)| ≥ |z| − |z|2
∞∑

n=2

an ≥ |z| − |z|2 |b|
2− β + 2α

,

|f ′(z)| ≤ 1 + |z|
∞∑

n=2

nan ≤ 1 + |z| 2|b|
2− β + 2α

,

and

|f ′(z)| ≥ 1− |z|
∞∑

n=2

nan ≥ 1− |z| 2|b|
2− β + 2α

.

�

Theorem 2.3. Let fi(z) = z −
∞∑

n=2
an,iz

n (an,i ≥ 0, i = 1, 2, · · · ,m) be in

the class G(α, β, b). Then the function k(z) =
∑m

i=1 difi(z) (
∑m

i=1 di = 1) is
in the class G(α, β, b).

Proof. By the definition of k(z), we have k(z) = z −
∞∑

n=2

[
m∑

i=1
dian,iz

n

]
. Thus

we have from Theorem 2.1
∞∑

n=2

[β + n(1− β + αn− α)]

[
m∑

i=1

dian,i

]
≤

m∑
i=1

di|b| = |b|,

which completes the proof of Theorem 2.3. �

Theorem 2.4. Let α ≥ 0 and |b| ≤ |b∗|. Then G(α, β, b) ⊂ G(α, β, b∗).

Proof. Assume that f(z) ∈ G(α, β, b). Then
∑∞

n=2[β+n(1−β+αn−α)]an ≤
|b| ≤ |b∗|, which completes the proof of Theorem 2.4. �

Definition 2.1. Let (f ∗ g)(z) denote the Hadamard product of two func-
tions f(z) = z −

∑∞
n=2 anz

n (an ≥ 0) and g(z) = z −
∑∞

n=2 bnz
n (bn ≥ 0),

that is, (f ∗ g)(z) = z −
∑∞

n=2 anbnz
n.

Theorem 2.5. If f(z) and g(z) ∈ G(α, β, b), then (f ∗ g)(z) ∈ G(α, β, b∗),
where

|b∗| = |b|2

2− β + 2α
. (2.5)

The result (2.5) is sharp.

Proof. By Theorem 2.1 we have
∞∑

n=2

(β + n(1− β + αn− α))
|b|

an ≤ 1
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and
∞∑

n=2

(β + n(1− β + αn− α))
|b|

bn ≤ 1. (2.6)

we have to find the largest |b∗| such that
∞∑

n=2

(β + n(1− β + αn− α))
|b∗|

anbn ≤ 1. (2.7)

By (2.6) we find, by means of the Cauchy-Schwarz inequality, that
∞∑

n=2

(β + n(1− β + αn− α))
|b|

√
anbn ≤ 1. (2.8)

Therefore, (2.7) holds true if
√
anbn ≤ |b∗|

|b| for each n. But this is satisfied if

|b|
(β + n(1− β + αn− α))

≤ |b∗|
|b|

or |b∗| ≥ |b|2

(β + n(1− β + αn− α))
.

But ψ(n) = |b2|
(β+n(1−β+αn−α)) is a decreasing function of n. This implies that

|b∗| ≥ ψ(2) = |b|2
2−β+2α . �

3. Close-To-Convexity, Starlikeness and Convexity

A function f(z) ∈W is said to be close-to-convex of order E if it satisfies

Re{f ′(z)} > E (3.1)

for some E (0 ≤ E < 1) and for all z ∈ U . Also a function f(z) ∈W is said to
be starlike of order E if it satisfies

Re

{
zf ′(z)
f(z)

}
> E (3.2)

for some E (0 ≤ E < 1) and for all z ∈ U . Further, a function f(z) ∈ W is
said to be convex of order E , if and only if zf ′(z) is starlike of order E , that is
if

Re

{
1 +

zf ′′(z)
f ′(z)

}
> E (3.3)

for some E (0 ≤ E < 1) and for all z ∈ U .

Theorem 3.1. If f(z) ∈ G(α, β, b), then f(z) is close-to-convex of order E
in |z| < r1(α, β, b, E), where

r1(α, β, b, E) = inf
n

[
(1− E)(β + n(1− β + αn− α))

|b|

] 1
n−1

.
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Proof. It is sufficient to show that

|f ′(z)− 1| <
∞∑

n=2

nan|z|n−1 ≤ 1− E (3.4)

and
∞∑

n=2

[β + n(1− β + αn− α)]an ≤ |b| (3.5)

observe that (3.4) is true if

n|z|n−1

1− E
≤ (β + n(1− β + αn− α))

|b|
. (3.6)

Solving (3.6) for |z|, we obtain

|z| ≤
[
(1− E)(β + n(1− β + αn− α))

|b|

] 1
n−1

, n = 2, 3, · · · .

�

Theorem 3.2. If f(z) ∈ G(α, β, b), then f(z) is starlike of order E in
|z| < r2(α, β, b, E), where

r2(α, β, b, E) = inf
n

[
(1− E)(β + n(1− β + αn− α))

(n− E)|b|

] 1
n−1

.

Proof. We must show that
∣∣∣ zf ′(z)

f(z) − 1
∣∣∣ < 1− E for |z| < r2(α, β, b, E). Since

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∞∑

n=2
(n− 1)an|z|n−1

1−
∞∑

n=2
an|z|n−1

, (3.7)

if (n−E)|z|n−1

1−E ≤ (β+n(1−β+αn−α))
|b| , f(z) is starlike of order E . �

Corollary 3.3. If f(z) ∈ G(α, β, b), then f(z) is convex of order E in
|z| < r3(α, β, b, E), where

r3(α, β, b, E) = inf
n

[
(1− E)(β + n(1− β + αn− α))

n(n− E)|b|

] 1
n−1

.
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4. An Application of Fractional Calculus

The following definition for the fractional calculus was given by Owa[2]. For
other definitions see, for example, the references cited by Srivastava et al. ([4],
[5], [7]).

Definition 4.1. The fractional integral of order δ is defined by

D−δ
z f(z) =

1
Γ(δ)

∫ z

0

f(γ)dγ
(z − γ)1−δ

where δ > 0, f(z) is an analytic function in a simply-connected region of the
z-plane containing the origin, and the multiplicity of (z− γ)δ−1 is removed by
required log(z − γ) to be real when z − γ > 0.

Definition 4.2. The fractional derivative of order δ is defined by

Dδ
zf(z) =

1
Γ(1− δ)

d

dz

∫ z

0

f(γ)dγ
(z − γ)δ

where 0 ≤ δ < 1, f(z) is an analytic function in a simply connected region of
the z-plane containing the origin, and the multiplicity of (z− γ)−δ is removed
as in Definition 4.1 above.

Definition 4.3. Under the conditions of Definition 4.2, the fractional de-
rivative of order n+ δ is defined by

Dn+δ
z f(z) =

dn

dzn
Dδ

zf(z),

where 0 ≤ δ < 1 and n = 0, 1, · · · .

Theorem 4.1. Let the function f(z) be in the class G(α, β, b). Then

|D−δ
z f(z)| ≤ 1

Γ(2 + δ)
|z|1+δ

[
1 +

2|b|
(2− β + 2α)(2 + δ)

|z|
]

(4.1)

and

|D−δ
z f(z)| ≥ 1

Γ(2 + δ)
|z|1+δ

[
1− 2|b|

(2− β + 2α)(2 + δ)
|z|

]
, (4.2)(

|b| ≤ (2−β+2α)(2+δ)
2Γ(2+δ)

)
.

The equalities in (4.1) and (4.2) are attained for the function

f(z) = z − |b|
2− β + 2α

z2 (4.3)
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Proof. Using Theorem 2.1 we have
∞∑

n=2

an ≤
|b|

2− β + 2α
. (4.4)

From Definition 4.1 we get

D−δ
z f(z) =

1
Γ(2 + δ)

z1+δ −
∞∑

n=2

Γ(n+ 1)
Γ(n+ 1 + δ)

anz
n+δ

and

Γ(2 + δ)z−δD−δ
z f(z) = z −

∞∑
n=2

Γ(n+ 1)Γ(2 + δ)
Γ(n+ 1 + δ)

anz
n (4.5)

= z −
∞∑

n=2

Ψ(n)anz
n

where Ψ(n) =
Γ(n+ 1)Γ(2 + δ)

Γ(n+ 1 + δ)
.

We know that Ψ(n) is a decreasing function of n and 0 < Ψ(n) ≤ Ψ(2) =
2

2+δ . Using (4.4) and (4.5) we have

|Γ(2 + δ)z−δD−δ
z f(z)| ≤ |z|+ Ψ(2)|z|2

∞∑
n=2

an

≤ |z|+ 2|b|
(2− β + 2α)(2 + δ)

|z|2,

which gives (4.1); we also have

|Γ(2 + δ)z−δD−δ
z f(z)| ≥ |z| −Ψ(2)|z|2

∞∑
n=2

an

≥ |z| − 2|b|
(2− β + 2α)(2 + δ)

|z|2,

which gives (4.2). �

Theorem 4.2. Let the function f(z) be in the class G(α, β, b). Then

|Dδ
zf(z)| ≤ 1

Γ(2− δ)
|z|1−δ

[
1 +

2|b|
(2− β + 2α)(2− δ)

|z|
]

(4.6)

and

|Dδ
zf(z)| ≥ 1

Γ(2− δ)
|z|1−δ

[
1− 2|b|

(2− β + 2α)(2− δ)
|z|

]
, (4.7)(

|b| ≤ (2−β+2α)(2−δ)
2Γ(2−δ)

)
.
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The equalities in (4.6) and (4.7) are attained for the function f(z) given by
(4.3).

Proof. Using Theorem 2.1 we have
∞∑

n=2

nan ≤
2|b|

2− β + 2α
. (4.8)

By Definition 4.2 we get

Dδ
zf(z) =

1
Γ(2− δ)

z1−δ −
∞∑

n=2

Γ(n+ 1)
Γ(n+ 1− δ)

anz
n−δ

and

Γ(2− δ)zδDδ
zf(z) = z −

∞∑
n=2

Γ(n+ 1)Γ(2− δ)
Γ(n+ 1− δ)

anz
n

= z −
∞∑

n=2

Γ(n)Γ(2− δ)
Γ(n+ 1− δ)

nanz
n = z −

∞∑
n=2

nΦ(n)anz
n (4.9)

since

Φ(n) =
Γ(n)Γ2− δ)
Γ(n+ 1− δ)

is a decreasing function of n and

0 < Φ(n) ≤ Φ(2) =
1

2− δ
,

using (4.8) and (4.9), we have

|Γ(2− δ)zδDδ
zf(z)| ≤ |z|+ Φ(2)|z|2

∞∑
n=2

nan

≤ |z|+ 2|b|
(2− β + 2α)(2− δ)

|z|2,

which gives (4.6); and

|Γ(2− δ)zδDδ
zf(z)| ≥ |z| − Φ(z)|z|2

∞∑
n=2

nan

≥ |z| − 2|b|
(2− β + 2α)(2− δ)

|z|2,

which gives (4.7). �

Corollary 4.3. By letting δ = 0 in Theorem 4.1 and letting δ = 1 in
Theorem 4.2, we have Theorem 2.2.
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Corollary 4.4. Under the hypotheses of Theorem 4.1 and 4.2, D−δ
z f(z)

and Dδ
zf(z) are included in the disk with center at the origin and radii

1
Γ(2 + δ)

[
1 +

2|b|
(2− β + 2α)(2 + δ)

]
and

1
Γ(2− δ)

[
1 +

2|b|
(2− β + 2α)(2− δ)

]
,

respectively.
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