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Abstract
In this paper, two methods were suggested to make the estimations of
Effective Dimension Reduction directions (E.D.R.-directions) robust in
sliced inverse regression (SIR), through the robust estimate of the matrix
of covariance, which depends upon the method, by using fast consistent
high breakdown (FCH) and reweighted fast consistent high breakdown
(RFCH) methods, we called the proposed methods (FCH-SIR) and
(RFCH-SIR). Data has been contaminating by two types of outliers
values which are asymmetric contamination (ACN) and symmetric
contamination (SCN), and different contaminating ratios and sample
sizes. Have been reached, through simulation experiments and real data.
Conclusions showed that the two proposed methods in this paper gave
better results compared to the ordinary SIR depending on the mean
square errors (MSE) criterion for comparison.

Keywords: SIR; FCH; RFCH; ACN; SCN; inverse regression; curse of
dimensionality.
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Introduction

Recent developments in data gathering and storage capacities have
resulted in huge amounts of multivariate data being collected at a rapid
rate. For such large amounts of data, the problem of the “Curse of
Dimensionality” poses a challenge to most statistical methods. The
“Curse of Dimensionality” means that the increasing of the sparsity will
be exponential given a fixed amount of data points. This problem causes
the multiple linear regression methods and other standard statistical
methods fail in high dimensional (HD) data. The operation of reducing
the number of random variables with as little loss of information as
possible is one of the main solutions for the “Curse of Dimensionality”.
The main two ways to achieve this aim are the subset selection and the
feature extraction. The subset selection is the process of selecting a subset
of the important variables and the feature extraction is the process of
transforming (projecting) the variables into a fewer number of new ones.
Improving the performance of the model’s prediction, providing faster
and lower cost models and giving a good understanding of the dataset are
the central aim of subset selection (Guyon and Elisseeff, 2003). Feature
extraction shares the objective of subset selection, with the difference that
the results must be explained in terms of all of the variables. It denotes
the process of finding the transformation that projects the data from the
original space to the feature space. Our focus in this article on Feature
extraction methods, a vast number of feature extraction techniques have
emerged in the literature for reducing the dimensionality, without the loss
of as much information as possible from the data. These include principal
component analysis (see Jolliffe, 2002; Zhang and Olive, 2009), factor
analysis (see Gorsuch, 1983), independent component analysis (Comon,
1994), canonical correlation analysis (Hotelling, 1936; Fung et al., 2002;
Branco et al., 2005; Zhou, 2009; Zhang, 2011; Alkenani and Yu, 2013),
single index models (Powell et al., 1989; Hardle and Stoker, 1989;
Ichimura, 1993; Delecroix et al. 2003), the sliced inverse regression (SIR)
(Li, 1991), the sliced average variance estimation (SAVE) (Cook and
Weisberg, 1991), the principal Hessian directions (pHd) (Li, 1992), the
minimum average variance estimator (MAVE) and the outer product of
gradients (OPG) methods (Xia et al., 2002, see also Xia 2007, 2008) and
successive direction estimation (Yin and Cook, 2005; Yin et al, 2008),
among others. It is well known that the majority of the above methods are
not robust and sensitive to the outliers. In this article, the robustness of
sliced inverse regression method has been studied and two robust
versions of sliced inversed regression have been proposed.

The remainder of this article is arranged as follows. In Section 2, a brief
review of inverse regression is given. Sliced Inverse Regression is
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reviewed in Section 3. FCH and RFCH estimators are introduced in
Sections 4 and 5, respectively. Simulation studies are conducted in
Section 6. Practical studies are showed in section 7. Finally, the
conclusions are summarized in Section 8.

1. Inverse regression

In this section, we will discuss the main idea that the inverse regression
depends on. It's well known that the ordinary regression deals with the
regressing of x's on the response y, in other word E[y|x]. However, if the
number of explanatory variables is large, the curse of dimensionality
problem appears.

Let we have one dimension X, the properties of regression function can be
found from data separation because it will be sufficient. However, when
the explanatory variables increase, we get a huge amount of data. This
leads to increase the sparsity of the data and the standard statistical
methods are breakdown. To tackle this problem, the inverse regression is
used to deal with the regressor of x given y instead of y given x. In
another words, the inverse regression deals with E[x|y] in order to get
regression model with one dimension.

Consider the trajectory of the inverse regression curve E[x]|y] as y varies.
The center of this curve is located at E[E[xly]] = E[x]. In general, it is a
p-dimensional curve in RY. We shall see that it lies on a K-dimensional
subspace, K<P, if the following condition is satisfied:

For any b in RP, the conditional expectation E[bx|B;X, B2X, ..., BxX] is
linear in B;X, 55X, ..., BxX; that is, for some constants c, ¢4, ..., Ck,
E[DX|B1X, BoX, .., BX] = co + ¢1p1X + 2 foX + -+ + cx Py X (D)
Li (1991) stated that this condition is satisfied when the distribution of x
is elliptically symmetric (e.g., the normal distribution).

2. Sliced Inverse Regression (SIR)

The sufficient dimension reduction (SDR) theory (Cook, 1998) has been
introduced to minimize the high dimensionality of the predictors, while
keeping the regression information and making few assumptions. For
regression models, assume y is a scalar response variable and x =

(x4, ...,xp)T is a p x 1 predictor vector. The SDR investigates a p X k
matrix B, k is unknown and assumed to be less than p, such that y L
x|xTB, where L indicates statistical independence. The column space
spanned by B is called the dimension reduction subspace. The
intersection of all of the dimension reduction subspaces is called the
central subspace if it is a dimension reduction subspace, which is denoted
by S, x. Finding a S, is an essential goal in SDR because S,,x contains

all of the regression information of y, given x. The dimension (k) of S,
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is called the structural dimension (Yu and Zhu, 2013). Knowledge of S,
Is beneficial to answer the question, “how does the distribution of y|x
alter with the value of x?”. Various approaches have been proposed to
estimate S, . For example, the Sliced inverse regression method (Li,
1991), sliced average variance estimator method (Cook and Weisberg,
1991), pHd method (Li, 1992), see Cook (1998) for more details.

Sliced inverse regression method (SIR), which proposed by Li (1991), is
one of the methods used to reduce the dimension of the explanatory
matrix without need to a complicated model fitting process.

The idea is to find a smooth regression function that operates on a
variable set of projections. Given a response variable y and a (random)
vector X € RP of explanatory variables, SIR is based on the model:

y= f(BlX' BZX' ---:ﬁkx; E)' (2)

where B;,j = 1,2, ...,k are unknown projection vectors, f is an unknown

function, and € is the noise random variable, € and X are independent and
E(elX) = 0.

Model (2) describes the situation where the response variable y depends
on the p-dimensional random variable x only through a k-dimensional
subspace. Thus we can estimate 3;,j = 1,2, ..., k more efficient than if we
use all variables.

SIR tries to find this k-dimensional subspace of RP which under the
model (2) carries the essential information of the regression between y
and x, by computing the inverse regression (IR) curve. That means
instead of looking for E[y|x], we investigate E[x|y], a curve in RP
consisting of p one-dimensional regressions. SIR also focuses on small k,
so that nonparametric methods can be applied for the estimation of f. A
direct application of nonparametric smoothing to x is for high dimension
P generally not possible due to the sparseness of the observations, or the
curse of dimensionality.

Li (1991) suggested an algorithm depends on dividing the response
variable y into several parts, and then dividing the overall data into parts
according to y partition. The mean of these parts are calculated, after that
the principle component analysis is applied on it to identify the more
important subspace.

The following simple algorithm implements SIR:
a) Standardize X by an affine transformation to get

1
x=22(x;—%),(=12..,1n), (3)
where %, £, denote respectively the sample mean and the sample
covariance matrix.
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b) Divided the range of y into H slices denoted by I, I, ..., Iy.

Let .
P, = (%)2&1 D) (4)

be the proportion of y;'s that fall in the slice I, h=1.2,.., H.

c) Within each slice I, the sample mean vector of the X;'s is

mh A~ X 5 .

Yi€lp
d) Conduct a principle component analysis for the data m;, in the
following way from the weighted covariance matrix
H

V= Z T M, (6)
h=1
and then find the eigenvalues and eigenvectors.
e) Denote the eigenvectors associated with the largest k eigenvalues
by #; ,j = 1,2,...,K and compute
B =1t (7)
to transform back to the original scale.
Gj represents the estimated effective dimension reduction directions
(E.D.R.-directions), and the estimated effective dimension reduction

space (E.D.R.-space) (B) is then calculated from Bj.

Gather et. (2001, 2002) show that the SIR is sensitive to certain types
of data contamination which may influence the subspace estimate, due to
the classical estimators included in the SIR computations. The authors
give examples indicate that in the presence of only a small amount of
contamination, SIR can return bad estimates. They proposed to substitute
the non-robust estimators with robust estimators in order to obtain robust
sliced inverse regression.

An apparent procedure to make SIR more robust is to estimate a
sample covariance matrix using methods that can account for outliers.
There are many estimators for robust multivariate location and dispersion
(RMLD). The minimum covariance determinant (MCD) estimator is the
fastest estimator of the RMLD that has been shown to be both consistent
and having a high breakdown point. It has less complexity from other
estimators (see Bernholt and Fischer, 2004). The complexity of the
minimum volume ellipsoid (MVE) is far higher and there may be no
known method for computing the projection based, constrained M, M-
estimate of the scale of the residuals and the M-estimate of the parameters
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and Stahel-Donoho estimators (Olive and Hawkins, 2010). Since the
mentioned estimators are computationally time consuming, these
estimators have been replaced by practical estimators which strike a
balance between accuracy and computing cost. However, none of the
workable estimators have been proved to be consistent and having a high
breakdown point. For example, the fast minimum covariance determinant
(FMCD) estimator, which is given in (Rousseeuw and Van Driessen,
1999), is used to replace the MCD estimator. The robust multivariate
techniques that claim to use the impractical MCD estimator actually use
Rousseeuw and Van Driessen (1999) FMCD estimator.

Olive and Hawkins (2010) showed that the FMCD estimator is not a high
breakdown estimator. The authors proposed practical consistent, outlier
resistant estimators for multivariate location and dispersion. They
suggested the fast consistent high breakdown FCH, RFCH and RMVN
estimators. In this article, the FCH and reweighted fast consistent high
breakdown RFCH estimators are employed to obtain robust sliced inverse
regression methods.

3. ECH estimator

The fast consistent high breakdown FCH estimator was suggested in
(2010) by Olive and Hawkins. The v/n consistent Devlin, Gnanadesikan
and Kettenring estimator DGK estimator in (Devlin et al., 1981) and the
high breakdown median ball (MB) estimator in (Olive, 2004) is used by
the FCH estimator as attractors. The robust estimator uses an attractor
that is one of the trial fits. Therefore if the robust estimator draws «
elemental sets and then refines them with concentration, then the x
refined elemental sets are the attractors. Also a location criterion is used
by the FCH estimator to choose the attractors.
If DGK location estimator T, p has a greater Euclidean distance from
median MED(X) than 50% of the data, where MED(X) is the coordinate-
wise median, then the MB attractor is used by FCH. The smallest
determinant of the attractor is used only by the FCH estimator if

T — MED(X)|| < MED (D;(MED(X), 1,)) (8),

where D;(MED(X),1,,) is the Euclidean distance from MED(X) and I,
IS p X p identity matrix. Here ||.|| refers to the Euclidean distance.

Let (T4, C4 ) Dbe the attractor that is used, where T, and Cj, are the
location and dispersion estimators, respectively. Then, the estimator ( Tg ,
Cr)takes Tg =T, and

2
CF _ MED(D1 (TA,CA))CA (9)’

2
Xp,0.5
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where DZ(T,, C,) is the ith squared sample Mahalanobis distance, which
takes the form D?(Ta, Ca) = (x; — To(X)) Ca* (X) (x; — Ta (X)) for each
observation, the xg,5 is the 0.50th percentile of a chi-squared
distribution and F is the FCH estimator. Olive and Hawkins (2010)

showed that the FCH estimator is a high breakdown estimator and Cg is
non-singular, even with up to nearly 50% outliers.

4. RECH estimator

Olive and Hawkins (2010) used two standard reweighting steps to
produce the reweighted fast consistent high breakdown RFCH estimator.
Let (fi; , £,) be the traditional estimator computed to n, cases with
Df (Trch, Cren) < Xpoo7s and let

_ Men(of(, %)y a0

5

X%,o.s
Then, let (TRFCH,EZ) be the traditional estimator computed to the cases
with D7 (i3, £1) < x5 0975 @and let
MED( DZ(T 25))
( 1(2 RFCH 2))22 (11),
Xp,0.5

Olive and Hawkins (2010) showed that the RFCH is also a +/n
consistent estimator.

CRFCH =

5. Simulation

In this section, many simulations have been implemented in order to
check the behavior of the suggested methods to estimate the E.D.R.-
directions. The following methods have been considered:

SIR is the classical sliced inverse regression.

FCH-SIR is robust sliced inverse regression based on robust covariance
matrix estimated by fast consistent high breakdown point estimator
(FCH).

RFCH-SIR is robust sliced inverse regression based on robust covariance
matrix estimated by reweighted fast consistent high breakdown point
estimator (RFCH).

The data has been generated from the following sampling distributions:

1) Normal distribution (NOR), N, (0, Z).
2) Asymmetric contamination (ACN), where 95% and 90% of the
observations have been generated from N,,(0,X) and 5% and 10%
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of the observations equals the point tr(Z)17 (where tr(Z) is the
trace of X), respectively.

3) Symmetric contamination (SCN), where 95% and 90% of the
observations have been generated from N, (0, X) and 5% and 10%

have been generated from N,(10,9X), respectively.

Some typical examples are given below:

Simulate 1: R=2000 datasets were generated with sizes n= (50, 100, 200,
500, 1000) from the model y = 0.5x; + 0.5x, + 0.5x5 + 0.5x, + 0x5 +
€ , where x; and € are independent and are identically distributed from an
N(0,1).

Simulate 2: R=2000 datasets were generated with sizes n= (50, 100, 200,
500, 1000) from the model y = 0.5x; + 0.5x, + 0.5x5 + 0.5x, + 0x5 +
€ , wWhere x; generated from ACN data and € from an N(0,1).

Simulate 3: R=2000 datasets were generated with sizes n= (50, 100, 200,
500, 1000) from the model = 0.5x; + 0.5x, + 0.5x5 + 0.5x, + 0x5 + €,
where x; generated from SCN data and e from an N(0,1).

To evaluate the precision of the simulation, the mean squared error

(MSE) has been computed.
Tablel.
E.D.R.-directions ( ;) estimated and their MSE for
data were generated from normal distribution, N, (0, ).

E.D.R-directions MSE

RFCH-SIR FCH-SIR SIR | RFCH-SIR FCH-SIR SIR

B 0.47 0.43 0.49 0.326 0.918 0.128

B2 0.47 0.39 0.49 0.355 0.916 0.118

Bs 0.47 0.44 0.48 0.327 0.922 0.114

n=50 | B, 0.48 0.44 0.50 0.338 0.897 0.124
Bs 0.12 0.23 0.08 0.316 0.843 0.096

B 0.50 0.48 0.50 0.088 0.520 0.055

B 0.49 0.47 0.49 0.089 0.532 0.051

B3 0.49 0.44 0.50 0.093 0.560 0.052
n=100 | B, 0.49 0.43 0.49 0.086 0.540 0.058
Bs 0.07 0.18 0.05 0.079 0.448 0.046

b1 0.49 0.46 0.49 0.041 0.303 0.026

B 0.50 0.50 0.51 0.038 0.324 0.026

Bs 0.49 0.48 0.49 0.035 0.298 0.025
n=200 | B, 0.50 0.45 0.50 0.038 0.323 0.024
Bs 0.04 0.12 0.04 0.029 0.228 0.021

By 0.50 0.48 0.50 0.014 0.140 0.010

B2 0.50 0.48 0.50 0.013 0.156 0.010

st gl — 40




2014 dumeid 1 2itd] 16 bl . i i1 1031 0 ek il ki

n=500 | B5 0.50 0.49 0.50 0.013 0.139 0.010
Ba 0.50 0.51 0.50 0.014 0.129 0.010
Bs 0.03 0.08 0.02 0.011 0.115 0.008
B 0.50 0.49 0.50 0.007 0.075 0.005
B2 0.50 0.50 0.50 0.007 0.077 0.005
B3 0.50 0.50 0.50 0.007 0.069 0.005
n=1000 | g, 0.50 0.49 0.50 0.007 0.075 0.005
Bs 0.02 0.06 0.01 0.006 0.059 0.004
Table 2.

E.D.R.-directions ( ;) estimated and their MSE for data were generated with (ACN), 95% of
the observations from N,, (0, £) and 5% of the observations equals the point tr(2)1”.

E.D.R.-directions MSE

RFCH-SIR FCH-SIR SIR | RFCH-SIR FCH-SIR SIR

b1 0.44 0.41 0.38 0.032 0.086 0.140

B 0.45 041 0.39 0.027 0.078 0.112

n=50 | B; 0.45 0.43 0.39 0.022 0.056 0.122
Ba 0.45 0.40 0.39 0.028 0.100 0.121

Bs 0.30 0.31 0.45 0.890 0.969 1.982

B1 0.47 0.43 0.41 0.011 0.043 0.074

B2 0.47 0.44 0.42 0.008 0.034 0.067
n=100 | B, 0.47 0.43 0.41 0.008 0.046 0.078
Ba 0.47 0.44 0.41 0.009 0.037 0.086

Bs 0.27 0.29 0.46 0.734 0.828 2.085

B1 0.48 0.46 0.43 0.006 0.020 0.052

B 0.47 0.45 0.42 0.007 0.022 0.059
n=200 | B, 0.48 0.46 0.43 0.005 0.017 0.048
Ba 0.48 0.46 0.43 0.006 0.018 0.053

Bs 0.26 0.28 0.47 0.692 0.791 2.178

b1 0.48 0.47 0.44 0.004 0.009 0.041

B> 0.48 0.47 0.44 0.004 0.010 0.040
n=500 B 0.48 0.47 0.44 0.004 0.010 0.042
Ba 0.48 0.47 0.43 0.005 0.008 0.043

Bs 0.27 0.28 0.47 0.735 0.786 2.201

B1 0.48 0.47 0.44 0.004 0.007 0.037

B> 0.48 0.47 0.44 0.004 0.007 0.039
n=1000 | B, 0.48 0.48 0.44 0.004 0.006 0.037
Ba 0.48 0.48 0.44 0.004 0.006 0.039

Bs 0.27 0.28 0.47 0.752 0.780 2.204
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Table 3.
E.D.R.-directions ( ;) estimated and their MSE for data were generated with (ACN), 90% of

the observations from N, (0, X) and 10% of the observations equals the point tr(X17.

E.D.R.-directions MSE

RFCH-SIR FCH-SIR SIR | RFCH-SIR FCH-SIR SIR

By 0.44 0.41 0.40 0.041 0.088 0.104

B> 0.43 0.41 0.40 0.043 0.087 0.099

B3 0.43 0.40 0.39 0.045 0.110 0.112

n=50 | B, 0.44 0.41 0.40 0.042 0.089 0.099
Bs 0.34 0.36 0.40 1.149 1.329 1.565

B 0.45 0.42 0.42 0.021 0.064 0.066

B> 0.45 0.43 0.42 0.023 0.056 0.064

B3 0.46 0.43 0.42 0.018 0.052 0.065
n=100 | B, 0.45 0.42 0.42 0.024 0.057 0.061
Bs 0.34 0.36 0.41 1.172 1.331 1.651

By 0.46 0.44 0.43 0.018 0.031 0.045

B2 0.46 0.44 0.44 0.017 0.036 0.038

B3 0.46 0.44 0.44 0.014 0.032 0.038
n=200 | B, 0.46 0.44 0.44 0.018 0.037 0.038
Bs 0.35 0.37 0.42 1.217 1.361 1.728

b1 0.46 0.45 0.45 0.014 0.024 0.030

B2 0.46 0.45 0.45 0.014 0.022 0.028

Bs 0.46 0.45 0.44 0.013 0.021 0.031
n=500 | B, 0.46 0.46 0.45 0.013 0.019 0.029
Bs 0.36 0.37 0.42 1.296 1.353 1.804

b1 0.46 0.46 0.45 0.013 0.017 0.027

B 0.46 0.45 0.45 0.014 0.022 0.025

B3 0.46 0.46 0.45 0.013 0.016 0.027
n=1000 | B, 0.46 0.46 0.45 0.013 0.014 0.027
Bs 0.37 0.37 0.43 1.340 1.365 1.839
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Table 4
E.D.R.-directions ( ;) estimated and their MSE for data were generated with (SCN), 95% of
the observations from N, (0, X) and 5% from N, (10,9%).

E.D.R.-directions MSE

RFCH-SIR FCH-SIR SIR | RFCH-SIR FCH-SIR SIR

B 0.44 0.40 0.37 0.432 0.923 1.003

B2 0.44 0.42 0.37 0.425 0.891 0.969

=50 B3 0.44 0.40 0.38 0.417 0.849 1.008
Ba 0.44 0.40 0.35 0.404 0.845 1.027

Bs 0.31 0.32 0.46 1.327 1.495 2.568

B 0.46 0.43 0.38 0.164 0.644 0.814

B2 0.46 0.42 0.36 0.175 0.605 0.836

B 0.46 0.42 0.36 0.173 0.616 0.837
n=100 | B, 0.46 0.42 0.36 0.172 0.621 0.837
Bs 0.31 0.33 0.52 1.254 1.349 3.013

B1 0.46 0.45 0.37 0.082 0.356 0.547

B2 0.46 0.44 0.38 0.088 0.371 0.563

B3 0.46 0.44 0.38 0.083 0.363 0.570
n=200 | B, 0.46 0.44 0.37 0.083 0.364 0.535
Bs 0.33 0.35 0.56 1.271 1.340 3.258

B 0.47 0.46 0.39 0.035 0.160 0.294

B 0.47 0.45 0.39 0.037 0.160 0.277

B 0.46 0.46 0.39 0.036 0.162 0.292
n=500 | B, 0.47 0.45 0.39 0.037 0.163 0.286
Bs 0.34 0.35 0.59 1.248 1.266 3.459

B1 0.47 0.46 0.39 0.023 0.089 0.192

B2 0.47 0.46 0.39 0.023 0.094 0.181

B3 0.47 0.46 0.39 0.023 0.093 0.183
n=1000 | B, 0.47 0.46 0.40 0.023 0.093 0.193
Bs 0.35 0.35 0.59 1.254 1.276 3.524
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Table 5
E.D.R.-directions ( ;) estimated and their MSE for data were generated with (SCN), 90% of
the observations from N,,(0,Z) and 10% from N, (10,9%).

E.D.R.-directions MSE

RFCH-SIR FCH-SIR SIR | RFCH-SIR FCH-SIR SIR

b1 0.43 0.39 0.38 0.428 0.864 1.033

B2 0.42 0.39 0.38 0.420 0.866 1.064

B3 0.43 0.40 0.38 0.441 0.843 1.078

n=50 | g, 0.43 0.40 0.38 0.416 0.882 1.026
Bs 0.36 0.38 0.39 1.718 1.807 1.972

B 0.44 0.42 0.40 0.195 0.619 0.844

B2 0.45 0.41 0.40 0.205 0.648 0.833

B 0.44 041 0.41 0.203 0.602 0.833

n=100 | B, 0.44 041 0.41 0.196 0.599 0.820
Bs 0.37 0.38 0.40 1.665 1.735 1.765

B4 0.45 0.43 0.43 0.098 0.400 0.503

B2 0.45 0.43 0.42 0.092 0.360 0.471

B3 0.45 0.43 0.42 0.100 0.378 0.493

n=200 | B, 0.45 0.43 0.43 0.098 0.351 0.513
Bs 0.37 0.38 0.40 1.639 1.672 1.689

B 0.45 0.44 0.45 0.047 0.170 0.210

B 0.45 0.44 0.44 0.052 0.176 0.232

B 0.45 0.45 0.44 0.047 0.178 0.221

n=500 | B, 0.45 0.44 0.45 0.047 0.166 0.223
Bs 0.39 0.40 0.41 1.549 1.682 1.689

b1 0.46 0.45 0.46 0.032 0.093 0.119

B2 0.45 0.45 0.45 0.032 0.096 0.120

B3 0.46 0.45 0.45 0.031 0.096 0.118

n=1000 | B, 0.46 0.45 0.45 0.032 0.099 0.116
Bs 0.38 0.40 0.41 1.509 1.674 1.687

According to the MSE, From Tables 1, 2, 3, 4 and 5, it can be seen that
the FCH-SIR and RFCH-SIR show a better performance than the SIR
method for the majority of the cases under consideration. The proposed
methods produce a lower MSE than SIR method. Moreover, the
variations in the FCH-SIR and RFCH-SIR estimates are approximately
similar in the majority of cases and are less than the variations in the
estimate of the SIR method.

6. Body data

To illustrate the performance of our methods, we consider the body
data (Heinz et al., 2003). This study had a total of 507 individuals, 247
men and 260 women, and it is available in the R package “Brq”
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(Alhamzawi, 2012). The response variable is the weight in (kg) and there
are sixteen predictors. These predictors are the BitrSk: Bitrochanteric
diameter (cm) x(1), CheDeSk: Chest depth between spine and sternum at
nipple level, mid-expiration (cm) x(2), CheDiSk: Chest diameter at nipple
level, mid-expiration (cm)x(3), ElbowSk: Elbow diameter, sum of two
elbows (cm) x(4), WristSk: Wrist diameter, sum of two wrists (cm) x(5),
KneeSk: Knee diameter, sum of two knees (cm) x(6), AnkleSk: Ankle
diameter, sum of two ankles (cm) x(7), ChestGi: Chest girth, nipple line
in males and just above breast tissue in females, mid- expiration (cm)
X(8), WaistGi: Waist girth, narrowest part of torso below the rib cage,
average of contracted and relaxed position (cm) x(9), HipGi: Hip girth at
level of bitrochanteric diameter (cm) x(10), ThighGi: Thigh girth below
gluteal fold, average of right and left girths (cm) x(11), BicepGi: Bicep
girth, flexed, average of right and left girths (cm) x(12), ForeaGi:
Forearm girth, extended, palm up, average of right and left girths (cm)
X(13), CalfGi: Calf maximum girth, average of right and left girths (cm)
X(14), WristGi: Wrist minimum girth, average of right and left girths
(cm) x(15) and Height: (cm) x(16). We estimate an E.D.R.-directions of
the model between the response weight and the 20 independent variables.
Finally, the comparison is mead between the methods SIR, FCH-SIR and
RFCH-SIR. The table 6 below gives the results about the 16" E.D.R.-
directions and MSE for each method:

Table 6
E.D.R.-directions ( ;) estimated and MSE for body data

E.D.R.-directions | SIR FCH-SIR RFCH-SIR
By 0.121  0.102 -0.037
B, -0.164  -0.352 -0.294
Bs -0.037  0.061 0.077
Ba -0.253  0.459 0.119
Bs 0.246  -0.405 -0.688
Be -0.533  -0.484 0.323
B, -0.225  0.342 0.109
Bs -0.089  -0.092 0.005
Bs -0.243  -0.117 -0.293
Bio -0.104  -0.188 -0.181
Bi1 -0.256  0.192 0.088
Bis -0.191  -0.002 0.110
Bi2 -0.292  0.142 -0.096
Bia -0.328  -0.125 -0.360
Bis -0.269  0.075 -0.159
Bie -0.230  0.022 -0.012

MSE 42158 155.15 91.39
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We find that the same results in simulation study are extended to
practical study. i.e., the FCH-SIR and RFCH-SIR show a better
performance than the SIR method.

7. Conclusions

In this article, the FCH-SIR and RFCH-SIR robust methods have been
proposed. The effectiveness of the proposed methods is explained via
many simulation studies and body data application. From the simulation
study and the body data, it can be concluded that the proposed methods
perform well in comparison to the SIR method. We believe that the
proposed methods would supply helpful robust dimension reduction
tools.
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