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SUMMARY
In this paper, we introduce methods for conducting Bayesigmtile analysis of an allo-
metric model that includes random effects, with the pringogl of estimating quantiles
of the length-weight relationship of fish data. We develoiprpelicitation schemes to

incorporate historical information into the analysis ofremt data. We propose Gibbs
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sampler methods to facilitate Bayesian computation andigeodetailed implementa-
tion schemes. We apply our methods to analyze data of wellagder vitreus and white

bass Morone chrysops in Lake McConaughy, Nebraska.

Keywords: Allometric model; Elicitation; Mixture representatioRrior distribution; Quantile regression.

1. INTRODUCTION

It is well known that the relationship between the length aight of fish is given by
the following allometric model (Huxley and Teissier, 1936)

W = aL?10°, (1.1)

wherelV is the weight in grams (g), is the total length in millimeters (mmy; and3;
are parameters, ands the error term. Typically, comparisons between fish dedgnt
lengths and from different populations are made using tleive weight(1V,.), where
W, = (W/Wy) x 100 and Wy is a standard weight for fish of the same species and
length (Wege and Anderson, 1978). Wege and Anderson (19&labed a standard
weight equation using5th-percentile weights from Carlander (1977). Essentidlig
use of75th percentile weights is based on the premise that the stdnezight should
represent fish that are in better body condition than the rhedy condition (Blackwell
et al., 2000). This could be the case when there is no relationshgmly a weak rela-
tionship between the means of such variables. However,uséful to look at several
quantile-based allometric models in order to discover nuseful predictive relation-
ships between the weight and length. Catlal. (2008) showed that at a given total
length, the higher to lower quantiles of weight provide sigfnt information and a more
complete picture of higher to lower body condition for ewalng effects of management
actions on individual fish populations.
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The estimation of the parameters of an allometric model) (k. ssential in any
analysis of fishery data. In this paper, we use quantile ssgya to obtain estimates
of the quantiles of weight as a function of length. Quantdgression makes minimal
assumptions on the error term distribution and thus is abé&tommodate non-normal
errors, which are common in many applications ( Koenker aaskBtt, 1978; Koenker,
2005; Brain et al., 2010). In addition, the set of quantilesyrgive a more complete
picture of the relation between the length and weight thaamregression.

We introduce a random effect allometric model, and we empBkyesian analysis to
take account of parameter uncertainty. Moreover, our idéa e€stimate the parameters
« and 3, via a Bayesian mixed quantile regression, by incorporatiisorical data
gathered from similar previous studies into the analys@uiofent data. In fishery studies,
large historical databases exist for the length and welgld.therefore reasonable to
incorporate historical data into the analysis of the dagagumntifying it with a suitable
prior distribution on the model parameters. There are séweethods to incorporate
historical data into the analysis of a current study. Onehe¢ methods is the power
prior proposed by Ibrahim and Chen (2000). This is constaiby raising the likelihood
function of the historical data to a power parameter betveand 1. Ibrahim and Chen
(2000) define the power prior distribution for a set of parters# as

7T(6|D0, ao) XX g(Do‘@)aoﬂ'Q(Q),

where D, denotes the data from the historical study),|¢) denotes the likelihood
for the historical studyg, denotes the power parameter, and the initial priop o$
mo(0). The power parameter represents the proportion of thertdatalata needed in
the current study. We will discuss the selectiomg@fn Section 2.2.

The rest of this paper is organized as follows. Section ¢hices the linear mixed
quantile of an allometric model. Methods for eliciting praistributions are discussed.
Section 3 gives a real data example to illustrate the praposgthodology and to com-
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pare our approach with other approaches. The DiscussionSgdction 4 and the Ap-
pendix contains the details of the Gibbs sampler and fultd@anal distribution.

2. POSTERIORINFERENCE
2.1 Methods

In an allometric model (1.1)y andg3; are coefficients determined by fitting the model to
observations of length and weight. It is well known that teedth-weight relationship
of fish varies seasonally and spatially. However, the alloimenodel has been deemed
adequate for many applications (Robertis and Williams,8200h clustered data, the
allometric model (1.1) can be written as

Wi = aL 107, i=1,.,N;j=1,...n (2.1)

wherelV;; is thejth weight in clustet, L,; is thejth total length in clustei ande;; is
the error term. In this paper, we include a random intercefsie¢ allometric model (2.1),
in order to allow for heterogeneous intercepts among disistieve assume: = 5,10%,
where 3, is the common constant for all clusters amdis the location shift random
effect of theith cluster, then Equation (2.1) can be extended as

Wij = BoLiH10%55, =1, ,N;j=1,..mn,. (2.2)
After logarithmic transformation, Equation (2.2) becomes

log,o Wi; = logyo B0 + 1 1ogyg Lij + u; + €45 (2.3)

In this model (2.3), we assume that the conditional qauatileg,, Wi;, Qiog,, Wi ju;, L,
is given bylog,, 8o, + B1p logyo Lij + u;. SO, we assume that theh quantile of model
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errore;; is zero. That is,

Qlogyo Wi lus,Ls; (P) = 10810 Bop + Biplogyg Lij + u;. (2.4)

For simplicity of notation, we will omit the subscriptin the remainder of the paper.
We assume that the are independently and identically distributed (iid) acting to a
normal distribution with mean zero and variangg.

Given observation$W;;, L;;,u;i = 1,--- N, 7 =1,--- ,n;}, the regression coef-
ficients in (2.4) can be estimated consistently as the swiut the following minimiza-
tion problem (Koenker, 2005)

N n;
Z Z pp(logyo Wij — logy Bo — Bilogyg Lij — wi), (2.5)

i=1 j=1

wherep,(-) is the check function defined by

pt, if t >0,
polt) = (p—1)t, ift<o0.
A possible parametric link between the minimization proble (2.5) and maximum
likelihood theory is given by the asymmetric Laplace disition; see Koenker and
Machado (1999), Yu and Moyeed (2001). A random varidbig, W;; is distributed
as an asymmetric Laplace distribution with parameteysr, andp if the corresponding
probability density is given by

p(]- - p) (loglO VVij - Mij)} (26)

eXP{_Pp i

f(logyo Wijlpiz, 7,p) =

wherey,;; is the location parametet,is the scale parameter apdietermines the quan-
tile level. The parameter determines the skewness of the distribution ancthejuan-
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tile of this distribution is zero. The minimization problem(2.5) is equivalent to maxi-
mizing the likelihood function ofog,, W;; by assumindog,, W;; from an asymmetric
Laplace distribution with;; = log,, 8y + 51 1og,, Li; + u; andr = 1. Following this
standard asymmetric Laplace error distribution, Yu and &&my(2001) implemented
Bayesian inference for quantile regression, Yu and Staf2d€Y7) developed a Bayesian
estimation procedure for the Tobit Quantile regressionl, @eraci and Bottai (2007)
account for within-subject correlation by adding a randarhjsct effect to the quan-
tile regression model. In this paper, we assume thaldiyg 17;;, conditional orw;, for
i=1,...,Nandj = 1,...,n;, are independently distributed according to an asymmetric
Laplace distribution.

LettingW = (log,q Wi, ..., 10g1g Winy)'s L = (L1, o Lvny )i L3 = (1, 1ogyg Lij),
u = (u,...,uy)yands = (log,, 5o, 51) , then the joint density ofW, u) based onV
clusters is given by

N n;

f(W7 U|ﬁ, T, 01:2) - HHf(lOgIO M/Zj|ﬁ7 uivT)f(ui|01:2)' (27)

i=1 j=1

Our interest lies on the likelihood function @ given 3, 7, ando 2. Thus, integrat-
ing out the random effect leads to the likelihood

FWIB. 7o) = [ Wl 28)

where RV denotes theV-dimensional Euclidean space. To proceed with a Bayesian
analysis, we need to specify a prior distribution for modeigmneterss, 7, ando 2. We
give details of prior elicitation in the next part.
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2.2 Elicitation of prior distribution

It is well known that a standard conjugate prior is not avdégor quantile regression
(Yu and Stander, 2007). Thus, Bayesian quantile inferermaets, including Bayesian
parametric, Bayesian semiparametric and Bayesian namg#tia models, either set
priors independently of the values of the quantiles, or m&sthe prior to be the same
for modelling different quantiles. In addition, the sampiee of fishery data in a given
study is typically small compared to the size of the popalatiTherefore, it is difficult
to estimate the parameters of interest precisely and it ie measonable to set different
priors for different quantiles. For example9&as quantile regression model should have
different parameter values from the median. To improve tlegipion of estimates, we
develop a new prior distribution characterized hy-adependent parameter. Our idea is
to set priors based on historical information gathered fsomilar previous studies.

Although one can use improper priors in Bayesian quantgeassion, the inference
on current data is expected to be more reliable and senditihere exist historical
data gathered from similar previous studies. Incorpogdtistorical information into the
analysis of new information through a prior distributioroypides a natural framework
for updating information across studies (Neelon and O’'BiglR010). In this paper, we
use a power prior distribution, because it introduces a p@aeameter that explicitly
controls the amount of weight assigned to the historicad.datich control is important
when the sample size of the current data is quite differemhfthe sample size of the
historical data or where there is heterogeneity betweerstadies (Ibrahim and Chen,
2000). In addition, this prior has an attractive propertyayesian quantile regression
as it is dependent upon the quantile level.

Suppose there exists data from one historical fish studyllgt be thejth weight
in clusteri, Ly,; be thejth total length in cluster and letu,; be a location shift random
effect of theith cluster for the previous study. Denote by = (Ny, Wy, L) the histor-
ical data of sizeV, clusters, measuring the same response variable and devasithe
current study, wher®V, = (log,o Wo11, ..., logyq WoNonon, )y Lo = (Lott, --v L oNonon, )
Loi; = (1,logyy Loi;). For the random intercept model, we follow Chetral. (2003) and
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we define a prior distribution fas taking the form

no;

No
(8] Do, 7, 052, a) o (H/H[f(logw Woij| B, woss 7)) f (uoil o ?)duos) o (53), (2.9)
=17 j=1

where f (log,y Woi; |8, woi, 7) 1S f(logyo Wis| 5, wi, 7) with (log, Wo;, ue:) in place of
(log,o Wij, u;), anday is a fixed parametef) < ap < 1. The power parametet, rep-
resents how data from the previous study is to be used in threrdustudy. There are
two special cases faty: the first casei, = 0 corresponds to no incorporation of the
data from the previous study relative to the current stuthe 3econd case = 1 cor-
responds to full incorporation of the data from the previsugly relative to the current
study. Thereforeg, controls the influence of the data gathered from previoudiesu
that is similar to the current study. In this paper we assuratthe power parametey

is determined by expert opinion about the relevance of thhcal data to the current
analysis. The prior specification is completed by specgfyriors for3, 7 ando 2. We
specify a 2-dimensional normal distribution with paraméts, B,) for 3, an inverse
gamma (I') prior with parameterly;, so;) for 7 and gammdI") prior with parameter

(L2, 22 for o 2. Thus, the joint prior distribution takes the form

04

No
(8, 7,05 Do, ag) o H/H[f(loglo Wois| 3, os, )] f (uoil o) duo
=17 j=1

X exp{—%(ﬁ — bo)By (8 — bo)}

1 loa _
x(;)lmﬂexp{—%}(a_% 2 1exp{—a‘z%}. (2.10)

u u
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Therefore, the joint posterior distribution 6f 7, ando, 2 is given by
N n;

f(ﬁa T, 01:2|D> DO; aO) o8 (H / H f(logw I/Vij‘ﬁv Ui, T)f(u2‘0172)du2>7r(67 T, 0-1:2‘D07 aO)a (211)
=17 j=1

whereD = (N, W, L) represent the current study.

2.3 Estimation

The Gibbs sampler by Geman and Geman (1984) is a very popwtroch for con-
structing a Markov chain in Bayesian inference, and it iglisegenerate a sequence of
samples from the full conditional distribution. To implem¢his method, the full condi-
tional posterior distributions of all unknown parametees@eeded. In our case, each of
these distributions can be obtained by regarding all othearmpeters in (2.11) as known.

The conditional distribution of the random effect for theremt studyf (u; | log,, Wi;,
B,7,0,2) < f(logig Wis, ui| 3, 7,0, %) is log-concave ini; and the conditional distribu-
tion of the random effect for the historical daféu;|log,, Woij, 8, 7,0, %) o f(log;,
Wois, uoi| 3, 7, 0, 2) is log-concave inu,;. Therefore, we can use the Gibbs sampler for
Bayesian analysis of the quantile regression model. Thaildeif the Gibbs sampler
and full conditional distributions are given in the Appendf the historical data are not
available, the power prior distribution reduces to the form

7 (8.7, 07| Do ag) ox exp{—3 (8 — by)B5 (3 — by)}

e L R S R CAT)
This case is equivalent t@, = 0. In the case that there is no historical data available
and the current data are non-clustered, then by using theegt@r distribution, the
Bayesian quantile regression reduces to (Reed and Yu, 20@9s implemented using
the “MCMCquantreg” package in R (R Development Core Team, 2010).
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3. ANALYSIS OF THE WALLEYE AND WHITE BASS DATA

We used Bayesian quantile regression to estimate the lemgjtiht relationship of wall-
eye Sander vitreus and white bass Morone chrysops befo88(1989) and after (1989-
2004) in Lake McConaughy, Nebraska. More details abouttindysarea and fish sam-
pling are reported in Poratt al. (2003). The data was analyzed by Catlal. (2008).
Cadeet al. (2008) consider fish measured before (1980-1989) as pwefalmtroduc-
tion and those measured after (1989-2004) as post-alemtifeduction. The authors
developed the allometric model by including an indicataiatale for the groups in the
years before alewife introduction and after. The modelvegiby

Qloglo W(p|L7 ]) = 1OglO ﬁO + ﬁl lOgIO L + ﬁ?l + ﬁ?)IIOglO Lv (31)

where! is an indicator variable taking the value O for years (19888) and the value
1 for years (1989-2004). The data are shown graphicallygaieis 1 and 2. In compar-
ing weights between before-alewife-introduction andraftee emphasize how weights
change with length in Figure 1. In addition we emphasize haigthts change over time
in Figure 2. The response variable Weight measures the w@pabf individuals that are
classified according to years. Since the data occurs inetkigyears), it is very likely
that observations from the same year are statisticallyetaiegd and not independent.
In this case, it is inappropriate to analyze the data usirigeat model. Our primary
objective in this study is to estimate the parameters of lmmatric model for clustered
data (2.2) by incorporating prior historical informatioNe use post-alewife introduc-
tion as current data and pre-alewife introduction as hisdbdata. Then, we incorporate
the historical data into the analysis of the current studyggntifying it with a suitable
prior distribution on the model parameters.
We compare three models: the Bayesian quantile regressideliwithout historical

data, using the “MCMCquantreg” package in R (R DevelopmeameTeam, 2010), the
standard frequentist quantile regression for Cade’s ml#), referred to as “CQR”
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and obtained using the quantreg package in R with the defanik method to obtain
confidence intervals, and our approach with a power pridridigion assuming het-
erogeneous intercepts among clusters, “GSRHhe methods are evaluated based on
95% intervals for each procedure, the mean error (ME) and themsan square error
(RMSE) for each model where

Zz’]\il Z?il(loglo Wij —logyg VVij)Q

RMSE = N
D et N

(3.2)

We begin our analysis of the walleye and white bass data bgragpanalysis of
current and historical studies ignoring the clusters amaguslCMCquantreg. The esti-
mated parameters ¢f, and 3, vary from approximatelyt0=6-193" and3.4213 at lower
quantiles (p=0.05) ta0—>-415" and3.1930 at higher quantiles (p=0.95), respectively, for
walleye captured in 1989-2004 (current data), whereas stimated parameters vary
from approximatelyl0—5-93% and 3.3154 at lower quantiles td0~>43"" and 3.1831
at higher quantiles, respectively, for walleye captured %80-1988 (historical data).
For white bass data, the estimated parameters, @nd 3; vary from approximately
1076-2611 and 3.4883 at lower quantiles td0~*%%35 and2.9564 at higher quantiles, re-
spectively, for white bass captured in 1989-2004 (curretd)d and from approximately
107°5-0933 and3.2555 at lower quantiles ta0~*¥74 and3.0316 at higher quantiles, re-
spectively, for white bass captured in 1980-1988 (histdata).

Next, we incorporate the historical data into the analyie®current study using the
allometric model (3.1). We estimate quantiles by increm@ft0.01 from 0.05 to 0.95.
We can see from Figure 3 that the bands of parameter estimatetheir confidence
intervals become wider for quantiles greater than 0.80Herwalleye data. For white
bass data, the bands of parameter estimates and their ca®idgervals narrow in
estimates from lower to higher quantiles, indicating hegeneity of the data.

There are substantial differences in the parameter egfetween the current and

historical data and the sample sizes of each are quite @iffeFurthermore, there is
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evidence of heterogeneity in the data, and therefore thenfidrporation of the histori-
cal data into the analysis of the current study is considerapopropriate. Thus, we use
the power prior approach, where we assume a range of values fo, = 0.25 and
0.50). Moreover, we treat the data as clustered data. Wenassa prior knowledge and
use independenv (0, 10%) priors on all regression parametefs, = so; = 0.01 and
loz = sg2 = 1. We run our Gibbs sampler for 11000 iterations with an ihtiian-in of
1000 iterations and we estimate quantiles by increments0dffdom 0.05 to 0.95.

Tables 1 and 2 summarise the% intervals for the three approaches at 5 different
quantiles, namely 0.05, 0.25, 0.50, 0.75 and 0.95. Clet/95% intervals are gen-
erally much wider than our interval§:6 RE,,). For example in the walleye data, at
p = 0.95 anda(=0.50, the interval width of our approach flxg,, 3, and 3, is 0.024
and 0.049, respectively, compared to an interval width 868.and 0.068 for CQR, re-
spectively, and 1.414 and 0.636 for the MCMCquantreg mettesgectively. Similarly,
in the white bass data, at= 0.95 anda(=0.50, the interval width of our approach for
log,, B andf; is 0.089 and 0.034, respectively, compared to an intendihnof 0.164
and 0.066 for CQR, respectively, and 5.849 and 2.477 for ted@quantreg method,
respectively.

Tables 1 and 2 summarise the comparison of results alsomstef ME and RMSE
for each model. Clearly, the mean error of the three appeseahe more or less the
same. However, in general, the mean error in our model islenthbn the mean error
results obtained from MCMCquantreg and CQR . In additioe, itot mean squared
error comparison shows that our model is more efficient th@Zquantreg and CQR.

4. DISCUSSION

In this paper we have introduced Bayesian quantile regresaethods for an allomet-
ric model, with the primary goal of estimating models thatlude random effects. We
have elicited a prior distribution from the historical dat&e prior distribution depends
on the quantile level. Thus, we have different priors fofedi#nt quantiles. The prior
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distributions can be used either with no prior data or witmptete prior data. Full con-
ditional distributions have been outlined for unknown paeters and a Gibbs sampler
is derived.

The results show that our method generally performs bédtser the others across the
data in terms of the5% intervals, ME and RMSE. We believe that our proposed method
will allow researchers to obtain more precise estimatesafaéngth-weight relationship
by incorporating historical fish data into the analysis afrent fish studies.

5. APPENDIX A

As shown in Reed and Yu (2009) and Kozumi and Kobayashi (2@08) variable with
an asymmetric Laplace distribution can be represented eal@mixture of normals:

g 1=2p 2z
dpﬂ—pyz+ pﬂ—pyé (1)

The random variables > 0 and¢ are independent and have standard exponential dis-
tribution and standard normal distribution, respectively
Let

1-2
o — p

— d 2 =
p(1—p) o ¢

We assume thabg,, W;;, conditional ony; andz;;, fori = 1,..., Nandj = 1,...,n;, are
independently distributed according to a normal distrdouwith mearl’; 3 +u; +70z;;
and variance?¢*z;;. From now on, it is more convenient with the Gibbs sampleradawv
with v;; = 72;; to avoid the scale parametein the conditional mean dbg,, W;;. Thus,
the conditional densities of the respoiise,, IV;; andlog,, Wy, are given, respectively,
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(logyo W, Li; 8 — ui — Ovy, )2
27‘§Z52UU

Flogy Wii |8, us, 7,v55) o< (Tv55) 72 exp{— 1,

(loglo Woij — Lbz’jﬁ — Up; — 91101’3')2
27’@52’1102']'

2

_1
J(logio Wi | B, toi, T, Voij) o< (TV0i5) 2 exp{ —

whereuvy;; represents the exponential variable. The posterior bigtan can then be
calculated using Bayes theorem

N n;
f(ﬁa 7,0, 7uu07VV0|D DOaa() OCHH]C lOglOVVZJ|ﬁ ulaT'UZ]) (ui|gu_2)7r(vij|7)
=1 j=1
No no;
x TTTTIf (ogio Wois |8, wos, 7 v0ig)) f (uailery ) (vois | 7)
i=1 j=1
Xw(ﬁ)w(r)w(af), (5.2)

wherev = (vq1, ..., UN, Yandvy = (vo11, --- s UONong ) A little algebra shows that

n; No mno;

il LosiL o
i i l
a0 %

2
TV
21j1¢0‘]

and
= Li; (logo W, i — Ui — evw 2 & LOw log o Woij — uoi — HUOZ’j) 1B lp )
E E +a E E .
=1 j5=1 7'(;32 ’ =1 j5=1 T¢2UOU ’ ’

Then, givenr, o2, U, Uy, V,Vy and ay, we havegs|r, o, 2 U, Uy, V, Vo, ag, D, Dy ~
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]\@(B, B,), whereN, denotes a 2-dimensional normal distribution. From (5.2 have
that the conditional posterior distribution of given 3, 7 andu; is the kernel of a gen-
eralized inverse Gaussian distribution; thavig|,5, 7, u;, D ~ GIG(1/2, a1, b,), where

= ((logyo Wij — L38 — u;)?/7¢*)Y2 by = (2/7+ 62 /7¢*)*/? and the density of the
GIG(g, as, bl) is

1 -1 1 — ” 2 62
7T(Uz'j|§7 ai, bl) ij—2 eXP{__[(( Ogm 7_¢2 ﬁ ) )Uz'jl + (; + ?&)Uu]}

From (5.2) we can deduce that the full conditional postedistribution ofv,; given
G, andug; is also the kernel of a generalized inverse Gaussian disiwiin, that is
V0516, T, woiy ag, D, Do ~ GIG((2 — ag)/2, az, by), whereay = (ag(log,o Woi; — L0ij
—ug;)? /79?2, andb, = (2/1 + agh? /7$*)'/%. The conditional distribution of given
3, u, andu, is a Gamma distribution, that i§3, u, Uy, ag, D, Dy ~ G(as, b3), where

N No
a32101+2 ni—i‘aog No;
i—1 i=1

and
No mno;
by = so1 + Z Z Pp (log,, W, i — LB — u;) + ag Z pr log;o Woij — Loij0 — Up;).
i=1 j=1 i=1 j=1

The conditional posterior distribution ef 2 givenu, u, anda, is a Gamma distribution,
that is

No
0';2 U,Uo,&Q,D,DQNG( (l02+N+a0N0 502+Zu —|—aozum
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The conditional posterior distribution af given, 7, o, 2 andv;; is normal with mean

D i1 Vi = (log,o Wi; — Li;8 — 0uy))
ni + ¢80 vy ;

Y
= Vi

and variance

Finally, the conditional posterior distribution af, given 3, 7, o, andvy;; is normal

with mean
2252 voi i . ((108;10 Woij — Loy — QUOU))
aono; + 7¢?02 3 7 voij = ’ Voi; 7
and variance
7% 352 Voij

.
agno; + 70y 35T voi
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Table 1.95% intervals, ME and RMSE for the walleye data. The power prigoraach assuming heterogeneous

intercepts among years (GSREis compared with two other approaches: the MCMCquantretyodeor the current
data and the frequentist quantile regression method of’€au®lel(CQR).

Model p Bo 051 ME RMSE
MCMCquantreg  0.95 (-6.121, -4.707) (2.821, 3.457) 0.06®88.
COR 0.95 (-5.491, -5.328) (3.135, 3.203) 0.026 0.076
GSRE,,—.25 0.95 (-5.477,-5.414) (3.142,3.197) 0.017 0.055
GSRE,=0.50 0.95 (-5.442, -5.418) (3.139, 3.188) 0.018 0.050
MCMCquantreg  0.75 (-6.060, -5.325) (3.133, 3.411) 0.02B5D.
CQR 0.75 (-5.642, -5.539) (3.203, 3.253) -0.053 0.096
GSRE,,—.25 0.75 (-5.608, -5.575) (3.205, 3.246) 0.015 0.019
GSRE,,—0.50 0.75 (-5.609, -5.571) (3.211, 3.235) 0.013 0.021
MCMCquantreg  0.50 (-6.155, -5.490) (3.183, 3.437) 0.00850.
COR 0.50 (-5.818, -5.634) (3.235, 3.294) -0.073 0.103
GSRE,=0.25 0.50 (-5.757, -5.655) (3.242,3.275) 0.017 0.039
GSRE,=0.50 0.50 (-5.766, -5.661) (3.248, 3.278) 0.013 0.037
MCMCquantreg 0.25 (-6.331, -5.441) (3.193, 3.491) -0.04668
COR 0.25 (-5.841, -5.737) (3.257, 3.300) -0.097 0.121
GSRE,,—.25 0.25 (-5.821, -5.776) (3.261, 3.300) -0.010 0.029
GSRE,,—0.50 0.25 (-5.824, -5.779) (3.264, 3.302) -0.014 0.023
MCMCquantreg  0.05 (-6.881, -5.545) (3.175, 3.667) -0.06130D
COR 0.05 (-5.992, -5.915) (3.307, 3.334) -0.194 0.215
GSRE,=0.25 0.05 (-5.971, -5.947) (3.317, 3.324) -0.039 0.037
GSRE,=0.50 0.05 (-5.971, -5.944) (3.318, 3.324) -0.043 0.032
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Table 2.95% intervals, ME and RMSE for the white bass data. The power gqiproach assuming heterogeneous
intercepts among years (GSREis compared with two other approaches: the MCMCquantretyodeor the current
data and the frequentist quantile regression method of’€au®lel(CQR).

Model p Bo 051 ME RMSE
MCMCquantreg  0.95 (-7.407,-1.558) (1.729,4.176) 0.09820.
COR 0.95 (-5.078,-4.914) (3.042,3.108) 0.231 0.258

GSRE,_o.;  0.95 (-5.081, -4.984) (3.058,3.109) 0.042 0.071
GSRE,—0.50  0.95 (-5.077, -4.988) (3.073,3.107) 0.031 0.059

MCMCquantreg  0.75 (-6.232,-3.936) (2.636,3.580) 0.049D80D.

CQR 0.75  (-5.356,-5.177) (3.128,3.202) 0.101 0.142
GSRE,_o.;  0.75 (-5.308, -5.247) (3.141,3.172) 0.021 0.034
GSRE, 5  0.75 (-5.301, -5.249) (3.145,3.183) 0.025 0.031

MCMCquantreg  0.50 (-6.511, -4.355) (2.786,3.671) 0.01@84.

CQR 0.50 (-5.525, -5.197 ) (3.114,3.249) -0.005 0.117
GSRE,—¢25  0.50 (-5.429, -5.316) (3.125,3.198) 0.001 0.022
GSRE,—¢s5  0.50 (-5.411, -5.302) (3.128,3.207) 0.003 0.012

MCMCquantreg  0.25 (-7.108, -4.446) (2.790, 3.890) -0.04080
COR 0.25 (-5.621, -5.187) (3.109, 3.274) -0.286 0.320

GSRE, .25 0.25 (-5.558,-5.271) (3.172,3.233) -0.023 0.041

GSRE,,—0.50 0.25 (-5.516,-5.316) (3.178,3.228) -0.029 0.047

MCMCquantreg  0.05 (-9.887,-3.331) (2.240,4.952) -0.127150
CQR 0.05 (-5.897,-5.146) (3.072,3.382) -0.765 0.815

GSRE,—0.25 0.05 (-5.522,-5.228) (3.061, 3.272) -0.039 0.064

GSRE,,—0.50 0.05 (-5.531,-5.297) (3.078,3.229) -0.034 0.061
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Fig. 1. Scatter plot of the walleye Sander vitreus and whatgsbMorone chrysops data before (1980-1988) and after

(1989-2004). A smooth fitted line shows the change of the ltéiggrams against the total length in mm.
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Fig. 2. Scatter plot of the walleye Sander vitreus and whéteskMorone chrysops data before (1980-1988) and after

(1989-2004). A smooth fitted line shows the change of the htéiggrams over time.
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