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SUMMARY

In this paper, we introduce methods for conducting Bayesianquantile analysis of an allo-

metric model that includes random effects, with the primarygoal of estimating quantiles

of the length-weight relationship of fish data. We develop prior elicitation schemes to

incorporate historical information into the analysis of current data. We propose Gibbs
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sampler methods to facilitate Bayesian computation and provide detailed implementa-

tion schemes. We apply our methods to analyze data of walleyeSander vitreus and white

bass Morone chrysops in Lake McConaughy, Nebraska.

Keywords: Allometric model; Elicitation; Mixture representation;Prior distribution; Quantile regression.

1. INTRODUCTION

It is well known that the relationship between the length andweight of fish is given by

the following allometric model (Huxley and Teissier, 1936)

W = αLβ110ε, (1.1)

whereW is the weight in grams (g),L is the total length in millimeters (mm),α andβ1

are parameters, andε is the error term. Typically, comparisons between fish of different

lengths and from different populations are made using the relative weight(Wr), where

Wr = (W/Ws) × 100 andWs is a standard weight for fish of the same species and

length (Wege and Anderson, 1978). Wege and Anderson (1978) developed a standard

weight equation using75th-percentile weights from Carlander (1977). Essentially, the

use of75th percentile weights is based on the premise that the standard weight should

represent fish that are in better body condition than the meanbody condition (Blackwell

et al., 2000). This could be the case when there is no relationship or only a weak rela-

tionship between the means of such variables. However, it isuseful to look at several

quantile-based allometric models in order to discover moreuseful predictive relation-

ships between the weight and length. Cadeet al. (2008) showed that at a given total

length, the higher to lower quantiles of weight provide sufficient information and a more

complete picture of higher to lower body condition for evaluating effects of management

actions on individual fish populations.
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The estimation of the parameters of an allometric model (1.1) is essential in any

analysis of fishery data. In this paper, we use quantile regression to obtain estimates

of the quantiles of weight as a function of length. Quantile regression makes minimal

assumptions on the error term distribution and thus is able to accommodate non-normal

errors, which are common in many applications ( Koenker and Bassett, 1978; Koenker,

2005; Brain et al., 2010). In addition, the set of quantiles may give a more complete

picture of the relation between the length and weight than mean regression.

We introduce a random effect allometric model, and we employBayesian analysis to

take account of parameter uncertainty. Moreover, our idea is to estimate the parameters

α and β1 via a Bayesian mixed quantile regression, by incorporatinghistorical data

gathered from similar previous studies into the analysis ofcurrent data. In fishery studies,

large historical databases exist for the length and weight.It is therefore reasonable to

incorporate historical data into the analysis of the data, by quantifying it with a suitable

prior distribution on the model parameters. There are several methods to incorporate

historical data into the analysis of a current study. One of these methods is the power

prior proposed by Ibrahim and Chen (2000). This is constructed by raising the likelihood

function of the historical data to a power parameter between0 and 1. Ibrahim and Chen

(2000) define the power prior distribution for a set of parametersθ as

π(θ|D0, a0) ∝ ℓ(D0|θ)
a0π0(θ),

whereD0 denotes the data from the historical study,ℓ(D0|θ) denotes the likelihood

for the historical study,a0 denotes the power parameter, and the initial prior ofθ is

π0(θ). The power parameter represents the proportion of the historical data needed in

the current study. We will discuss the selection ofa0 in Section 2.2.

The rest of this paper is organized as follows. Section 2 introduces the linear mixed

quantile of an allometric model. Methods for eliciting prior distributions are discussed.

Section 3 gives a real data example to illustrate the proposed methodology and to com-
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pare our approach with other approaches. The Discussion is in Section 4 and the Ap-

pendix contains the details of the Gibbs sampler and full conditional distribution.

2. POSTERIORINFERENCE

2.1 Methods

In an allometric model (1.1),α andβ1 are coefficients determined by fitting the model to

observations of length and weight. It is well known that the length-weight relationship

of fish varies seasonally and spatially. However, the allometric model has been deemed

adequate for many applications (Robertis and Williams, 2008). In clustered data, the

allometric model (1.1) can be written as

Wij = αLβ1

ij 10εij , i = 1, ..., N ; j = 1, ..., ni (2.1)

whereWij is thejth weight in clusteri, Lij is thejth total length in clusteri andεij is

the error term. In this paper, we include a random intercept to the allometric model (2.1),

in order to allow for heterogeneous intercepts among clusters. If we assumeα = β010ui,

whereβ0 is the common constant for all clusters andui is the location shift random

effect of theith cluster, then Equation (2.1) can be extended as

Wij = β0L
β1

ij 10uiεij , i = 1, ..., N ; j = 1, ..., ni. (2.2)

After logarithmic transformation, Equation (2.2) becomes

log10 Wij = log10 β0 + β1 log10 Lij + ui + εij. (2.3)

In this model (2.3), we assume that the conditional qauntileof log10 Wij, Qlog10 Wij |ui,Lij
,

is given bylog10 β0p + β1p log10 Lij + ui. So, we assume that thepth quantile of model
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errorεij is zero. That is,

Qlog10 Wij |ui,Lij
(p) = log10 β0p + β1p log10 Lij + ui. (2.4)

For simplicity of notation, we will omit the subscriptp in the remainder of the paper.

We assume that theui are independently and identically distributed (iid) according to a

normal distribution with mean zero and varianceσ−2
u .

Given observations{Wij, Lij , ui; i = 1, · · · , N, j = 1, · · · , ni}, the regression coef-

ficients in (2.4) can be estimated consistently as the solution to the following minimiza-

tion problem (Koenker, 2005)

N
∑

i=1

ni
∑

j=1

ρp(log10 Wij − log10 β0 − β1 log10 Lij − ui), (2.5)

whereρp(·) is the check function defined by

ρp(t) =







pt, if t > 0,

(p − 1)t, if t < 0.

A possible parametric link between the minimization problem in (2.5) and maximum

likelihood theory is given by the asymmetric Laplace distribution; see Koenker and

Machado (1999), Yu and Moyeed (2001). A random variablelog10 Wij is distributed

as an asymmetric Laplace distribution with parametersµij, τ, andp if the corresponding

probability density is given by

f(log10 Wij |µij, τ, p) =
p(1 − p)

τ
exp{−ρp(

log10 Wij − µij

τ
)}, (2.6)

whereµij is the location parameter,τ is the scale parameter andp determines the quan-

tile level. The parameterp determines the skewness of the distribution and thepth quan-
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tile of this distribution is zero. The minimization problemin (2.5) is equivalent to maxi-

mizing the likelihood function oflog10 Wij by assuminglog10 Wij from an asymmetric

Laplace distribution withµij = log10 β0 + β1 log10 Lij + ui andτ = 1. Following this

standard asymmetric Laplace error distribution, Yu and Moyeed (2001) implemented

Bayesian inference for quantile regression, Yu and Stander(2007) developed a Bayesian

estimation procedure for the Tobit Quantile regression, and Geraci and Bottai (2007)

account for within-subject correlation by adding a random subject effect to the quan-

tile regression model. In this paper, we assume that thelog10 Wij , conditional onui, for

i = 1, ..., N andj = 1, ..., ni, are independently distributed according to an asymmetric

Laplace distribution.

LettingW = (log10 W11, ..., log10 WNnN
)′, L = (L11, ..., LNnN

)́, Ĺij = (1, log10 Lij),

u = (u1, ..., uN )́ andβ = (log10 β0, β1)́ , then the joint density of(W, u) based onN

clusters is given by

f(W, u|β, τ, σ−2
u ) =

N
∏

i=1

ni
∏

j=1

f(log10 Wij |β, ui, τ)f(ui|σ
−2
u ). (2.7)

Our interest lies on the likelihood function ofW givenβ, τ, andσ−2
u . Thus, integrat-

ing out the random effect leads to the likelihood

f(W|β, τ, σ−2
u ) =

∫

RN

f(W, u|β, τ, σ−2
u )du, (2.8)

whereRN denotes theN-dimensional Euclidean space. To proceed with a Bayesian

analysis, we need to specify a prior distribution for model parametersβ, τ , andσ−2
u . We

give details of prior elicitation in the next part.



Prior elicitation for mixed quantile regression with an allometric model 7

2.2 Elicitation of prior distribution

It is well known that a standard conjugate prior is not available for quantile regression

(Yu and Stander, 2007). Thus, Bayesian quantile inference models, including Bayesian

parametric, Bayesian semiparametric and Bayesian nonparametric models, either set

priors independently of the values of the quantiles, or assume the prior to be the same

for modelling different quantiles. In addition, the samplesize of fishery data in a given

study is typically small compared to the size of the population. Therefore, it is difficult

to estimate the parameters of interest precisely and it is more reasonable to set different

priors for different quantiles. For example, a95% quantile regression model should have

different parameter values from the median. To improve the precision of estimates, we

develop a new prior distribution characterized by ap−dependent parameter. Our idea is

to set priors based on historical information gathered fromsimilar previous studies.

Although one can use improper priors in Bayesian quantile regression, the inference

on current data is expected to be more reliable and sensitiveif there exist historical

data gathered from similar previous studies. Incorporating historical information into the

analysis of new information through a prior distribution provides a natural framework

for updating information across studies (Neelon and O’Malley, 2010). In this paper, we

use a power prior distribution, because it introduces a power parameter that explicitly

controls the amount of weight assigned to the historical data. Such control is important

when the sample size of the current data is quite different from the sample size of the

historical data or where there is heterogeneity between twostudies (Ibrahim and Chen,

2000). In addition, this prior has an attractive property inBayesian quantile regression

as it is dependent upon the quantile level.

Suppose there exists data from one historical fish study. LetW0ij be thejth weight

in clusteri, L0ij be thejth total length in clusteri and letu0i be a location shift random

effect of theith cluster for the previous study. Denote byD0 = (N0, W0, L0) the histor-

ical data of sizeN0 clusters, measuring the same response variable and covariate as the

current study, whereW0 = (log10 W011, ..., log10 W0N0n0N0

)́, L0 = (L011, ..., L0N0n0N0

)́,

Ĺ0ij = (1, log10 L0ij). For the random intercept model, we follow Chenet al. (2003) and
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we define a prior distribution forβ taking the form

π(β|D0, τ, σ
−2
u , a0) ∝ (

N0
∏

i=1

∫ n0i
∏

j=1

[f(log10 W0ij |β, u0i, τ)]a0f(u0i|σ
−2
u )du0i)π0(β), (2.9)

wheref(log10 W0ij |β, u0i, τ) is f(log10 Wij|β, ui, τ) with (log10 W0ij , u0i) in place of

(log10 Wij, ui), anda0 is a fixed parameter,0 6 a0 6 1. The power parametera0 rep-

resents how data from the previous study is to be used in the current study. There are

two special cases fora0: the first casea0 = 0 corresponds to no incorporation of the

data from the previous study relative to the current study. The second casea0 = 1 cor-

responds to full incorporation of the data from the previousstudy relative to the current

study. Therefore,a0 controls the influence of the data gathered from previous studies

that is similar to the current study. In this paper we assume that the power parametera0

is determined by expert opinion about the relevance of the historical data to the current

analysis. The prior specification is completed by specifying priors forβ, τ andσ−2
u . We

specify a 2-dimensional normal distribution with parameter (b0, B0) for β, an inverse

gamma (IΓ) prior with parameter(l01, s01) for τ and gamma(Γ) prior with parameter

( l02
2

, s02

2
) for σ−2

u . Thus, the joint prior distribution takes the form

π(β, τ, σ−2
u |D0, a0) ∝

N0
∏

i=1

∫ n0i
∏

j=1

[f(log10 W0ij |β, u0i, τ)]a0f(u0i|σ
−2
u )du0i

× exp{−
1

2
(β − b0)́B−1

0 (β − b0)}

×(
1

τ
)l01+1 exp{−

s01

τ
}(σ−2

u )
l02
2

−1
exp{−σ−2

u

s02

2
}. (2.10)
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Therefore, the joint posterior distribution ofβ, τ, andσ−2
u is given by

f(β, τ, σ−2
u |D, D0, a0) ∝ (

N
∏

i=1

∫ ni
∏

j=1

f(log10 Wij |β, ui, τ)f(ui|σ
−2
u )dui)π(β, τ, σ−2

u |D0, a0), (2.11)

whereD = (N, W, L) represent the current study.

2.3 Estimation

The Gibbs sampler by Geman and Geman (1984) is a very popular method for con-

structing a Markov chain in Bayesian inference, and it is used to generate a sequence of

samples from the full conditional distribution. To implement this method, the full condi-

tional posterior distributions of all unknown parameters are needed. In our case, each of

these distributions can be obtained by regarding all other parameters in (2.11) as known.

The conditional distribution of the random effect for the current studyf(ui| log10 Wij ,

β, τ, σ−2
u ) ∝ f(log10 Wij, ui|β, τ, σ−2

u ) is log-concave inui and the conditional distribu-

tion of the random effect for the historical dataf(u0i| log10 W0ij, β, τ, σ−2
u ) ∝ f(log10

W0ij , u0i|β, τ, σ−2
u ) is log-concave inu0i. Therefore, we can use the Gibbs sampler for

Bayesian analysis of the quantile regression model. The details of the Gibbs sampler

and full conditional distributions are given in the Appendix. If the historical data are not

available, the power prior distribution reduces to the form

π(β, τ, σ−2
u |D0, a0) ∝ exp{−

1

2
(β − b0)́B−1

0 (β − b0)}

×(
1

τ
)l01+1 exp{−

s01

τ
}(σ−2

u )
l02
2

−1 exp{−σ−2
u

s02

2
}. (2.12)

This case is equivalent toa0 = 0. In the case that there is no historical data available

and the current data are non-clustered, then by using the above prior distribution, the

Bayesian quantile regression reduces to (Reed and Yu, 2009)and is implemented using

the“MCMCquantreg” package in R (R Development Core Team, 2010).
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3. ANALYSIS OF THE WALLEYE AND WHITE BASS DATA

We used Bayesian quantile regression to estimate the length-weight relationship of wall-

eye Sander vitreus and white bass Morone chrysops before (1980-1989) and after (1989-

2004) in Lake McConaughy, Nebraska. More details about the study area and fish sam-

pling are reported in Porathet al. (2003). The data was analyzed by Cadeet al. (2008).

Cadeet al. (2008) consider fish measured before (1980-1989) as pre-alewife introduc-

tion and those measured after (1989-2004) as post-alewife introduction. The authors

developed the allometric model by including an indicator variable for the groups in the

years before alewife introduction and after. The model is given by

Qlog10 W (p|L, I) = log10 β0 + β1 log10 L + β2I + β3I log10 L, (3.1)

whereI is an indicator variable taking the value 0 for years (1980-1988) and the value

1 for years (1989-2004). The data are shown graphically in Figures 1 and 2. In compar-

ing weights between before-alewife-introduction and after, we emphasize how weights

change with length in Figure 1. In addition we emphasize how weights change over time

in Figure 2. The response variable Weight measures the weight (g) of individuals that are

classified according to years. Since the data occurs in clusters (years), it is very likely

that observations from the same year are statistically correlated and not independent.

In this case, it is inappropriate to analyze the data using a linear model. Our primary

objective in this study is to estimate the parameters of an allometric model for clustered

data (2.2) by incorporating prior historical information.We use post-alewife introduc-

tion as current data and pre-alewife introduction as historical data. Then, we incorporate

the historical data into the analysis of the current study byquantifying it with a suitable

prior distribution on the model parameters.

We compare three models: the Bayesian quantile regression model without historical

data, using the “MCMCquantreg” package in R (R Development Core Team, 2010), the

standard frequentist quantile regression for Cade’s model(3.1), referred to as “CQR”
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and obtained using the quantreg package in R with the defaultrank method to obtain

confidence intervals, and our approach with a power prior distribution assuming het-

erogeneous intercepts among clusters, “GSREa0
”. The methods are evaluated based on

95% intervals for each procedure, the mean error (ME) and the root mean square error

(RMSE) for each model where

RMSE =

√

√

√

√

∑N
i=1

∑ni

j=1(log10 Wij − log10 Ŵij)2

∑N
i=1 ni

(3.2)

We begin our analysis of the walleye and white bass data by separate analysis of

current and historical studies ignoring the clusters and using MCMCquantreg. The esti-

mated parameters ofβ0 andβ1 vary from approximately10−6.1937 and3.4213 at lower

quantiles (p=0.05) to10−5.4150 and3.1930 at higher quantiles (p=0.95), respectively, for

walleye captured in 1989-2004 (current data), whereas the estimated parameters vary

from approximately10−5.9395 and 3.3154 at lower quantiles to10−5.4377 and 3.1831

at higher quantiles, respectively, for walleye captured in1980-1988 (historical data).

For white bass data, the estimated parameters ofβ0 andβ1 vary from approximately

10−6.2614 and3.4883 at lower quantiles to10−4.6035 and2.9564 at higher quantiles, re-

spectively, for white bass captured in 1989-2004 (current data), and from approximately

10−5.6033 and3.2555 at lower quantiles to10−4.8744 and3.0316 at higher quantiles, re-

spectively, for white bass captured in 1980-1988 (historical data).

Next, we incorporate the historical data into the analysis of the current study using the

allometric model (3.1). We estimate quantiles by increments of 0.01 from 0.05 to 0.95.

We can see from Figure 3 that the bands of parameter estimatesand their confidence

intervals become wider for quantiles greater than 0.80 for the walleye data. For white

bass data, the bands of parameter estimates and their confidence intervals narrow in

estimates from lower to higher quantiles, indicating heterogeneity of the data.

There are substantial differences in the parameter estimates between the current and

historical data and the sample sizes of each are quite different. Furthermore, there is
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evidence of heterogeneity in the data, and therefore the full incorporation of the histori-

cal data into the analysis of the current study is consideredinappropriate. Thus, we use

the power prior approach, where we assume a range of values for a0 (a0 = 0.25 and

0.50). Moreover, we treat the data as clustered data. We assume no prior knowledge and

use independentN(0, 103) priors on all regression parameters,l01 = s01 = 0.01 and

l02 = s02 = 1. We run our Gibbs sampler for 11000 iterations with an initial burn-in of

1000 iterations and we estimate quantiles by increments of 0.01 from 0.05 to 0.95.

Tables 1 and 2 summarise the95% intervals for the three approaches at 5 different

quantiles, namely 0.05, 0.25, 0.50, 0.75 and 0.95. Clearly,the 95% intervals are gen-

erally much wider than our intervals (GSREa0
). For example in the walleye data, at

p = 0.95 anda0=0.50, the interval width of our approach forlog10 β0 andβ1 is 0.024

and 0.049, respectively, compared to an interval width of 0.163 and 0.068 for CQR, re-

spectively, and 1.414 and 0.636 for the MCMCquantreg method, respectively. Similarly,

in the white bass data, atp = 0.95 anda0=0.50, the interval width of our approach for

log10 β0 andβ1 is 0.089 and 0.034, respectively, compared to an interval width of 0.164

and 0.066 for CQR, respectively, and 5.849 and 2.477 for the MCMCquantreg method,

respectively.

Tables 1 and 2 summarise the comparison of results also in terms of ME and RMSE

for each model. Clearly, the mean error of the three approaches are more or less the

same. However, in general, the mean error in our model is smaller than the mean error

results obtained from MCMCquantreg and CQR . In addition, the root mean squared

error comparison shows that our model is more efficient than MCMCquantreg and CQR.

4. DISCUSSION

In this paper we have introduced Bayesian quantile regression methods for an allomet-

ric model, with the primary goal of estimating models that include random effects. We

have elicited a prior distribution from the historical data. The prior distribution depends

on the quantile level. Thus, we have different priors for different quantiles. The prior
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distributions can be used either with no prior data or with complete prior data. Full con-

ditional distributions have been outlined for unknown parameters and a Gibbs sampler

is derived.

The results show that our method generally performs better than the others across the

data in terms of the95% intervals, ME and RMSE. We believe that our proposed method

will allow researchers to obtain more precise estimates of the length-weight relationship

by incorporating historical fish data into the analysis of current fish studies.

5. APPENDIX A

As shown in Reed and Yu (2009) and Kozumi and Kobayashi (2009), any variable with

an asymmetric Laplace distribution can be represented as a scale mixture of normals:

ε =d 1 − 2p

p(1 − p)
τz +

√

2z

p(1 − p)
τξ. (5.1)

The random variablesz > 0 andξ are independent and have standard exponential dis-

tribution and standard normal distribution, respectively.

Let

θ =
1 − 2p

p(1 − p)
and φ2 =

2

p(1 − p)
.

We assume thatlog10 Wij , conditional onui andzij, for i = 1, ..., N andj = 1, ..., ni, are

independently distributed according to a normal distribution with meanĹijβ+ui+τθzij

and varianceτ 2φ2zij . From now on, it is more convenient with the Gibbs sampler to work

with vij = τzij to avoid the scale parameterτ in the conditional mean oflog10 Wij. Thus,

the conditional densities of the responselog10 Wij andlog10 W0ij are given, respectively,
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by

f(log10 Wij|β, ui, τ, vij) ∝ (τvij)
− 1

2 exp{−
(log10 Wij − Ĺijβ − ui − θvij)

2

2τφ2vij
},

f(log10 W0ij |β, u0i, τ, v0ij) ∝ (τv0ij)
− 1

2 exp{−
(log10 W0ij − Ĺ0ijβ − u0i − θv0ij)

2

2τφ2v0ij

},

wherev0ij represents the exponential variable. The posterior distribution can then be

calculated using Bayes theorem

f(β, τ, σ−2
u , u,u0, v,v0|D, D0, a0) ∝

N
∏

i=1

ni
∏

j=1

f(log10 Wij |β, ui, τ, vij)f(ui|σ
−2
u )π(vij |τ)

×
N0
∏

i=1

noi
∏

j=1

[f(log10 W0ij |β, u0i, τ, v0ij)]
a0f(u0i|σ

−2
u )π(v0ij |τ)

×π(β)π(τ)π(σ−2
u ), (5.2)

wherev = (v11, ..., vNnN
)́ andv0 = (v011, ..., v0N0n0N0

)́. A little algebra shows that

B−1
p =

N
∑

i=1

ni
∑

j=1

LijĹij

τφ2vij
+ a0

N0
∑

i=1

n0i
∑

j=1

L0ijĹ0ij

τφ2v0ij
+ B−1

0 ,

and

β̂ = Bp(

N
∑

i=1

ni
∑

j=1

Lij(log10 Wij − ui − θvij)

τφ2vij
+ a0

N0
∑

i=1

n0i
∑

j=1

L0ij(log10 W0ij − u0i − θv0ij)

τφ2v0ij
+ B−1

0 b0).

Then, givenτ, σ−2
u , u, u0, v, v0 and a0, we haveβ|τ, σ−2

u , u, u0, v, v0, a0, D, D0 ∼
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N2(β̂, Bp), whereN2 denotes a 2-dimensional normal distribution. From (5.2), we have

that the conditional posterior distribution ofvij givenβ, τ andui is the kernel of a gen-

eralized inverse Gaussian distribution; that is,vij |β, τ, ui, D ∼ GIG(1/2, a1, b1), where

a1 = ((log10 Wij − Ĺijβ − ui)
2/τφ2)1/2 , b1 = (2/τ +θ2/τφ2)1/2 and the density of the

GIG(1

2
, a1, b1) is

π(vij |
1

2
, a1, b1) ∝ v

−1

2

ij exp{−
1

2
[(

(log10 Wij − Ĺijβ − ui)
2

τφ2
)v−1

ij + (
2

τ
+

θ2

τφ2
)vij ]}.

From (5.2) we can deduce that the full conditional posteriordistribution ofv0ij given

β, τ and u0i is also the kernel of a generalized inverse Gaussian distribution, that is

v0ij |β, τ, u0i, a0, D, D0 ∼ GIG((2 − a0)/2, a2, b2), wherea2 = (a0(log10 W0ij − Ĺ0ijβ

−u0i)
2/τφ2)1/2, andb2 = (2/τ + a0θ

2/τφ2)1/2. The conditional distribution ofτ given

β, u, andu0 is a Gamma distribution, that isτ |β, u, u0, a0, D, D0 ∼ G(a3, b3), where

a3 = l01 +

N
∑

i=1

ni + a0

N0
∑

i=1

n0i

and

b3 = s01 +
N

∑

i=1

ni
∑

j=1

ρp(log10 Wij − Ĺijβ − ui) + a0

N0
∑

i=1

n0i
∑

j=1

ρp(log10 W0ij − Ĺ0ijβ − u0i).

The conditional posterior distribution ofσ−2
u givenu, u0 anda0 is a Gamma distribution,

that is

σ−2
u |u, u0, a0, D, D0 ∼ G(

1

2
(l02 + N + a0N0),

1

2
(s02 +

N
∑

i=1

u2
i + a0

N0
∑

i=1

u2
0i)).
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The conditional posterior distribution ofui givenβ, τ, σ−2
u andvij is normal with mean

∑ni

j=1 vij

ni + τφ2σ2
u

∑ni

j=1 vij

ni
∑

j=1

(log10 Wij − Ĺijβ − θvij)

vij

,

and variance

τφ2
∑ni

j=1 vij

ni + τφ2σ2
u

∑ni

j=1 vij

.

Finally, the conditional posterior distribution ofu0i given β, τ, σ−2
u andv0ij is normal

with mean

∑n0i

j=1 v0ij

a0n0i + τφ2σ2
u

∑n0i

j=1 v0ij

n0i
∑

j=1

a0(
(log10 W0ij − Ĺ0ijβ − θv0ij)

v0ij
),

and variance

τφ2
∑n0i

j=1 v0ij

a0n0i + τφ2σ2
u

∑n0i

j=1 v0ij
.
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Table 1.95% intervals, ME and RMSE for the walleye data. The power prior approach assuming heterogeneous
intercepts among years (GSREa0

) is compared with two other approaches: the MCMCquantreg method for the current
data and the frequentist quantile regression method of Cade’s model(CQR).

Model p β0 β1 ME RMSE
MCMCquantreg 0.95 (-6.121, -4.707) (2.821, 3.457) 0.068 0.083

CQR 0.95 (-5.491, -5.328) (3.135, 3.203) 0.026 0.076
GSREa0=0.25 0.95 (-5.477, -5.414) (3.142, 3.197) 0.017 0.055
GSREa0=0.50 0.95 (-5.442, -5.418) (3.139, 3.188) 0.018 0.050

MCMCquantreg 0.75 (-6.060, -5.325) (3.133, 3.411) 0.025 0.052
CQR 0.75 (-5.642, -5.539) (3.203, 3.253) -0.053 0.096

GSREa0=0.25 0.75 (-5.608, -5.575) (3.205, 3.246) 0.015 0.019
GSREa0=0.50 0.75 (-5.609, -5.571) (3.211, 3.235) 0.013 0.021

MCMCquantreg 0.50 (-6.155, -5.490) (3.183, 3.437) 0.008 0.057
CQR 0.50 (-5.818, -5.634) (3.235, 3.294) -0.073 0.103

GSREa0=0.25 0.50 (-5.757, -5.655) (3.242, 3.275) 0.017 0.039
GSREa0=0.50 0.50 (-5.766, -5.661) (3.248, 3.278) 0.013 0.037

MCMCquantreg 0.25 (-6.331, -5.441) (3.193, 3.491) -0.046 0.063
CQR 0.25 (-5.841, -5.737) (3.257, 3.300) -0.097 0.121

GSREa0=0.25 0.25 (-5.821, -5.776) (3.261, 3.300) -0.010 0.029
GSREa0=0.50 0.25 (-5.824, -5.779) (3.264, 3.302) -0.014 0.023

MCMCquantreg 0.05 (-6.881, -5.545) (3.175, 3.667) -0.067 0.137
CQR 0.05 (-5.992, -5.915) (3.307, 3.334) -0.194 0.215

GSREa0=0.25 0.05 (-5.971, -5.947) (3.317, 3.324) -0.039 0.037
GSREa0=0.50 0.05 (-5.971, -5.944) (3.318, 3.324) -0.043 0.032
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Table 2.95% intervals, ME and RMSE for the white bass data. The power prior approach assuming heterogeneous
intercepts among years (GSREa0

) is compared with two other approaches: the MCMCquantreg method for the current
data and the frequentist quantile regression method of Cade’s model(CQR).

Model p β0 β1 ME RMSE
MCMCquantreg 0.95 (-7.407, -1.558 ) (1.729, 4.176 ) 0.098 0.124

CQR 0.95 (-5.078, -4.914 ) (3.042, 3.108 ) 0.231 0.258
GSREa0=0.25 0.95 (-5.081, -4.984) (3.058, 3.109) 0.042 0.071
GSREa0=0.50 0.95 (-5.077, -4.988) (3.073, 3.107) 0.031 0.059

MCMCquantreg 0.75 (-6.232, -3.936) (2.636, 3.580) 0.049 0.087
CQR 0.75 (-5.356, -5.177 ) (3.128, 3.202 ) 0.101 0.142

GSREa0=0.25 0.75 (-5.308, -5.247) (3.141, 3.172 ) 0.021 0.034
GSREa0=0.50 0.75 (-5.301, -5.249) (3.145, 3.183 ) 0.025 0.031

MCMCquantreg 0.50 (-6.511, -4.355) (2.786, 3.671) 0.010 0.084
CQR 0.50 (-5.525, -5.197 ) (3.114, 3.249 ) -0.005 0.117

GSREa0=0.25 0.50 (-5.429, -5.316 ) (3.125, 3.198 ) 0.001 0.022
GSREa0=0.50 0.50 (-5.411, -5.302 ) (3.128, 3.207 ) 0.003 0.012

MCMCquantreg 0.25 (-7.108, -4.446) (2.790, 3.890) -0.047 0.087
CQR 0.25 (-5.621, -5.187 ) (3.109, 3.274) -0.286 0.320

GSREa0=0.25 0.25 (-5.558, -5.271 ) (3.172, 3.233) -0.023 0.041
GSREa0=0.50 0.25 (-5.516, -5.316 ) (3.178, 3.228) -0.029 0.047

MCMCquantreg 0.05 (-9.887, -3.331) (2.240, 4.952 ) -0.127 0.150
CQR 0.05 (-5.897, -5.146) (3.072, 3.382) -0.765 0.815

GSREa0=0.25 0.05 (-5.522, -5.228) (3.061, 3.272) -0.039 0.064
GSREa0=0.50 0.05 (-5.531, -5.297) (3.078, 3.229) -0.034 0.061
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Fig. 1. Scatter plot of the walleye Sander vitreus and white bass Morone chrysops data before (1980-1988) and after

(1989-2004). A smooth fitted line shows the change of the weight in grams against the total length in mm.
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Fig. 2. Scatter plot of the walleye Sander vitreus and white bass Morone chrysops data before (1980-1988) and after

(1989-2004). A smooth fitted line shows the change of the weight in grams over time.
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Fig. 3.95% confidence intervals of the quantile regression coefficients for the CQR model.


