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ABSTRACT 
Forward selection is a very effective variable selection procedure for selecting a parsimonious 
subset of covariates from a large number of candidate covariates. Detecting the type of outlying 
observations, such as vertical outliers or leverage points, and the forward selection procedure are 
inseparable problems. For robust variable selection, a crucial issue is whether the outliers are 
univariate, bivariate, or multivariate. This paper uses a √  consistent robust multivariate 
dispersion estimator to obtain robust correlation estimators used to establish robust forward 
selection procedures that outperform methods that use robust bivariate correlations. The usefulness 
of our proposed procedure is studied with a numerical example and a simulation study. The result 
shows the proposed method has scalability and the ability to deal with univariate, bivariate and 
multivariate outlying observations including leverage points or vertical outliers, and the new 
method outperforms previously published methods of robust forward selection. 
1. INTRODUCTION 

As a consequence of the rapid development in computer and networking technologies in 
 
 
 



recent years, the process of collecting large scale information has become easy. When there are 
a large number of variables, the curse of dimensionality is a major challenge for researchers. 
The challenge can be classified into two directions, the cost of the calculation and the time 
consumed. This issue that preoccupied the researchers led them to benefit from the proposed 
bivariate location and scatter estimators which have been utilized in the variable selection 
procedure to reduce the time of computation by clear mathematical calculations. 
      It is well known that the algorithms of classical variable selection were greedy and unstable, 
and that little changes in the data might result in at least one covariate to be chosen instead of 
another (Heterberge et al. 2008). In the last few years, considerable attention has been paid to 
improving and extending the general framework of Forward selection (FS) which is a very 
effective step-by-step procedure for choosing a useful subset from a lot of candidate covariates. 
      Hastie et al. (2001) proposed forward stagewise which a stable variable selection procedure 
that picks the same first covariate as FS and it changes the identical coefficient by a small 
amount and then it pays another small step for the variable that has the highest correlation with 
the current residuals. Unlike FS, forward stagewise takes many tiny steps to move toward the 
final model, and tends to obtain order between variables (Khan et al., 2007b). Efron et al. 
(2004) introduced Least Angle Regression (LARS) which is an algorithmic framework using 
the forward stagewise with lasso (Tibshirani, 1996) and boosting (Freund and Schapire, 1997) 
algorithms. 
      It is clear that the correlation coefficient is an essential issue in the previous variable 
selection methods, because the correlation coefficient between the response Y and the covariate 
X can be expressed in terms of orthogonal design as geometric angle θ ,   which is defined as 
follows: 

, = < , >
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where the normalization ‖ ‖ and ‖ ‖ are 1 (unit length) and ∑ = 0,   ∑ = 0 , =
1, … , , and  is a positive integer number greater than zero.   
        Unfortunately, the classical correlation coefficients are sensitive to the presence of outliers 
or other contamination. Consequently, where the correlation coefficient is non-robust the 
favourite variable selection procedure is non-robust too. One solution considered to overcome 
this issue was to propose a robust correlation method. The robustness literature shows a variety 
of approaches on robust correlations and a few of publications that addressed or discussed the 
issue of robust univariate and bivariate correlations e.g.,(Alqallaf et al., 2002; Maronna, 1976; 
Khan et al. 2007b). 
        Khan et al. (2007a) and Khan et al. (2007b) incorporated the robust bivariate correlation 
with FS and LARS respectively. The authors suggested a pairwise correlation approach, based 
on Maronna's M-estimates of the multivariate location and scatter matrix (Maronna, 1976) for 
FS and adjusted Winsorization in terms of correlations used with LARS. The major drawback 
of bivariate correlation is resistance only to bivariate outliers. However, three or higher-
dimensional outliers may not be detected by univariate and bivariate analyses. Alfons et al. 
(2011) suggested a context-sensitive algorithm after LARS to overcome the problem of 
multivariate outliers. The authors seek, to do firstly dimensional reduction, and then weighting 
the observations, the last step the all possible subsets are used. This procedure is impossible 
with the classical forward selection. 
           Most of the authors in the robustness literature use a multivariate location and dispersion 
estimator, such as Fast-MCD (Rousseeuw and Van Driessen, 1999) to overcome the problem 
of outliers in high dimensional data since MCD is impractical to calculate. Olive and Hawkins 
(2010) proposed the Reweighted Fast Consistent High breakdown estimator (RFCH) which is 
backed by theory, and faster than Fast-MCD (Zhang et al. (2012)). Moreover it is feasible 



option for many robust applications, e.g. Alkenani and Yu (2013) and Ozdemir and Wilcox 
(2012). 
         However, several practical questions arise when dealing with variable selection in terms 
of correlations, for instance, is it important to find robust multivariate correlation approach? Is 
it crucial to establish robust multivariate forward selection when the multivariate outliers are 
present in a data. Since the adjusted Winsorization correlations is only robust to bivariate 
outliers, it is very imperative to develop robust correlations which resistant to multivariate 
outliers. As such, we proposed robust multivariate correlations based on RFCH. Subsequently, 
this paper incorporates the correlations from the RFCH estimator instead of the adjusted 
Winsorization correlations in the development of Robust multivariate Forward Selection (RFS) 
procedure.   
        We will investigate the resistance of the RFS procedure to various types of outlier 
scenarios, and compare the results with the classical FS in terms of correlations and robust 
forward selection based on the adjusted Winsorization correlations (Khan et al. (2007b). The 
remainder of the paper is organized into four sections, the RFCH and the competing estimator 
are presented in section 2. The section 3 describes the robust forward selection in terms of 
robust correlation. To evaluate the performance of RFS procedure with the competing methods 
we consider an example and simulation study that will be discussed in section 4. The 
conclusion is reported in section 5. 
 
2. BIVARIATE AND MULTIVARIATE ROBUST CORRELATION 

The choice of an appropriate initial correlation matrix is an important issue and an essential 
part for robust FS procedure. In this section we review two approaches, one is the adjusted 
Winsorization correlation estimate and the multivariate location and dispersion RFCH 
estimator. 



2.1 Adjusted Winsorization Correlation 
Khan et al.(2007b) proposed an adjusted Winsorization correlation that is more resistant to 

bivariate outliers. They developed the univariate Winsorization correlation that was introduced 
by Alqallaf et al.(2002), by resolving the effect of bivariate outliers. Two tuning constants are 
put forward to overcome the problem of having more outliers: a tuning constant  for the two 
quadrants that are bounded by the 2 × 2   square that contains the majority of the 
standardized data, and a smaller tuning constant  for the other two quadrants. The initial 
correlation is obtained by computing the classical correlation of the adjusted Winsorized data. 
 
Let ( , ), = 1,2, …,n, be a random sample from a bivariate distribution with location 
parameters μ  and , and scale parameter  and , respectively. 
(1)    Standardized and  by their location parameters and scales. 
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(2) The Huber psi function is given by  
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This univariate winsorization approach does not take into account the orientation of bivariate 
data. As a result, univariate correlation coefficient may be affected by some outliers which 
appear on the square boundaries. To overcome this problem (Khan et al., 2007b) adjusted the 
winsorized data as follows: 
Suppose that = .  and  is equivalent to  ( < 0). The remaining values of 

 be positive which is denoted by . Let the n  and n  be the subset size of  and  
respectively. The smaller constant    for the points in the two minor quadrants of  2 × 2   
square. 

=
.  ≤

.  >
 

The Huber Psi function is used again to get rid of the effect of remaining outliers which do 
not exceed the  point. 
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Then finding the simple Huber winsorized correlation is given by 
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(3) Suppose the initial bivariate variance-covariance matrix is the diagonal identity matrix. 
The adjusted Winsorized correlations are plugged into the initial bivariate variance-
covariance matrix by their counterparts, with respect to the unit variance and the 

( ∗ , ∗ ) = ( ∗ , ∗ ). The combination between ∗  and , ∗  is included in one 
matrix, denoted = ( ∗ , ∗ ) . To reduce the effect of outliers, the  matrix is 

transformed using the bivariate transformation = ( ) , 1 . ,  where (  ) 

is the Mahalanobis distance based on an initial bivariate correlation matrix. If the data follows 
a multivariate normal distribution, the squared Mahalanobis distance follows a 

 distribution. Here the tuning constant c = 5:99, the 95% quantile of the  
distribution. Finally, find a simple correlation between each two variables based on clean 
data. 
2.2 Reweighted Fast Consistent and High breakdown (RFCH) 
      Olive and Hawkins (2010) proposed a robust √n  consistent estimator that is called, the   

Fast Consistent, and High breakdown (FCH) estimator. The FCH employs the √n consistent 
DGK estimator and the high breakdown Median Ball (MB) estimator) as attractors. The 
algorithm starts by generating a sequence of practical robust estimators from K trial fits. These 
are called attractors and are denoted by (T , C ), … , (T , C ). The concentration technique is 
then used to obtain the final estimator (T , C ). 



The classical estimator (T , , C , ) = (x, S) is used as an initial estimator to get the DGK 
estimator T , , C ,  , while the MB estimator  T , , C ,   uses (T , , C , ) =

MED(X), I  as a start, where MED(X)  is the coordinate-wise median. If the DGK location 
estimator T ,   has a greater Euclidean distance from MED(X) than half of the data, FCH uses 
the MB attractor. The FCH uses the smallest determinant as the dispersion criterion to choose 
the attractor, otherwise T , − MED(X) . 
 
Let (T , C ) be the attractor used, then the location of FCH is T = T  and the scale is as 
follows:  
 

                                                    C =      ( ( , ) 
( , . )

× C                                                (3) 

 
where χ( , . ) is the 50th percentile of a chi-square distribution with p degrees of freedom. 
 
Olive and Hawkins (2010) used two standard reweighting steps for the RFCH estimator. Let 
(μ ,Σ ) be the classical estimator applied to the n  cases with D ( T , C ) ≤ χ( , . ) 
and let  
 
                                                       Σ = ,  

( , . )
× Σ                                                   (4) 

Then let  T ,Σ   be the classical estimator applied to the cases, with D μ ,Σ ≤
χ( , . ), and let  
 

                                                        C =  ( ,Σ  
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×Σ                                 (5) 



Olive and Hawkins use results from Lopuhaa (1999) to prove that RFCH is a √  consistent 
estimator of  (μ, cΣ)  for a large class of elliptically contoured distribution. However, the 
RFCH dispersion estimator is only conjectured to be high breakdown. The conjecture has not 
yet been proven. 
 
3. FORWARD SELECTION BASED ON ROBUST CORRELATION 

Two robust forward selection procedures were performed in order to verify the validity of 
the robustness against various types of outliers. The first one follows Khan et al. (2007a) but 
rather than using Maronna's M-estimates of the multivariate location and scatter matrix, we 
apply the adjusted Winsorization correlation which was also proposed by (Khan et al., 2007b). 
The adjusted Winsorization correlation is replaced by the correlation matrix based on RFCH 
estimator in the second approach. 
 
Suppose we have d covariate variables X  , … , X ,  where d ≤ 50, represented in a matrix X, 
and the response Y as a vector. Let each variable be robustly standardized based on its median 
and MAD. The FS.RFCH  consists of the following steps: 
Step 1. Split the original dataset into two subsets, a training subset and a test subset, and then 
scale the variables of both sets: 
                                           X =   ,   Y =  

                                      X =   ,   Y =  

Step 2. Define the active and inactive sets as follows: active = ϕ and  inactive = {1,2,3, … , d} 
Step 3. Calculate the robust correlation favour estimator (adjusted Winsorzation or RFCH).  
 



Step 4. Determine m |r   |, which is the highest absolute correlation between each covariate 
and the response variable  Y  ,where j = 1,2 … d, in order to choose the first covariate to be in 
the active vector. The remaining variables will be in the inactive vector. Say the first covariate 
is the active variable, which is written as active ← {1} , inactive ← {2,3, … , d} , and then find 
the F test based on the correlations can be computed by   

                                                                        F = ( )   
  

                                                                             (6) 

If F > F ( . )(1, n − 2) then continue to the next step, otherwise stop. In fact, in this step 
we can also calculate the p-value for the model that relies on the value of  F . 
Step 5. Regress the X  ∗  in the active vector on   Y  using an FMM-estimation, and then weight 
the observations using the bisquare weighted function and compute the probability as follows:   

                                                                       Pr = ∑                                                                         (7) 
 

This procedure tries to assign zero weight to the outliers. 
 
      Multiplying X  ∗   and   Y  by Pr  yields X∗   and Y∗  ,  where R stands for the remaining 
data   after deleting the outlying observations. The fitted value based on the first covariate in 
the active set should be written such that  y  = r   × X∗  and the prediction error is the 
mean square of Y∗  − y  . 
Step 6. To select a new active covariate, find the partial correlation between the inactive 
covariates with the   Y  vector adjusted for the active covariate. Say j = 2, … , d, then the partial 
correlation is defined as r . . Then determine m |r . | to select the second candidate 
covariate for the active covariates vector (say X∗). 

 



Step 7. Select an appropriate robust criterion to test the significance of adding a new covariate  
X∗  to  Y . Here the Partial F-test (P. F) is used to decide whether the new covariate should be 
added to Y  or the algorithm should be stopped: 

                                                                    P. F = ( )   .
  .

                                                       (8) 

If P. F > F ( . )(2, n − 3) then continue to the next step, otherwise stop. The p-value for 
the model is computed. Calculate the robust prediction error again in the same way as in step 
(5), with the intention of fitting all covariates in the active set.   
Step 8. Repeat steps 6 and 7 and use equation (7) to find P. F  , then continue until the null 
hypothesis is accepted. 
At each step of the forward selection, once one covariate among the remaining covariates is 
considered for inclusion in the model, several selection criteria are employed to decide whether 
to include this covariate in the model and continue the process or to stop. Three robust selection 
criteria, namely the Partial F-test that was introduced by Khan et al. (2007a), the robust 
prediction error and the p-value of the total model, are applied to confirm whether the algorithm 
has selected the correct model. 
4. EXAMPLE AND SIMULATION 

Three methods are considered to evaluate the accuracy of the selection of the best model, 
namely classical FS, robust FS.Winso, and robust FS.RFCH. The Partial F-statistic criterion 
used by Khan et al. (2007a) for stopping the algorithm is used. The Partial F-statistic is robust 
if a robust correlation matrix is used, but is not robust if the classical correlation is used. The 
best covariate that enters the model is the one that has P:F greater than F (0: 95;  k;  n −  k −
 1). The performance of the classical and the two proposed methods is evaluated according to 
three criteria. First, the method should select the correct variables (for real data this is similar 
to the standard model selected in the previous study (1,3,4,2,5) and should have the optimal 



values for the Robust Prediction Error ( ) and the signi cance -value. The method that 
produces this model is better than the others. The optimal value of  is not necessarily the 
smallest one, because the RP E that is used with real data is the square root of the mean square 
error multiplied by the length of the nal model. This procedure is put forward to avoid the effect 
of the trade-o between bias and variance. In this case the method that selects an under-fitted 
model might produce the smallest , and it would definitely be wrong to take a decision 
based on this result. By contrast, in the case when the final model is over-fitted, the RP E will 
be higher than the RP E of the correct model. In the simulation study, because we know the 
correct covariates in the empirical test, we propose a new criterion that takes into account the 
effect of the final model length and the number of the correct covariates in it. We call this 
criterion the Optimal Prediction Error (OP E), and it is given by   
                                                        OPE = MSE ×                                                         (9) 
where MSE  is the mean squares error of the final model, L is the final model size and P  is the 
number of correct covariates in the final model.  
4.1 Example 

Data on executives are taken from Mendenhall et al. (1996), who present the annual salary 
of 100 executives corresponding to 10 potential predictors (7 quantitative and 3 qualitative) 
such as education and experience, and these are used to evaluate the proposed method. The 
candidate predictors are labelled from 1 to 10. This data is also used by Khan et al. (2007a); 
they are clean data (no outliers) and there is no multicollinearity. The original dataset is 
modified to have Leverage Points (LP) and Vertical Outliers (VO). 

       Figure 1 shows the modifying effect of vertical outliers on the data. Table I shows the 
results for the data on executive pay without any contamination. All three methods select the 
covariates 1,3,4,2,5 as the best model. It can be observed that the three methods show a 
minimum value for RP E when the full model includes the covariates 1,3,4,2,5, and that the 



Partial F-test (P:F ) values are greater than the F Table (F:T ) values. We show that the results 
for RPE for the robust FS.Winso, the robust FS.RFCH and the improved methods are very 
close, and all three methods select the standard model. 
           To investigate the effect of a single leverage point on the variable selection, we follow 
Khan et al. (2007a) by replacing one small value of predictor 1 (which was less than 5) by the 
large value 100. The results in Table II show that our proposed method and the robust FS.Winso 
method select the same model and meet the three criteria. However, the FS method fails to 
select the standard model. The FS.Winso procedure is robust against a single outlier. 

     Next, we contaminated the first covariate variable 1 by 10% leverage points. We 
replaced 10 good observations by 100 randomly selected values for predictor 1. As can be seen 
from Table III, the classical method and the robust FS.Winso method fail to select the standard 
model. The classical method chooses covariate 3, while the robust FS.Winso method selects 
the covariates 3,10 as the best model. It is interesting to see that our proposed method 
(FS.RFCH) selects the standard model 1,3,4,2,5 with the least values of RPE. 

   To investigate the effect of vertical outliers, we contaminated with a single V.outlier by 
replacing the observation number 4 in Y by 100. The results in Table IV show that the classical 
method failed to select any covariate and to stop, while the robust FS.Winso and robust 
FS.RFCH selected the standard model with very close results against the criteria. 

    In the same way, we created 10% vertical outliers by substituting observations arbitrary 
selected in Y with 100. The results in Table V show the reliability of FS.RFCH against the 
vertical outliers. 

In the previous examples, we focused only on the covariate of the first predictor. Next we 
investigated the effect of 10% LP and 10% vertical outliers on covariates 1, 2, 7, 8, and 10. We 
distributed the LP on the first five predictors by replacing one randomly selected good 



observation by a value of 100 in each predictor, and then we replaced 10 randomly selected 
observations in the y direction by 100, with the condition that there was a different level of LP. 
      Figure 2 above explains the effect of vertical outliers and leverage points in this scenario 
of contamination. Table VI shows the results for the three methods that are used for 
comparison. The results are similar to the previous results in that only the FS.RFCH method 
selects the standard model, while the other methods select incorrect models. The last simulation 
was the same as the previous simulation, but the 10% vertical outliers and leverage points lay 
on the same level. Table VII shows our proposed procedure still doing well, and FS.Winso in 
this simulation produces an under-fitting model by losing only one variable. 
 4.2 Simulation Study 

   A simulation study similar to that in Meinshausen and Buhlmann (2010) for the case 
when there is no correlation was carried out to investigate the behaviour of our proposed 
method compared with the classical FS and FS.Winso. The design matrix came from a centred 
multivariate normal distribution with covariance structure , = | |, where in this 
study we consider =  0 when  ≠   (no multicollinearity). The total of independent standard 
normal covariates is  =  30. We select the rst ve (  =  5) or nine (  =  9) as non-zero 
covariates (or active predictors) to create two linear models as follows: 
                                       Y = 5X + 4X + 3X + 2X + X +  σ                                            (10)             
                                       Y = 9X + 8X + 7X + ⋯ + X + σ                                              (11) 

We follow Alfons et al. (2011) in choosing e so that the signal-to-ratio ( ) is defined 
as follows: 

                                         = ( ⋯ )
( )                                                       (12) 

The remaining standard normal covariates ( −  ) are considered as noise. 500 datasets were 
generated, each of which was randomly divided into two samples, a training sample of size 250 



and a test sample of size 250. Each process was repeated for 500 simulation runs. The following 
scenarios were considered: 

(1) No outliers 
(2) Vertical outliers (VO): the contamination is given by replacing 10% of randomly selected 

 by a large number. 
(3) Univariate Leverage Points (ULP) and VO : as in 1, but one of the active predictors was 

contaminated with 10% of leverage points. 
(4) Bivariate Leverage Points (BLP) and VO: this was similar to 3, but the contamination 

included two active predictors with 10% leverage points. 
(5) Multivariate Leverage Points (MLP) and VO: the contamination in y is given by 

replacing a certain percentage of randomly selected observations by a large number, and 
for each such observation some or all active predictors are also replaced by a large 
number. 

      The selection criterion consists of two stages. At the first stage, the P.F statistics (should 
be robust where the correlations in use are robust too) values are used to select the best model 
of the training sample in each iteration, and then the robust RPE for the best model selected is 
calculated based on the test sample. For each simulated dataset we recorded the model size, the 
number of non-zero coefficients and the number of noise variables in the selected model. 

 To evaluate the performance of the three methods, the average of the noise variables, 
denoted as AV.Noise, the average of the model size, denoted as AV.Model Size, the average 
of non-zero coefficients, denoted as AV.Nonzero, and the average of OPE, denoted as AV.OPE 
are recorded over all training sets. The least value for AV.RPE (the average of RPE) is found 
where the particular method selects the standard model many times more than other methods. 
All methods fitted the selected model without including the intercept on the training dataset, 
and then they used this to predict the test dataset outcomes. The FMM-estimator introduced by 



(Yohai, 1987) is used to fit the model obtained by the robust methods, and then the weights of 
the bisquare function are used. Only the non-zero weighted observations are used to nd the 
RPE with the test set. The best method is the one that has the least values for AV.RPE and 
Av.Noise. Moreover, we have to include the numbers of non-zero and zero coefficients in our 
consideration. Table VIII presents the RPE, the AV.Nonzero, the AV.Noise, the AV.Model 
Size and the AV.OPE of 500 simulation runs. 
      For the clean data (0% outliers) the performance of FS.RFCH is as good as FS and better 
than FS.Winso, whether = 5 or 9. It selects the lowest noise variables, has a reasonable 
average model size, and has the lowest AV.RPE and the lowest AV.OPE. Although FS.Winso 
selected a higher average of non-zero covariates, the difference does not exceed the appearance 
or disappearance of a single variable. In the cases with 10% of vertical outliers, and 10% of 
vertical outliers and univariate or bivariate LP, present in the dataset, Table VIII shows that 
both FS.RFCH and FS.Winso performed better than FS. The difference in the performance of 
three methods is evident in Table VIII when the dataset was contaminated by 10% vertical 
outliers and multivariate leverage points. The proposed method was more consistent in the 
selection of non-zero covariates, in the number of noise variables, and in the optimal prediction 
error. Note that the FS.Winso performs much better than FS and that its performance is very 
close to FS.RFCH when univariate and bivariate outliers appear in the dataset. 
5. CONCLUSION  
     Based on the results, it can be concluded that the improvement of the performance of the 
forward selection procedure has been very successful, considering that it is quite convincing, 
and thus the following conclusions can be drawn. The main target of this study is achieved 
where as the robust forward selection based on RFCH is more reliable than one based on 
bivariate correlation where multivariate outliers are existing in the data set. 



        The comparison has clearly shown that the FS and FS.Winso methods tend to over- t even 
with clean data, in contrast to FS.RFCH which selects the reasonable model. We have noticed 
that this problem has been inherent to FS.Winso method even though the univariate and 
bivariate LP points were present in the data. On the other hand, we noticed that FS.RFCH was 
more stable and consistent than the other methods. Summing from the results of real data and 
simulation, it can be noted that the controlling the error selection procedure in the FS.RFC 
algorithm is an important reason behind stability feature. 

   Consequently, it can be concluded that the adjusted Winsorization correlation matrix is 
sensitive outliers. The correlation matrix from the robust variance-covariance matrix in RFCH 
is more resistant to univariate, bivariate and multivariate outliers, for the outlier configurations 
considered in the simulation. The proposed robust FS.RFCH procedure can be readily used in 
practice as a remedy for the problem of having more outliers in the original dataset. 

This article was concerned the sample size  ≥ 10 ×  (Real data and Simulated data) 
and  >  5 ×   (training and test sets) where  is the number of predictors. However, the 
results should be applicable also to one case high dimensional data, that when the sample size 

≥   ×  where  >  5 .Therefore on the basis of the promising ndings presented in this 
paper, variable selection for high dimensional data based on RFCH and will be presented in 
future papers. 
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