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Abstract 
 

The applications of bootstrap methods in regression analysis have drawn much 
attention to the statistics practitioners because of some practical reasons. In order to make 
reliable inferences about the parameters of a model, require that the parameter estimates are 
normally distributed. Nevertheless, in real situations, many estimates are not normal and 
the use of bootstrap method is more appropriate as it does not rely on the normality 
assumption. It is now evident that the presence of outliers have an unduly effect on the 
bootstrap estimates. There is a possibility that the bootstrap samples may contain more 
outliers than the original sample. In this paper, we propose a robust bootstrap algorithm 
based on Least Trimmed of Squares (LTS) estimator which will be unaffected in the 
presence of outliers. We call this method Dynamic Robust Bootstrap-LTS based 
(DRBLTS) because here we have employed the LTS estimator in the modified bootstrap 
algorithm. The performance of the DRBLTS is evaluated by real data sets and simulation 
study. The numerical examples indicate that the DRBLTS is more efficient than the other 
methods. 
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1.  Introduction 
The Ordinary Least Squares (OLS) method is the most popular technique in statistics and it is often use 
to estimate the parameters of a model because of tradition and ease of computation. According to 
Gauss-Marcov Theorem, the OLS estimators, in the class of unbiased linear estimators, have minimum 
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variance that is they are best linear unbiased estimator (BLUE). Nonetheless, the OLS estimates are 
easily affected by the presence of outliers and will produce inaccurate estimates (see Huber (1973), 
Rousseeuw and Leroy (2003) and Maronna et. al (2006)). Outliers are observations which are 
markedly different from the bulk of the data or from the pattern set by the majority of the observations. 
In a regression problem, observations corresponding to excessively large residuals are treated as 
outliers. According to Hampel et. al (1986), the existence of 1-10% outliers in a routine data is rather 
rule than exceptions. Midi et. al (2009) pointed out that the detection of outliers is crucial due to their 
responsibility for misleading conclusion about the fitting of multiple linear regression model, causing 
multicollinearity problems, masking and swamping of outliers. Hampel (1971) pointed out that even 
one single outlier can have an arbitrary large effect on the OLS estimates. In this connection, he 
introduced a breakdown point (BP) as the smallest percentage of outliers that can cause an estimator to 
take an arbitrary large value. The robustness of each estimator is measured by the BP. An estimator 
becomes more robust as the value of BP increases. The BP of the OLS estimator is 0% which implies 
that it can be easily affected by a single outlier. As an alternative a robust methods which are much less 
affected by outliers are put forward (see Huber (1973), Chatterjee and Hadi(1988), Barnett and Lewis 
(1994), Rousseeuw and Van Driessen(1999), Rousseeuw and Leroy(2003) and Maronna et. al(2006)). 
However, most robust methods are relatively difficult and computationally complicated. 

A better approach is to use a bootstrap method which was introduced by Efron (1979) with the 
basic idea of generating a large number of sub-samples by randomly drawing observations with 
replacement from the original dataset. These sub-samples are then being termed as bootstrap samples 
and are used to recalculate the estimates of the regression coefficients. Bootstrap method has been 
successful in attracting statistics practitioners as its usage does not rely on the normality assumption. 
An interesting feature of the bootstrap method is that it can provide the standard errors of any 
complicated estimator without requiring any theoretical calculations. These interesting properties of the 
bootstrap method have to be traded off with computational cost and time. There are considerable 
papers that deal with bootstrap methods (see Efron and Tibshiriani(1986), Efron and 
Tibshiriani(1993)). The classical bootstrap technique usually based on the OLS estimates. It is now 
evident that the presence of outliers could make a great deal of damage to the bootstrap inferential 
procedure (see Liu(1988), Barrera and Zamar (2002), Imon and Ali(2005) and Willems and Aelts 
(2005). The reason for inaccurate conclusion is that we suspect that there is a possibility that the 
bootstrap samples may contain more outliers than the original samples(see Barrera and Zamar(2002) 
and Willems and Van Aelts(2005)). The problem becomes worse when the percentage of outliers is 
more than the breakdown point (BP). In this situation the model structure may change and will affect 
the bootstrap estimates. By ignoring the outliers in the bootstrap samples and analyzing data using the 
classical bootstrap method may produce sub-optimal or even invalid inferential statements and 
inaccurate predictions. Unfortunately, many statistics practitioners are not aware of this consequence. 

In this paper, we propose a robust bootstrap algorithm that we called Dynamic Robust 
Bootstrap LTS-based method that combined the bootstrapping algorithm and the Least Trimmed of 
Squares (LTS) estimator. First, we attempt to develop a mechanism to detect the percentage of outliers, 
denoted as  α .The advantage of knowing the α  value in each bootstrap sample is that the LTS will 
trim the correct number of outliers if real outliers exist. Any bootstrap samples with  α  value greater 
than the BP will be deleted and a new bootstrap sample will be generated until we get the desired 
number of bootstrap replications, which is referred as B. The main idea is to identify the percentage of 
outliers in each bootstrap sample and use the LTS to estimate the model parameters of each bootstrap 
sample. We anticipate that the DRBLTS will provide more accurate results as the LTS will trim the 
exact percentage of outliers and any bootstrap sample having values of α  greater than the BP will be 
eliminated from the bootstrap samples and will be replaced with relatively ‘good’ samples. In this 
paper, a ‘good bootstrap’ sample is the one in which the percentage of outliers in each bootstrap 
sample is less than the BP of the LTS estimator. 
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2.  Material and Method 
In regression setting, there are two different ways of conducting bootstrapping; namely the random X-
resampling and the fixed X-resampling which is also refer as bootstrapping the residuals. The later is 
the most popular technique of bootstrapping in linear regression. In this paper we will consider this 
technique in the multiple linear regression model with additive error terms 

εβ += Xy  (1) 
where y is the 1xn  vector of observed values for the response variable and X  is the pxn  matrix of 
observed values for the k explanatory variables. The vector β  is an unknown p 1x  vector of 
regression coefficients and ε  is the 1xn  vector of error terms which is assumed to be independent, 
identically and normally distributed with mean 0  and constant variance, 2σ . 
 
2.1. Bootstrap Based on the OLS (BOLS) 

The OLS estimates of β  is given by 1ˆ ( )T TX X X Yβ −= . Since its origination, the classical bootstrap 
relies on the OLS estimates to acquire the residuals of the original data. The bootstrap samples are then 
obtained by re-sampling the residuals from the original regression. We will summarize this algorithm 
as follows; 
Step 1: Fit the OLS to the original sample of observations to get ˆ

olsβ  and the fitted values iŷ  = 
ˆ( , )olsf xi β . 

Step 2: Get the residuals iε  = iy - iŷ  and giving probability 1/n for each iε value. 
Step 3: Draw n bootstrap random sample with replacement, that is *

iε  is drawn from iε  and attached 
to iŷ  to get a fixed- x  bootstrap values *iy  where *iy = ˆ( , )olsf xi β + *iε . 

Step 4: Fit the OLS to the bootstrapped values *iy  on the fixed X  to obtain *β̂ . 

Step 5: Repeat steps 3 and 4 for B  times to get *1 *ˆ ˆ, , B
ols olsβ βK  where B is the bootstrap replications. 

 
2.2. Robust Bootstrap Based on LTS (RBLTS) 

Unfortunately, many researchers are not aware that the performance of the OLS can be very poor when 
the data set for which one often makes a normal assumption, has a heavy-tailed distribution which may 
arise as a result of outliers. Even with single outlier can have an arbitrarily large effect on the OLS 
estimates. To overcome this problem, we propose to modify the BOLS algorithm by substituting the 
OLS with a robust estimator with high BP. In this paper, we consider the LTS estimator which was 
proposed by Rousseeuew (1984) and have a high BP which is equal to [{(n-p)/2+1}/n]. ˆ

LTSβ  is 

obtained by minimizing 2
( )

1

ˆ
h

i
i
ε

=
∑  where ( )ˆ iε  is the i-th ordered residual. This technique trims a certain 

percentage of outliers (α ) in the data. For a trimming percentage of α , Rousseeeuw and Leroy (1987) 
suggested choosing [ / 2] [( 1) / 2]h n p= + +  where p is the number of parameters. The advantage of 
using the LTS is that we can control the level of trimming which depend on the suspected percentage 
of outliers. If we suspect the data contains nearly 10% outliers then the LTS will trim 10% of that 
outliers from the data. It is important to note here, that in the LTS routine in S-PLUS, one may choose 
the default α  value or specify the exact α  value based on the percentage of outliers in the original 
data. The former and the later LTS bootstrapping methods are referred as RBLTS2 and RBLTS1, 
respectively. The main difference between the two bootstrap methods is that the RBLTS2 uses the 
default value of α  which is equal to 0.10 while RBLTS1 utilizes α  values specified in the original 
sample. The following algorithm describes the RBLTS procedure; 



Dynamic Robust Bootstrap Method Based on LTS Estimators 280 

Step 1: Fit the LTS to the original sample of observations to get ˆ
LTSβ  and the fitted values iŷ = 

ˆ( , )LTSf xi β . 
Step 2: Obtain the residuals iε  = iy - iŷ  and giving probability 1/n for each iε  value. 
Step 3: Draw n bootstrap random sample with replacement, that is *

iε  is drawn from iε  and 
attached to iŷ  to get a fixed- x  bootstrap values *yi  where *yi = ˆ( , )Ltsf xi β + *

iε . 

Step 4: Fit the LTS to the bootstrapped values *yi  on the fixed X  to obtain *β̂ . 

Step 5: Repeat steps 3 and 4 for B  times to get *1 *ˆ ˆ, , Bβ βK  where B is the bootstrap replications. 
It is important to point out that some statistics practitioners are not aware that there is a 

possibility that some bootstrap samples have percentage of outliers greater than the percentage of 
outliers in the original data. If this problem is not treated properly, the bootstrap estimates will be 
affected. In this respect, The RBLTS1 and RBLTS2 have some shortcomings. In the minimizing 
technique, in some occasions these two estimators may over trim or down trim the proportion of 
outliers in the bootstrap samples because this techniques do not have a detection algorithm to check the 
percentage of outliers in each bootstrap sample. Consequently, they may over trim or down trim the 
percentage of outliers in each bootstrap sample, unnecessarily. For better understanding, the 
explanations of the said weaknesses are illustrated with example. For this purpose we will consider the 
Stackloss Data (see Rousseeuw and Leroy (2003)). This data set with three independent variables 
contains 21 observations has been extensively analyzed by several authors (see Atkinson (1985), 
Rousseew and Leroy(2003) and Midi et. al (2009)). They reported that this data set has four outliers 
(cases 1,3,4 and 21) or 19.2 % outliers. Let us first focus our attention to the RBLTS1 in which the 
LTS algorithm in S-Plus Routine specifies the exact α  value of the original data. For illustration, 21 
observations are sampled with replacement from the original sample. We repeated for 1000 bootstrap 
samples and record the observed number of bootstrap samples out of 1000 which have certain 
percentage of outliers. In this example, any bootstrap sample which has percentage of outliers in the 
range of say, 0<α ≤  5, 5<α ≤  10, 10<α ≤  15, 15<α ≤  20, 20<α ≤  25, 25<α ≤  30, will be declared 
to have percentage of outliers as 5%, 10%, 15%, 20%, 25%, 30%, respectively. In this respect, the 
percentage of outliers in the original data is 20% which is equivalent to 5. Table 1 illustrates the 
number of outliers (NO), number of bootstrap samples (NBS), observed number of outliers (ONO), 
number of trimmed observations (NT) and the Difference between NT and ONO, denoted as Diff. 

Positive Diff indicates the number of clean observations that are trimmed unnecessarily (over 
trimmed clean observations) while negative Diff indicates the number of remaining outliers that still 
exist after the trimmings (down trim the number of outliers). 

Value of Diff equals to 0 suggests that the LTS trimmed the exact or the true number of 
outliers. This is the desired situation. 

For illustrations, we refer to the second row of Table 1 which corresponds to NO=2 and 
NBS=75. There are 75 bootstrap samples out of 1,000, each containing 2 outliers. 

The number of outliers in 75 samples is given by; 
ONO= NO x NBS = 2x75=150 
For RBLTS1, the trimming depends on the number of outliers in the original sample where in 

this example equals to 5. In this respect, the number of trimmed observations is given by NT= 
5xNBS=5x75=375. 

Diff=NT-ONO=375-150=+225 
For RBLTS2, the trimming depends on the default value of alpha of the S-Plus Routine which 

is equals to 0.10 where in this example equals to 3. In this respect, the number of trimmed observations 
is given by NT= 3xNBS=3x268=804. 

Diff=NT-ONO=804-536=+268 
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The breakdown point (BP) for this data is [{(n-p)/2+1}/n]= [(21-4)/2+1]/21= 47.5% and the 
number of outliers corresponds to BP= BPx21≈10. 
 
Table 1: Some Results of RBLTS1 and RBLTS2 bootstrap re-samples of Stackloss data 
 

RBLTS1 RBLTST2 N=21 B=1000 
Outliers %(NO) NBS  ONO NT Diff  NBS  ONO NT Diff 

0% 13 0 65 +65 125 0 375 +375 
5%=2 75 150 375 +225 268 536 804 +268 

10%=3 153 459 765 +306 268 804 804 0 
15%=4 193 772 965 +193 205 820 615 -205 
20%=5 213 1065 1065 0 91 455 273 -182 
25%=6 170 1020 850 -170 31 186 93 -93 
30%=7 108 756 540 -216 12 84 36 -48 
35%=8 53 424 265 -159 0 0 0 0 
40%=9 10 90 50 -40 0 0 0 0 
BP=10 10 100 5 -50 0 0 0 0 

>BP (at least 11) 2 >=22 10 >=(-12) 0 0 0 0 
Total 1000 >=4858 5000 >= (+142) 1000 2885 3000 +115 

 
Based on Table 1, we observe that many bootstrap samples have percentage of outliers in each 

sample greater than the percentage of outliers in the original data. The results also reveal that RBLTS1 
and RBLTS2 will over trim (unnecessary trimming of good observations) and down trim (do not trim 
all outliers) the number of outliers in each bootstrap sample. These are indicated by the positive and 
negative values of the Diff. In addition to that, several bootstrap samples contain percentage of outliers 
in each bootstrap sample which is larger than the number of outliers associate with the BP values. 

The same process was repeated for several sets of 1,000 bootstrap samples and other real data 
and due to space limitations, the results are not reported here. However, the results are consistent where 
we encounter many bootstrap samples with percentage of outliers in each sample larger than the 
percentage of outliers of the original data. Similarly, several samples contain percentage of outliers in 
each sample larger than the BP value. 

This illustrations suggest that there is still problem when applying the RBLTS1 and RBLTS2. 
In order to rectify this problem, it is necessary to identify the exact number of outliers in each bootstrap 
sample so that LTS will trim the exact or correct number of outliers. 
 
2.3. Dynamic Robust Bootstrap for LTS [DRBLTS] 

The RBLTS may be a good alternative to the BOLS if the percentage of outliers in each bootstrap 
sample is equal to the percentage of outliers in the original data. Nevertheless, in real situation the 
proportion of outliers in the bootstrap samples can be higher than that in the original data. It is now 
evident that the bootstrap estimates can be adversely affected by outliers (Hampel, 1971). These 
situations are not desirable because they might produce inefficient results. An attempt has been made 
to make the RBLTS estimates more robust. We propose to modify the RBLTS procedure by first 
identifying the exact number of outliers in the original data and hence specified the appropriate value 
of  α  thus obtained. Once the value of α  is determined, use the LTS with the specified α  value to 
estimate the parameters of the model. Consequently, compute the residuals and identified the residuals 
as outliers if the absolute value of the standardized residuals are larger than three. Just like the previous 
two bootstrapping methods, the bootstrap samples are then taken at random with replacement from the 
original data. It is important to note here, that at this stage, those bootstrap samples which contain the 
percentages of outliers in each sample larger than the BP will be omitted and replaced with a new 
sample. The same process is repeated until the desired bootstrap iterations are obtained. We called this 
method as the Dynamic Robust Bootstrap based on LTS (DRBLTS) and expect it is more robust than 
other methods discussed in this paper. We summarized the DRBLTS as follows; 
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Step 1: Identify the exact number of outliers in the data by Least Median of Squares (see Rousseeuw 
and Leroy (2003)). Consequently α  is determined. 

Step 2: Fit the LTS to the original sample of observations to get ˆ
LTSβ  and the fitted values iŷ  = 

)ˆ,( βixf . Here in the S-PLUS routine we specify the exact value of α  found in Step 1 for the 
LTS algorithm. 

Step 3. Obtain the residuals iε = iy - iŷ and giving probability 1/n for each iε  value. Standardized the 
residuals and identify them as outliers if the absolute value of the standardized residuals 
larger than three. 

Step 4: Draw n bootstrap random sample with replacement, that is *
iε  is drawn from iε  and attached 

to iŷ  to get a fixed- x  bootstrap values *yi  where *yi  = )ˆ,( βixf + *
iε . At this step, we built a 

dynamic subroutine program for the detection of outliers based on the standardized residuals. 
This program has the ability to identify a certain percentage of outliers in each bootstrap 
sample. 

Step 5: Fit the LTS to the bootstrapped values *yi  on the fixed X  to obtain *β̂ . The percentage of 
outliers that should be trimmed depend on step 4. 

Step 6: Repeat steps 3, 4 and 5 for B  times to get *1 *ˆ ˆ, , Bβ βK  where B is the bootstrap replications. 
Any bootstrap sample which has percentage of outliers larger than BP will be deleted and will 
not be counted as bootstrap sample and will be replaced with a new sample. The percentage 
of outliers in each bootstrap sample is determined from Step 4. 

According to Imon and Ali(2005), there is no general agreement among statisticians on the 
number of the replications needed in bootstrap. B can be as small as 25, but for estimating standard 
errors, B is usually in the range of 25-250. They point out that for bootstrap confidence intervals, a 
much larger values of B is required which normally taken to be in the range of 500-10,000. 
 
2.4. Assessment of the Bootstrap Methods 

The performance of the four methods are evaluated based on the bias and RMSE. A ‘good’ method is 
the one which has the smallest bias and smallest RMSE. The biases and the RMSE’s of the four 
bootstrap methods can be computed by employing the following formula. Let us first illustrate the 
computation of the BOLS bias, variance, MSE and RMSE. The calculation of other estimates is the 
same, just substitute the BOLS with the desired estimator, such as the BRLTS1,BRLTS2 and DRBLTS 
in the corresponding formula. 

The BOLS estimate of β  is given by ( )
ˆ

bolsβ

*ˆ
B

b
ols

b i

B

β
==
∑

which yielded the bootstrap bias = 

( )
ˆ ˆ

bols olsβ β− . The bootstrap variance are obtained by taking the diagonal values of the covariance matrix 

* *
( )

1

1ˆ ˆ ˆ ˆ ˆ( ) ( )( )
1

B
b b T

bols bols bols
b

Cov
B

β β β β β
=

= − −
− ∑ . The mean-squared error (MSE) is given by 

2ˆ ˆ( ) ( ) var( )bols bolsMSE biasβ β= + . Consequently, the root mean squared error is given by 
ˆ( )bolsMSE β  

 
 
3.  Results and Discussion 
In this section, several numerical examples and some simulation studies are presented to illustrate the 
performance of the four estimators. 
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3.1. Numerical Examples 

Several well known data sets in robust regression are presented to compare the performance of the 
BOLS, BLTS1, BLTS2 and DRBLTS. Comparison between the estimators are based on the bootstrap 
bias and RMSE. All computations were done on windows with professional edition using S-PLUS 
@6.2. 
 
3.1.1. Hawkins, Bradu and Kass [1984] 
Rousseeuw and Leroy (2003) constructed an artificial three-predictor data set containing 75 
observations with 10 outliers in both of the spaces [cases 1-10], 4 outliers in the X-space [cases 11-14] 
and 61 low leverage inliers [cases 15-75]. Most of the single case deletion identification methods fail 
to identify the outliers in Y-space though some of them point out cases 11-14 as outliers in the Y-
space. 

We fit a linear model as follows: 
0 1 1 2 2 3 3Y X X Xi ii i iβ β β β ε= + + + +  

 
Table 2: Average, bias and RMSE of bootstrap estimates of Hawkins Data 
 

Methods 0β
)

 1β
)

 2β
)

 3β
)

 )0(β
)

bias  
)1(β

)
bias  

)2(β
)

bias  
)3(β

)
bias  

)( 0β
)

RMSE
 

)( 1β
)

RMSE
 

)( 2β
)

RMSE
 

)( 3β
)

RMSE
 

BOLS -1.01 0.71 0.00 0.00 -2.01 -0.29 -1.00 -1.00 2.01 0.29 1.00 1.00 
RBLTS1 -0.190 0.14 0.05 -0.08 0.045 0.00 0.02 0.00 0.05 0.00 0.02 0.00 
RBLTS2 -1.006 0.16 0.20 0.18 -0.771 0.02 0.16 0.25 0.78 0.02 0.16 0.25 
DRBLTS -0.228 0.14 0.04 -0.07 0.010 0.00 0.00 0.00 0.01 0.00 0.000 0.00 

 
The results in Table 2 show that the BOLS has the largest bias and RMSE compared to other 

estimators. Although the bias and the RMSE of the RBLTS1 and RBLTS2 are relatively smaller than 
the BOLS, their performances are inferior than the DRBLTS. It is evident from the results that the 
DRBLTS has the least bias and RMSE, followed by RBLTS1 and RBLTS2. 
 
3.1.2. Stackloss Data 
It is a well known data set presented by Brownlee (1965). The data describe the operation of plant for 
the Oxidation of ammonia to nitric acid and consist of 21 four-dimensional observations. This data 
presents the stackloss [y] corresponding to three predictor variables namely the rate of operation [x1], 
the cooling water inlet temperature [x2], and the acid concentration [x3]. As already been mentioned, 
some researchers reported that this data contains four outliers. Some researchers claimed that this data 
contains five outliers. 

We fit a linear model as follows: 
0 1 1 2 2 3 3Y X X Xi ii i iβ β β β ε= + + + +  

 
Table 3: Average, bias and RMSE of bootstrap estimates of Stackloss Data 
 

Methods 0β
)

 1β
)

 2β
)

 3β
)

 )0(β
)

bias  
)1(β

)
bias  

)2(β
)

bias  
)3(β

)
bias  

)( 0β
)

RMSE
 

)( 1β
)

RMSE
 

)( 2β
)

RMSE
 

)( 3β
)

RMSE
 

BOLS -43.39 1.00 0.01 0.00 -6.19 0.13 -0.41 0.08 6.19 0.13 0.41 0.08 
RBLTS1 -38.20 0.81 0.64 -0.08 -1.00 -0.06 0.22 0.00 1.00 0.06 0.22 0.00 
RBLTS2 -40.16 0.82 0.73 -0.08 -2.96 -0.05 0.31 0.00 2.96 0.05 0.31 0.00 
DRBLTS -36.90 0.87 0.40 -0.08 0.30 0.00 -0.02 0.00 0.30 0.00 0.02 0.00 

 
Let us now focus to the results in Table 3 for Stackloss data. As can be expected, similar results 

are obtained for Stackloss data which is known to have several outliers. We can see that the bias and 
RMSE of the DRBLTS are remarkably the smallest among the four estimators. From these results, it 
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seems that the BOLS is the least efficient estimator with the RBLTS2 being the next least efficient 
estimator. Again, it can be seen that the DRBLTS consistently has the least bias and RMSE compared 
to other estimators. Clearly from the these two examples suggest that the BOLS is easily affected by 
outliers. We have not pursued the analysis of the examples to a final conclusion, but a reasonable 
interpretation up to this point is that the DRBLTS is the least affected estimator. 
 
3.1.3. Simulation Study 
A simulation study is presented to further assess the performance of the DRBLTS estimator. We 
consider the similar model use by Riadth et. al (2002) in his simulation study. First we generate 25 
observations according to linear relation 

i
)i(

2x5.0
)i(

1x7.02y ε+++=  
where 

)81.0,1.0(N~
)i(

2x

)25,6.0(N~
)i(

1x

−
 

iε  is drawn from normal distribution, that is N(0, 0.04)iε � . Then contamination of the data was 
commenced. At each step, one ‘good’ residual was deleted and replaced with a bad data point. The 
contaminated residuals were generated from normal distribution, that is N(10, 9)iε � . 

Table 4-6 present the biases and RMSE’s of the four methods with varying sample size 25, 50, 
100 and 500. The results are for B=500. For the clean data (with no outliers), all four methods are 
fairly close to each other with respect to the bias and the RMSE. However, as the percentage of outliers 
increases, the BOLS immediately affected by outliers. The biases and RMSEs of the BOLS is the 
largest among the four estimators. The performance of the RBLTS2 is slightly better than the RBLTS1 
up to 10% outliers. It is interesting to point out that the RBLTS1 is slightly better than the RBLTS2 for 
the case with slightly above 10% outliers. 

On the other hand, the RMSE of the DRBLTS estimates is consistently the smallest as the 
percentage of outliers increases. From these results, it seems that the BOLS is very sensitive to the 
presence of outliers, with the RBLTS1 being the next most sensitive followed by the RBLTS2 when 
the percentage of outliers is up to 10%. Otherwise, the RBLTS2 is more sensitive to outliers than 
RBLTS1. The DRBLTS is hardly affected by the outliers, as shown by the values of the biases and 
RMSE which are consistently the smallest. The DRBLTS estimates emerge to be conspicuously more 
efficient than the other estimators. The results seem to be consistent in all 500 trials and each sample, 
size 25, 50, 100, 500. 
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Table 4: Average, bias and RMSE of bootstrap estimates of simulation data when n=25 
 

Outliers Methods 0β
)

 1β
)

 2β
)

 )0(β
)

Bias  )1(β
)

Bias  )2(β
)

Bias  )0(β
)

RMSE  )( 1β
)

RMSE  
)2(β

)
RMSE

 

BOLS 2.019 0.697 0.561 0.019 -0.003 0.061 0.019 0.003 0.061 
RBLTS1 2.015 0.698 0.561 0.015 -0.002 0.061 0.015 0.002 0.061 
RBLTS2 1.986 0.700 0.563 -0.014 0.00 0.063 0.014 0.00 0.063 0% 

DRBLTS 1.983 0.699 0.555 -0.017 -0.001 0.055 0.017 0.001 0.055 
BOLS 2.750 0.760 0.435 0.750 0.060 -0.064 0.750 0.060 0.064 
RBLTS1 2.267 0.724 0.368 0.267 0.024 -0.132 0.267 0.024 0.132 
RBLTS2 2.110 0.709 0.489 0.110 0.009 -0.011 0.110 0.009 0.011 

5% 

DRBLTS 1.987 0.698 0.546 -0.013 -0.002 0.046 0.013 0.002 0.046 
BOLS 3.713 0.672 0.784 1.713 -0.028 0.284 1.713 0.028 0.284 
RBLTS1 2.374 0.720 0.474 0.374 0.020 -0.026 0.374 0.020 0.026 
RBLTS2 2.338 0.709 0.470 0.338 0.009 -0.030 0.338 0.009 0.030 

10% 

DRBLTS 1.973 0.701 0.545 -0.027 0.002 0.045 0.027 0.002 0.045 
BOLS 3.985 0.804 1.086 1.985 0.104 0.586 1.985 0.104 0.586 
RBLTS1 2.294 0.783 0.600 0.294 0.083 0.100 0.294 0.083 0.100 
RBLTS2 2.533 0.804 0.663 0.533 0.104 0.163 0.533 0.104 0.163 15% 

DRBLTS 1.988 0.702 0.536 -0.012 0.002 0.036 0.012 0.002 0.036 
BOLS 4.300 0.656 0.597 2.300 -0.044 0.097 2.300 0.044 0.097 
RBLTS1 2.260 0.742 0.446 0.260 0.042 -0.054 0.260 0.042 0.054 
RBLTS2 2.711 0.722 0.314 0.711 0.022 -0.186 0.711 0.022 0.186 

20% 

DRBLTS 1.985 0.706 0.562 -0.015 0.006 0.062 0.015 0.006 0.062 
 
Table 5: Average, bias and RMSE of bootstrap estimates of simulation data when n=50 
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RMSE  
)2(β

)
RMSE

 

BOLS 1.968 0.699 0.462 -0.032 -0.001 -0.038 0.032 0.001 0.038 
RBLTS1 1.971 0.700 0.460 -0.029 -0.001 -0.040 0.029 0.001 0.040 
RBLTS2 1.964 0.701 0.473 -0.036 0.002 -0.027 0.036 0.002 0.027 0% 

DRBLTS 1.967 0.700 0.461 -0.032 -0.001 -0.039 0.322 0.001 0.039 
BOLS 1.968 0.699 0.462 -0.032 -0.001 -0.038 0.032 0.001 0.038 
RBLTS1 1.971 0.700 0.460 -0.029 -0.001 -0.040 0.029 0.001 0.040 
RBLTS2 1.964 0.701 0.473 -0.036 0.002 -0.027 0.036 0.002 0.027 

5% 

DRBLTS 1.967 0.700 0.461 -0.032 -0.001 -0.039 0.322 0.001 0.039 
BOLS 2.592 0.674 0.601 0.592 -0.026 0.101 0.592 0.026 0.101 
RBLTS1 2.150 0.691 0.477 0.150 -0.009 -0.023 0.150 0.009 0.023 
RBLTS2 1.991 0.695 0.470 -0.009 -0.004 -0.030 0.009 0.004 0.030 10% 

DRBLTS 1.958 0.700 0.453 0.042 0.000 0.047 0.042 0.000 0.047 
BOLS 3.042 0.650 0.784 1.042 -0.051 0.284 1.042 0.051 0.284 
RBLTS1 2.156 0.684 0.510 0.156 -0.016 0.009 0.156 0.016 0.009 
RBLTS2 2.170 0.676 0.540 0.170 -0.024 0.040 0.170 0.024 0.040 15% 

DRBLTS 1.954 0.700 0.462 -0.046 0.000 -0.038 0.046 0.000 0.038 
BOLS 3.789 0.607 0.487 1.789 -0.093 -0.012 1.789 0.093 0.012 
RBLTS1 2.190 0.684 0.531 0.190 -0.016 0.031 0.190 0.016 0.031 
RBLTS2 2.685 0.660 0.664 0.685 -0.040 0.164 0.685 0.040 0.164 

20% 

DRBLTS 1.939 0.701 0.466 -0.061 0.001 -0.034 0.061 0.001 0.034 
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Table 6: Average, bias and RMSE of bootstrap estimates of simulation data when n=100 
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BOLS 1.993 0.701 0.531 -0.007 0.001 0.031 0.007 0.001 0.031 
RBLTS1 1.993 0.701 0.533 -0.007 0.001 0.033 0.007 0.001 0.033 
RBLTS2 1.994 0.701 0.527 -0.006 0.001 0.027 0.006 0.001 0.027 0% 

DRBLTS 1.991 0.701 0.531 -0.009 0.001 0.031 0.009 0.001 0.031 
BOLS 2.571 0.741 1.055 0.571 0.041 0.555 0.571 0.041 0.555 
RBLTS1 2.051 0.706 0.564 0.061 0.006 0.064 0.061 0.006 0.064 
RBLTS2 1.993 0.701 0.525 -0.007 0.001 0.025 0.007 0.001 0.025 5% 

DRBLTS 1.992 0.701 0.540 -0.007 0.001 0.040 0.007 0.001 0.040 
BOLS 3.014 0.751 0.986 1.014 0.051 0.486 1.014 0.051 0.486 
RBLTS1 2.080 0.711 0.548 0.080 0.010 0.048 0.080 0.010 0.048 
RBLTS2 2.080 0.710 0.535 0.080 0.010 0.035 0.080 0.010 0.035 10% 

DRBLTS 1.996 0.703 0.532 -0.004 0.003 0.032 0.004 0.003 0.032 
BOLS 3.492 0.796 1.085 1.492 0.096 0.585 1.492 0.096 0.585 
RBLTS1 2.076 0.718 0.496 0.076 0.017 -0.004 0.076 0.017 0.004 
RBLTS2 2.331 0.750 0.575 0.331 0.050 0.075 0.331 0.050 0.075 15% 

DRBLTS 1.997 0.703 0.529 -0.003 0.003 0.029 0.003 0.003 0.029 
BOLS 3.911 0.808 1.148 1.911 0.108 0.648 1.911 0.108 0.648 
RBLTS1 2.083 0.703 0.478 0.083 0.003 -0.022 0.083 0.003 0.022 
RBLTS2 2.718 0.751 0.697 0.718 0.051 0.197 0.718 0.051 0.197 20% 

DRBLTS 2.004 0.700 0.524 0.004 0.000 0.024 0.004 0.000 0.024 
 
Table7: Average, bias and RMSE of bootstrap estimates of simulation data when n=500 
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BOLS 2.010 0.700 0.492 0.010 0.000 -0.008 0.010 0.000 0.008 
RBLTS1 2.010 0.700 0.492 0.010 0.000 -0.008 0.010 0.000 0.008 
RBLTS2 2.012 0.701 0.470 0.012 0.001 -0.030 0.012 0.001 0.030 0% 

DRBLTS 2.012 0.700 0.492 0.012 0.000 -0.008 0.012 0.000 0.008 
BOLS 2.488 0.710 0.351 0.488 0.007 -0.149 0.488 0.007 0.149 
RBLTS1 2.040 0.702 0.501 0.040 0.002 0.001 0.040 0.002 0.001 
RBLTS2 2.016 0.701 0.479 0.016 0.002 -0.021 0.016 0.002 0.021 

5% 

DRBLTS 2.013 0.701 0.489 0.013 0.001 -0.011 0.013 0.001 0.011 
BOLS 2.995 0.724 0.315 0.996 0.024 -0.185 0.996 0.024 0.185 
RBLTS1 2.047 0.704 0.489 0.047 0.004 -0.011 0.047 0.004 0.011 
RBLTS2 2.040 0.703 0.488 0.040 0.003 0.012 0.040 0.003 0.012 

10% 

DRBLTS 2.015 0.700 0.492 0.015 0.000 -0.008 0.015 0.000 0.008 
BOLS 3.538 0.683 0.297 1.538 -0.017 -0.203 1.538 0.017 0.203 
RBLTS1 2.051 0.704 0.500 0.051 0.004 0.001 0.051 0.004 0.001 
RBLTS2 2.333 0.718 0.492 0.333 0.018 -0.008 0.333 0.018 0.008 

15% 

DRBLTS 2.014 0.702 0.495 0.014 0.002 -0.005 0.014 0.002 0.005 
BOLS 4.062 0.671 0.431 2.062 -0.029 -0.096 2.062 0.029 0.069 
RBLTS1 2.050 0.706 0.497 0.050 0.006 -0.003 0.050 0.006 0.003 
RBLTS2 2.818 0.693 0.347 0.818 -0.007 -0.173 0.818 0.007 0.153 

20% 

DRBLTS 2.014 0.700 0.502 0.014 0.001 0.002 0.014 0.001 0.002 
 
 
4.  Conclusion 
The empirical studies suggest that the BOLS is the better choice than the other three estimators for a 
cleaned data. Nonetheless, its performance was inferior to the RBLTS1, RBLTS2 and DRBLTS when 
contamination occurred in the data. The results seem to suggest that the DRBLTS is the most efficient 
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bootstrap estimator when outliers are presence in the data. Hence, it should provide robust alternative 
to the classical bootstrap method. 
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